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AVOIDING BROOMS, FORKS, AND BUTTERFLIES IN THE

LINEAR LATTICES

SHAHRIAR SHAHRIARI AND SONG YU

Abstract. Let n be a positive integer, q a power of a prime, and Ln(q)
the poset of subspaces of an n-dimensional vector space over a field with q

elements. This poset is a normalized matching poset and the set of subspaces
of dimension ⌊n/2⌋ or those of dimension ⌈n/2⌉ are the only maximum-sized
anti-chains in this poset. Strengthening this well-known and celebrated result,
we show that, except in the case of L3(2), these same collections of subspaces
are the only maximum-sized families in Ln(q) that avoid both a ∧ and a ∨ as
a subposet. We generalize some of the results to brooms and forks, and we
also show that the union of the set of subspaces of dimension k and k + 1, for
k = ⌊n/2⌋ or k = ⌈n/2⌉ − 1, are the only maximum-sized families in Ln(q)
that avoid a butterfly (definitions below).

1. Introduction

Let u be a positive integer, and let Q = {a0, a1, . . . , au} be a set of u + 1
elements. Define a partial order on Q by requiring that, for 1 ≤ i ≤ u, ai < a0
(and, for 0 ≤ i ≤ u, ai ≤ ai). The poset Q is called a u-broom, and a0 is the handle
of the broom. Likewise, Q is called a u-fork with a0 as its handle if, for 1 ≤ i ≤ u,
a0 < ai. We denote a 2-broom by ∧ and a 2-fork by ∨. See Figure 1.

Figure 1. The Hasse diagram of a broom (left) and a fork (right)

If P is a poset, then ≤P denotes the partial order on P . We say the poset P
contains the poset Q as a subposet, if there exists a subset P0 of P and a bijective
map θ : Q → P0 such that, for all x, y ∈ Q, if x ≤Q y, then θ(x) ≤P θ(y). Note that
the elements of P0 are allowed to have other relations as well. Hence, for example,
a chain of size 4 contains a 3-broom as well as a 3-fork. If P does not contain Q as
a subposet, then we say that P is Q-free.

Let P , P1, . . ., Pk be posets. Then P is (P1, P2, . . . , Pk)-free if P does not
contain any of P1, . . ., Pk as subposets. We denote by ex(P ;P1, . . . , Pk) the size of
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2 SHAHRIARI AND YU

Figure 2. In the Fano plane, take the three vertices of a triangle,
the three edges that each contain just one of these vertices, and the
one edge that contains none of these vertices. This collection of 4
edges and 3 vertices, as well as its dual on the right (the three edges
of a triangle together with the vertices that are not their points of
intersection), give maximum-sized (∧,∨)-free families containing
subspaces of multiple dimensions.

the largest subset of P that is (P1, P2, . . . , Pk)-free. (Many authors have used the
notation La(P ;P1, . . . , Pk) instead of ex(P ;P1, . . . , Pk).)

Let n be a positive integer, q a power of prime, Fq a field of order q, and (Fq)
n

a vector space of dimension n over Fq. We denote by Ln(q) the poset of subspaces
of (Fq)

n ordered by inclusion. In analogy with the binomial coefficients, define

[n]q =
qn−1
q−1 = qn−1+· · ·+q+1, [n]q! = [n]q[n−1]q · · · [2]q[1]q, and

[

n
k

]

q
=

[n]q!
[k]q ! [n−k]q !

for 0 ≤ k ≤ n. The integers
[

n
k

]

q
are calledGaussian coefficients, and, for 0 ≤ k ≤ n,

the number of subspaces of (Fq)
n of dimension k is

[

n
k

]

q
. (See van Lint and Wilson

[16, Chapter 24].) Our first theorem is

Theorem A. Let n ≥ 2 be an integer, q a power of a prime. Then

ex(Ln(q);∧,∨) =

[

n

⌊n/2⌋

]

q

.

Moreover, if F is a subposet of Ln(q) of size
[

n
⌊n/2⌋

]

q
that contains neither a ∧ nor

a ∨, then

(1) if n is even, then F consists of all subspaces of dimension n/2, and
(2) if n is odd, and either n > 3 or q > 2, then F consists either of all subspaces

of dimension ⌊n/2⌋ or of all subspaces of dimension ⌈n/2⌉, and
(3) if n = 3 and q = 2, then there are 4 possible configurations for F .

In the case L3(2), if we ignore the trivial subspaces, and call the 1-dimensional
and 2-dimensional subspaces points and lines respectively, then the inclusion rela-
tion among the points and lines is given by the familiar Fano plane. This is the one
case where there are maximum-sized (∧,∨)-free families that contain subspaces of
multiple dimensions. These families are illustrated in Figure 2. Having to account
for this special case, the proof becomes a bit more subtle.

If n is even, there is only one largest level in Ln(q), and a (very similar) proof
for this part of Theorem A was already given by Salerno and Shahriari [12]. For
this case, we actually generalize the result to brooms and forks.
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Theorem B. Let n be an even positive integer, q a power of a prime, and u
and v positive integers. Assume u ≤ q and v ≤ q. Then the family of subspaces
of dimension n/2 is the only maximum-sized u-broom and v-fork free subposet of
Ln(q). In particular, the maximum size of a u-broom and v-fork free family in
Ln(q) is

[

n
n/2

]

q
.

We then turn to the butterfy ( ), the Y poset ( ), and the Y’ poset ( ). A
butterfly is a poset {a, b, c, d} whose partial order is defined by a ≤ c, a ≤ d, b ≤ c,
and b ≤ d. A Y is a butterfly with the additional requirement that a ≤ b; dually, a
Y’ is a butterfly with the additional requirement that c ≤ d. See Figure 3.

Figure 3. The Hasse diagram of a butterfly, a Y, and a Y’, respectively

Let
(

Ln(q)
k

)

be the collection of all subspaces of dimension k in Ln(q). Our result
on avoiding butterflies, Ys, and Y’s is

Theorem C. Let n ≥ 3 be an integer, q a power of a prime. Then

ex(Ln(q); ) = ex(Ln(q); , ) =

[

n

⌊n/2⌋

]

q

+

[

n

⌊n/2⌋+ 1

]

q

.

Moreover, if F is a subposet of Ln(q) of size
[

n
⌊n/2⌋

]

q
+
[

n
⌊n/2⌋+1

]

q
that is butterfly-

free or (Y, Y’)-free, then

(1) if n is odd, then F =
(Ln(q)
⌊n/2⌋

)

∪
(Ln(q)
⌈n/2⌉

)

, and

(2) if n is even, then either F =
(Ln(q)

n/2

)

∪
(Ln(q)
n/2+1

)

or F =
(Ln(q)

n/2

)

∪
(Ln(q)
n/2−1

)

.

In studying Ln(q), our guide is the boolean lattice 2[n]. Let n be a positive
integer and [n] = {1, 2, . . . , n} be a set with n elements, then the boolean lattice (or
subset lattice) of order n, denoted by 2[n], is the poset of subsets of [n] ordered by
inclusion. Often results about the boolean lattices have counter parts for the linear
lattices, and there are many instances where if you take a result for Ln(q) and “let
q → 1” then you get the correct result for the 2[n]. The literature on forbidden
posets in 2[n] is vast and we limit ourselves to directly relevant items.

Denote by a chain of length 1 (and size 2). A collection of the elements of
a poset that avoids is called an anti-chain. The celebrated Sperner Theorem
(Sperner [14]) says that ex(2[n]; ) =

(

n
⌊n/2⌋

)

and that the only -free families of size
(

n
⌊n/2⌋

)

in 2[n] are the collection of subsets of size ⌊n/2⌋ and the collection of subsets

of size ⌈n/2⌉. The corresponding “strict Sperner property” for Ln(q) is identical
and well known:

Theorem 1.1 (See Example 4.6.2, page 175 of Engel [4]). The largest size of an
anti-chain in Ln(q) is

[

n
⌊n/2⌋

]

q
and the only anti-chains of this size are the collection

of subspaces of dimension ⌊n/2⌋ and the collection of subspaces of dimension ⌈n/2⌉.
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To avoid , you certainly have to avoid both ∧ and ∨. Hence maximum-sized
anti-chains in Ln(q) are among the configurations outlined in Theorem A. Hence,
the Sperner property of Ln(q) (including the characterization of the maximum-sized
anti-chains) is a corollary of our Theorem A. While in the linear lattices, except for
L3(2), the configurations that give a maximum-sized (∧,∨)-free family are identical
to the maximum-sized anti-chains, this is not so in the boolean lattices.

Theorem 1.2 (Katona, Tarján, 1983 [9]). For all n ≥ 2,

ex
(

2[n];∧,∨
)

= 2

(

n− 1
⌊

n−1
2

⌋

)

.

Note that if n is even, 2
( n−1

⌊n−1

2 ⌋
)

=
(

n
⌊n/2⌋

)

, but if n is odd, 2
( n−1

⌊n−1

2 ⌋
)

>
(

n
⌊n/2⌋

)

.

Hence for odd n, the situation in the linear lattices is qualitatively different than
that of the boolean lattices.

For butterflies, our Theorem C mirrors its Boolean lattice counterpart. We

denote all subsets of size k in [n] by
(

[n]
k

)

.

Theorem 1.3 (De Bonis, Katona, Swanepoel, 2005 [3]). For all n ≥ 3,

ex
(

2[n];
)

=

(

n
⌊

n
2

⌋

)

+

(

n
⌊

n
2

⌋

+ 1

)

.

Moreover, if F is a subposet of 2[n] of size
(

n
⌊n

2 ⌋
)

+
(

n
⌊n

2 ⌋+1

)

that is butterfly-free,

then

(1) if n is odd, then F =
( [n]
⌊n/2⌋

)

∪
( [n]
⌈n/2⌉

)

, and

(2) if n is even, and n ≥ 6, then either F =
( [n]
n/2

)

∪
( [n]
n/2+1

)

or F =
( [n]
n/2

)

∪
( [n]
n/2−1

)

, and

(3) if n = 4, then either F =
(

[4]
2

)

∪
(

[4]
3

)

or F =
(

[4]
2

)

∪
(

[4]
1

)

, or F is isomorphic
to the following family:

(

[4]

2

)

∪ {{1}, {2, 3, 4}, {2}, {1, 3, 4}}.

For the boolean lattices, many other forbidden configurations have been studied.
We refer the reader to Katona [8], Griggs et al. [6], Grósz et al. [7], and Nagy [11]
for references and surveys. For the linear lattices, other than the present study,
Sarkis et al. [13] have considered “diamond”-free collections of subspaces in Ln(q).

2. Preliminaries on Normalized Matching Posets and Linear Lattices

A totally ordered subset of a poset is called a chain, and a poset P is graded
if all maximal chains are of equal length. For a graded poset P , the rank of an
element x ∈ P is the length of a maximal chain from a minimal element of P to x,
and the rank of P is the length of a maximal chain in P . In a graded poset P , for
a non-negative integer i, the set of all elements of rank i is called the ith level of P
and denoted by

(

P
i

)

. The boolean lattice 2[n] and the linear lattice Ln(q) are both

graded posets of rank n. In 2[n] and Ln(q), the rank of an element x is the size of
x and the dimension of x respectively. Hence, for x ∈ Ln(q), to say dim(x) = i, x
is of rank i in Ln(q), or x is on the ith level of Ln(q) are equivalent.

For a graded poset P , the sizes of the different levels of P are called the rank
numbers of P . The rank numbers of Ln(q) are given by the Gaussian coefficients
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[

n
0

]

q
,
[

n
1

]

q
, . . .,

[

n
n

]

q
. This sequence is symmetric (that is,

[

n
k

]

q
=
[

n
n−k

]

q
) and

unimodal with
[

n
⌊n/2⌋

]

q
=
[

n
⌈n/2⌉

]

q
being the largest rank number(s).

If P is a poset, then its Hasse diagram is a graph whose vertices are elements of
P , and x is adjacent to y if x < y and there exists no z ∈ P with x < z < y. If P is a
graded poset of rank n, 0 < i ≤ n, and A ⊆

(

P
i

)

, then the shadow of A, denoted by

△A, is the set of elements of
(

P
i−1

)

that are related to some element of A. Likewise,

if 0 ≤ i < n, and A ⊆
(

P
i

)

, then the shade of A, denoted by ▽A, is the set of

elements of
(

P
i+1

)

that are related to some element of A. If A = {a} is a singleton

set, we will also use the notation △a and ▽a for △{a} and ▽{a}. Thinking of the
Hasse diagram as a graph, we sometimes use graph-theoretic terminology and refer
to △A and ▽A as the neighbors of A in

(

P
i−1

)

and
(

P
i+1

)

respectively.

If we fix a basis for (Fq)
n, for every subspace W of (Fq)

n of dimension k, there
is a unique k× n matrix MW of rank k and in reduced row echelon form such that
W is the row space of MW . Define a map θ : W 7→ nullspace(MW ), then θ is an
order reversing bijection of Ln(q). As a result, Ln(q) is “symmetric” around the
middle rank, and turning the Hasse diagram of the poset “upside-down” results in
the same Hasse diagram.

A class of posets that includes both the boolean lattices and the linear lattices
(as well as the poset of positive integer divisors of a positive integer ordered by
divisibility) is that of normalized matching posets.

Definition 2.1 (Graham and Harper [5]). Let P be a graded poset of rank n.

Assume that for every integer i with 0 < i ≤ n, and for every A ⊆
(

P
i

)

, we have

|△A|
∣

∣

∣

(

P
i−1

)

∣

∣

∣

≥
|A|
∣

∣

∣

(

P
i

)

∣

∣

∣

.

We then say that P is a normalized matching poset.

It is straightforward to show that in a normalized matching poset, for every 0 ≤

i < n, and for every A ⊆
(

P
i

)

, we also have |▽A|

|( P

i+1)|
≥ |A|

|(Pi )|
. Having the normalized

matching property is also equivalent to having the LYM property (Kleitman [10]).
A graded poset P of rank n has the LYM property if for all anti-chains A ⊆ P , we
have

n
∑

i=0

∣

∣

∣
A ∩

(

P
i

)

∣

∣

∣

∣

∣

∣

(

P
i

)

∣

∣

∣

≤ 1.

Definition 2.2. Let P be a graded poset of rank n. Assume that for every 0 <
i ≤ n, and for every x, y ∈

(

P
i

)

, we have |△x| = |△y|, and for every 0 ≤ j < n, and

for every z, w ∈
(

P
j

)

, we have |▽z| = |▽w|. We say that P is a regular poset.

Lemma 2.3 (Baker [2]). Every regular poset is normalized matching. In particular,
for n a positive integer, and q a prime power, the poset Ln(q) (as well as 2[n]) is a
normalized matching poset.

3. u-brooms and v-forks

We first show that a maximum-sized family of subspaces that avoids a u-broom
and a v-fork can be “pushed” into the middle levels of the linear lattice. If P is
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a graded poset and Q is a subposet of P , then we consider replacing the elements
of highest rank in Q with their shadow in P . We start with a straightforward
observation.

Lemma 3.1. Let u, i, and n be positive integers with i ≤ n, and let P be a graded
poset of rank n. Let Q be a subposet of P with no elements of rank greater than i,
and let B =

(

P
i

)

∩ Q denote the elements of rank i in Q. Let Q′ = (Q− B) ∪ △B
be the poset obtained by replacing elements of B with their shadow in P . Then Q′

has no element of rank greater than i− 1, and if Q is u-broom free then so is Q′.

Proof. It is clear that Q′ has no element of rank greater than i − 1. Now assume
that Q is u-broom free but Q′ contains a u-broom. Since Q did not contain a
u-broom, the handle of a newly created u-broom in Q′ would have to be in △B,
and the rest of the elements of this u-broom would be in Q. But if the handle is
in △B then it is comparable to an element of B. Replacing the handle with this
element of B gives a u-broom in Q. The contradiction completes the proof. �

Specializing to normalized matching posets, we can quantify our observation.

Proposition 3.2. Let u, i, and n be positive integers with i ≤ n, and let P be a
normalized matching poset of rank n with rank numbers r0, r1, . . ., rn. Let Q be a
subposet of P containing no elements of P of rank greater than i. Let B =

(

P
i

)

∩Q
and Q′ = (Q− B)∪△B. Assume that Q is u-broom free and that ri−1

ri
= u+α for

some non-negative real number α, then

|Q′| ≥ |Q|+ α |B| .

In particular, |Q′| ≥ |Q|, and if α > 0, then |Q′| > |Q|.

Proof. Since Q does not contain a u-broom, an element of B can be comparable to
at most u − 1 elements of Q. Hence, |△B ∩Q| ≤ (u − 1) |B|. In addition, since P
is a normalized matching poset, we have

|△B| ≥
ri−1

ri
|B| = (u + α) |B| .

As a result,

|△B −Q| = |△B| − |△B ∩Q| ≥ (u+ α) |B| − (u − 1) |B| = (α+ 1) |B| .

We conclude that

|Q′| = |Q| − |B|+ |△B −Q| ≥ |Q|+ α |B| .

�

In the situation of Proposition 3.2, let a ≤ n be a positive integer such that
ri−1

ri
> u for all a ≤ i ≤ n. If Q is an arbitrary subposet of P that does not contain

a u-broom, then by repeated replacement of the highest ranked elements with their
shadow, we get a larger u-broom free subposet whose elements have rank at most
a − 1. We can thus conclude that the elements of a maximum-sized u-broom free
subposet are restricted to ranks 0 through a−1. However, if Q is both u-broom free
and v-fork free, then replacing the highest rank elements of Q with their shadow (as
done in Lemma 3.1) may create a v-fork. To also avoid v-forks, we need to match
and replace the highest ranked elements of Q with an equal number of elements of
△B − Q. This will result in a poset that continues not to contain u-brooms and
v-forks, and will have the same size as our original poset.
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Proposition 3.3. Let u, v, i, and n be positive integers with i ≤ n, and P be a
normalized matching poset of rank n with rank numbers r0, r1, . . ., rn. Let Q be a
subposet of P containing no elements of P of rank greater than i. Assume that Q
does not contain u-brooms or v-forks and that ri−1

ri
≥ u, then we can appropriately

replace all the elements of B =
(

P
i

)

∩Q with an equal number of elements in △B−Q
resulting in a poset Q′ that has as many elements as Q, has no elements of P of
rank greater than or equal to i, and contains no u-brooms or v-forks.

Proof. We verify the marriage condition to show that we can match elements of B
with an equal number of elements of △B −Q, in such a way that every element b
of B is matched with a distinct element of △B−Q that is covered by b. Replacing
every element of B with its match in △B − Q, we get the desired subposet Q′ of
P . By Lemma 3.1, Q′ will not contain a u-broom. If Q′ had a new v-fork, then
some of the elements of the v-fork would have to be in △B − Q. Replacing these
elements with their matches in B gives a v-fork in Q. The contradiction shows that
Q′ is also v-fork free.

To verify the marriage condition let X ⊆ B, and consider the poset (Q−B)∪X ,
then by Proposition 3.2, in this poset, if we replace the elements of X by their
shadow, we get a new poset of at least the same size. Hence X has at least |X |
many neighbors in △B − Q. This verifies the marriage condition and shows that
we can match the elements of B with those of △B−Q as desired. The proof is now
complete. �

With an identical proof, we can get dual versions of Lemma 3.1 and Proposition
3.2 for v-fork free families. Let n, a, and v be positive integers with a < n, such
that ri+1

ri
> v for all 0 ≤ i ≤ a. If Q is an arbitrary subposet of P that does

not contain a v-fork, then by repeated replacement of the lowest ranked elements
with their shade, we get a larger v-fork free subposet whose elements have rank at
least a + 1. We thus conclude that, under such circumnstances, the elements of a
maximum-sized v-fork free subposet are restricted to ranks a+ 1 through n. Here,
we record the dual version of Proposition 3.3.

Proposition 3.4. Let u, v, and n be positive integers, i a non-negative integer
with i < n, and let P be a normalized matching poset of rank n with rank numbers
r0, r1, . . ., rn. Let Q be a subposet of P containing no elements of P of rank less
than i. Assume that Q does not contain u-brooms or v-forks and that ri+1

ri
≥ v,

then we can appropriately replace all the elements of B =
(

P
i

)

∩ Q with an equal
number of elements in ▽B−Q resulting in a poset Q′ that has as many elements as
Q, has no elements of P of rank less than or equal to i, and contains no u-brooms
or v-forks.

Propositions 3.3 and 3.4 have an immediate corollary for the linear lattices.

Corollary 3.5. Let n be a positive integer, q a power of a prime, and u and
v positive integers. Then there exists a maximum-sized u-broom and v-fork free
family F ⊆ Ln(q) such that for all F ∈ F ,

⌊

n+ 1− logq v

2

⌋

≤ dimF ≤

⌈

n− 1 + logq u

2

⌉

.

Proof. The poset Ln(q) is normalized matching and its rank numbers are r0 =
[

n
0

]

q
,

r1 =
[

n
1

]

q
, . . ., rn =

[

n
n

]

q
. If n is odd and i = n+1

2 , then ri−1 = ri. However, for
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i > n+1
2 (with n even or odd), we have

ri−1

ri
=

[

n
i−1

]

q
[

n
i

]

q

=
[i]q

[n− i+ 1]q
=

qi − 1

qn−i+1 − 1
> q2i−n−1,

and q2i−n−1 ≥ u if i ≥
n+1+logq(u)

2 . Now if Q ⊆ Ln(q) is a maximum-sized u-broom
and v-fork free family, then repeated application of Proposition 3.3, starting with

i = n and ending with i =
⌈

n+1+logq(u)

2

⌉

, gives an equal size u-broom and v-fork free

family Q′ confined to rank numbers 0 through
⌈

n+1+logq(u)

2

⌉

− 1 =
⌈

n−1+logq(u)

2

⌉

.

Similarly, for i < n−1
2 , we have

ri+1

ri
=

[

n
i+1

]

q
[

n
i

]

q

=
qn−i − 1

qi+1 − 1
> qn−2i−1,

and qn−2i−1 ≥ v if i ≤
n−1−logq(v)

2 . Apply Proposition 3.4 repeatedly to Q′, starting

with i = 0 and ending with i =
⌊

n−1−logq(v)

2

⌋

, to get F , a maximum-sized u-broom

and v-fork free subposet of Ln(q), confined to rank numbers
⌊

n−1−logq(v)

2

⌋

+ 1 =
⌊

n+1−logq(v)

2

⌋

through
⌈

n−1+logq(u)

2

⌉

. �

We can already prove Theorem B.

Proof of Theorem B. If u and v are less than or equal to q, then the restriction
on the dimension of the subspaces in the maximum-sized family not containing
u-brooms and v-forks produced in Corollary 3.5 becomes

⌊n

2

⌋

≤ dim(F ) ≤
⌈n

2

⌉

.

However, since n is assumed to be even, we get that dim(F ) = n/2 for all F ∈ F .
We conclude that the collection of all subspaces of dimension n/2 is a maximum-
sized family not containing u-brooms and v-forks.

To show uniqueness, let Q be any u-broom and v-fork free family of subspaces
in Ln(q) that contains at least one subspace of dimension other than n/2. Without
loss of generality, assume that Q contains a subspace of dimension greater than n/2.
Use Propositions 3.3 and 3.4 (as in the proof of Corollary 3.5) to construct a u-
broom and v-fork family Q′ with |Q′| = |Q| and so that Q′ is confined to ranks n/2
and n/2 + 1 (in other words, unlike the proof of Corollary 3.5, stop one step short
of pushing every element into the middle level). Since

[

n
n/2

]

q
/
[

n
n/2+1

]

q
> q ≥ u, by

Proposition 3.2 (with α > 0 and i = n/2 + 1), if we replace the elements of rank
n/2+1 with their shadow, we get a family that is larger than Q and confined to just
rank n/2. This new bigger family will certainly be u-broom and v-fork free since it
consists of elements of just one rank, and this proves that Q could not have been a
maximum-sized u-broom and v-fork free family. The proof is now complete. �

In the case, when n is odd, and, as long as u, v ≤ q2, Corollary 3.5 shows the
existence of a maximum-sized u-broom and v-fork free family of subspaces confined
to the middle two levels of Ln(q). The uniqueness proof that we gave for even n,
however, does not directly generalize to this case.
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4. 2-brooms and 2-forks

We now focus on families of Ln(q) that are (∧,∨)-free. We begin with the
particular case of n = 3, which we will need as the base case for the later inductive
proof of Theorem A, and which poses special issues because of the examples given
in Figure 2.

Proposition 4.1. Let q be a power of a prime, and let F be a maximum-sized
(∧,∨)-free family in L3(q). Then

(1) if q 6= 2, then F consists of all subspaces of dimension 1 or all subspaces
of dimension 2, and

(2) if q = 2, then F consists either entirely of subspaces of dimension 1, or
entirely of subspaces of dimension 2 ,or F is one of the two configurations
illustrated in Figure 2.

In particular,

ex(L3(q);∧,∨) =

[

3

1

]

q

= q2 + q + 1.

Proof. The collection of elements of rank 1 (or rank 2) in L3(q) certainly forms a
(∧,∨)-free subposet of size

[

3
1

]

q
= q2 + q + 1. Hence, |F| ≥ q2 + q + 1 ≥ 7. An

element of F can be comparable to at most one other element of F since otherwise
F will contain a ∧ or a ∨. Thus F cannot contain the maximal or the minimal
element of L3(q) (the elements of rank 3 and rank 0) since otherwise it could have
at most two elements. Let A and B consist, respectively, of elements of rank 1
and 2 of F that are not comparable to any other element of F . Likewise X and Y
are, respectively, elements of rank 1 and 2 of F that are comparable to exactly one
other element of F . The families A, B, X , and Y give a partition of F , and each
element of X is comparable to exactly one element of Y. As a result |X | = |Y|. Let
D and E consist, respectively, of elements of rank 1 and 2 of L3(q) that are not in
F . See Figure 4.

D X A

EYB

Figure 4. The families A, B, X , and Y give a partition of the
(∧,∨)-free family F .

Without loss of generality, and by symmetry, we assume that |B| ≤ |A|, and
since |F| ≥ q2 + q + 1, we let |F| = q2 + q + 1 + t for some non-negative integer t.

Claim 1: If D is empty, then t = 0 and F = A consists of all subspaces of dimension
1.
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Proof of Claim. Elements of B have all their neighbors in D and elements of Y have
q of their neighbors in D. So if |D| = 0, then B and Y are both empty. The set
X has as many elements as Y and so it must be empty as well. Thus F = A must
consists of all subspaces of dimension 1. �

Because of Claim 1, from here on, we assume that |D| > 0, and we aim to show
that this is only possible if q = 2 and we have the configuration on the right of
Figure 2.

Claim 2: If A is non-empty, then every element of D has at least one neighbor in
E .

Proof of Claim. Let w be an arbitrary 1-dimensional subspace in L3(q). Note that
|▽w| = q + 1, and the intersection of each pair of 2-dimensional subspaces in ▽w
is exactly w. (If u and v are distinct 2-dimensional subspaces then dim(u ∩ v) =
dim(u)+dim(v)−dim(u+v) = 1.) Each of these 2-dimensional subspaces has q+1
1-dimensional subspaces, and so |△(▽w)| = (q + 1)q + 1 = q2 + q + 1 =

[

3
1

]

. We
conclude that △(▽w) is the entire collection of 1-dimensional subspaces in L3(q).
Let d ∈ D. We just proved that △(▽d) contains all of A, but the elements of
B∪Y have no neighbors in A. We conclude that ▽d must have some elements from
E . �

Claim 3: |D|+ t = |B|+ |Y|, and |D| ≤ q2+q
2 .

Proof of Claim. From the definitions, we have |A|+ |X |+ |B|+ |Y| = |F| = q2+q+
1+t and |D|+|X |+|A| =

[

3
1

]

q
= q2+q+1. Combining them we get |D|+t = |B|+|Y|.

Also, since |A| ≥ |B| and |X | = |Y| we have 2(|A| + |X |) ≥ q2 + q + 1 and hence,

since q2 + q + 1 is odd and |A|+ |X | is an integer, |A|+ |X | ≥ q2+q
2 + 1. It follows

that |D| = q2 + q + 1− |A| − |X | ≤ q2+q
2 . �

Claim 4: |Y| ≥ q.

Proof of Claim. If A was empty, then B is also empty (recall that we are assuming
|A| ≥ |B|) and F = X ∪ Y. So |Y| = |F| /2 ≥ q. So assume A is not empty and
denote by E(B ∪ Y,D) the edges between B ∪ Y and D. By Claim 2, every d ∈ D
must have at least one neighbor in E and so has at most q neighbors in B. On the
other hand, all the neighbors of elements of B are in D, and every element of Y has
one neighbor in X and q neighbors in D. Counting |E(B ∪ Y,D)| in two different
ways, we have

q |D| ≥ |E(B ∪ Y,D)| = (q + 1) |B|+ q |Y|

= (q + 1) (|B|+ |Y|)− |Y|

= (q + 1)(|D|+ t)− |Y| (by Claim 3).

As a result, |Y| ≥ (q + 1)t + |D| ≥ |D| > 0. Let y ∈ Y. The element y has q
neighbors in D. So |Y| ≥ |D| ≥ q. �
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Let Y = {y1, y2, . . . , yℓ} (where ℓ is an integer no less than q), and define a
sequence of subsets of D as follows:

T1 = △y1 −X

T2 = △y2 − (X ∪ T1)

T3 = △y3 − (X ∪ T1 ∪ T2)

...

Tℓ = △yℓ − (X ∪ T1 ∪ · · · ∪ Tℓ−1)

Claim 5: Let i be an integer with 1 ≤ i ≤ ℓ and u an arbitrary element of rank 2
in L3(q) with u 6= yi. Then △u has at most one element in Ti.

Proof of Claim. Both u and yi are 2-dimensional subspaces and dim(u ∩ yi) = 1.
Hence, △u∩△yi = {u∩ yi} contains a unique element of rank 1 in L3(q), and the
only possible element in △u ∩ Ti. �

Claim 6: |B| = 0 and |D| = q(q+1)
2 . Moreover, for 1 ≤ i ≤ q, |Ti| = q + 1 − i, and

{T1, T2, . . . , Tq} partition D.

Proof of Claim. Let 1 ≤ i ≤ ℓ. Recall that | △ yi| = q + 1, and yi has exactly one
neighbor in X . For each 1 ≤ j < i, Claim 5 implies that |Ti ∩△yj | ≤ 1. Thus we
have that |Ti| ≥ q + 1− i. Since ℓ ≥ q (by Claim 4) we have

|D| ≥ |T1|+ · · ·+ |Tq| ≥ q + (q − 1) + · · ·+ 1 =
q(q + 1)

2
.

Because of Claim 3, we now have |D| = q(q+1)
2 . This means that every inequality

in the above equation is actually an equality, and, for 1 ≤ i ≤ q, |Ti| = q + 1 − i,
and T1, . . ., Tq partition D. Now if b ∈ B, then all q + 1 elements of △b would be
in D, and so, by the pigeon hole principle, two of these elements would have to be
in the same Ti. But this contradicts Claim 5, proving that B = ∅. �

Claim 7: q = 2, t = 0, |A| = 1, |X | = |Y| = 3.

Proof of Claim. Since, by Claim 6, |B| = 0 and |D| = q2+q
2 , we have by Claim 3

that ℓ = |Y| = |D|+ t = q2+q
2 + t. Now

q2 + q + 1 + t = |F| = |A|+ 2 |Y| = |A|+ q2 + q + 2t.

Thus |A|+ t = 1. So either |A| = 1 and t = 0, or |A| = 0 and t = 1.
Focus on the set Tq ⊆ D. By Claim 6, |Tq| = 1, and so let Tq = {d}. The

element d has q + 1 neighbors in Y ∪ E . Recall that Y = {y1, y2, . . . , yℓ}, each yi
has q neighbors in D, and T1, . . ., Tq partition D. Hence, by Claim 5, each of yq,
. . ., yℓ has exactly one neighbor in each of T1, . . ., Tq. In particular, d neighbors
with each of yq, . . . yℓ. Thus d has at least ℓ − q + 1 neighbors in Y. In the case

|A| = 0, we have ℓ = q2+q
2 +1, and so we have to have q2+q

2 +1− q+1 ≤ q+1. In

the case |A| = 1, ℓ = q2+q
2 , but in this case, d has at least one neighbor in E (Claim

2). So we must have q2+q
2 − q + 1 ≤ q. Thus in both cases, we have q2+q

2 + 1 ≤ 2q

which is equivalent to q2 − 3q + 2 ≤ 0. The only prime power that satisfies this
inequality is q = 2, and so we are limited to L3(2), the Fano plane. If t = 1, then
|A| = |B| = 0 and |X | = |Y| = 4, and any such configuration (four points and four
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lines in the Fano plane) will contain a ∧ or a ∨. Hence, t = 0, |A| = 1, |B| = 0,
and |X | = |Y| = 3. �

The configuration in Claim 7 is exactly the configuration on the right in Figure
2. Hence, we have shown that if |A| ≥ |B|, then either F = A is the collection of
all 1-dimensional subspaces or we have the specific configuration in the Fano plane.
The proof of Proposition 4.1 is now complete. �

Let G = (X,∆, Y ) be a d-regular bipartite graph (X ∪ Y is the set of vertices,
∆ is the set of the edges, and all the edges go from X to Y ). We can view G as
a regular graded poset with two levels. A reasonable question is whether X and
Y are the only maximum-sized (∧,∨)-free subgraphs of G. The example of the
incidence graph of the Fano plane (Figure 2) shows that the answer is no. The
example of Figure 5 shows that a maximum-sized (∧,∨)-free subgraph may even
be bigger than X or Y .

Figure 5. Proposition 4.1 does not generalize to general regu-
lar bipartite graphs. The boxed elements form a maximum-sized
(∧,∨)-free subgraph.

If U and W are subspaces in Ln(q) with U < W , then the interval [U,W ]
consists of all subspaces that contain U and are contained in W . In other words,
[U,W ] = {V ∈ Ln(q) | U ≤ V ≤ W}. If U is of dimension m and W of dimension
n, then [U,W ] is a poset isomorphic to Ln−m(q). Before we prove Theorem A, we
gather the (somewhat tedious) argument for a very special case in a preliminary
lemma.

Lemma 4.2. Let F be a (∧,∨)-free family of subspaces in L5(2). Assume that
|F| =

[

5
2

]

2
, and that the elements of F are either subspaces of dimension 2 or 3.

Further assume that for arbitrary U,W ∈ L5(2) with dim(U) = 1, dim(W ) = 4,
and U < W , we have |F ∩ [U,W ]| = 7. Then F consists of either all subspaces of
dimension 2 or all subspaces of dimension 3 in L5(2).

Proof. The conclusion is true, by the strict Sperner property of the linear lattices
(Theorem 1.1), if F happens to be an anti-chain. So by way of contradiction assume
a, b ∈ F with a < b and dim(a) = 2 and dim(b) = 3. FixW ∈ L5(2) with dim(W ) =
4 and b < W . If U ∈ L5(2) with dim(U) = 1 and U ≤ W , then the interval [U,W ]
is isomorphic to L3(2), and, we have assumed that |F ∩ [U,W ]| =

[

3
1

]

2
= 7. As a

result F ∩ [U,W ] is one of the four possibilities spelled out in Proposition 4.1. We
say that [U,W ] is of type (i, j) if i and j are respectively the number of subspaces
of dimension 2 and 3 in F ∩ [U,W ]. By Proposition 4.1, the only types possible are
(7, 0), (0, 7), (3, 4), and (4, 3).

Fix U0 ∈ L5(2) with dim(U0) = 1 and U0 < a. Since U0 < a < b < W , and both
a and b are in F , [U0,W ] is either of type (3, 4) or (4, 3). By symmetry and with
no loss of generality, assume [U0,W ] is of type (3, 4). (See Figure 6.)
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W

b4

a4

U0

b1 b2 b3 b5 b6 b7

a1 a2 a3 a5 a6 a7

U1U2

{0}

U3

1

15

35

15

1

Figure 6. W is a 4-dimensional vector space over F2, its subspaces
form a poset isomorphic to L4(2) with rank numbers 1, 15, 35, 15,
and 1. U0 is a 1-dimensional subspace, and we have boxed out the
interval [U0,W ] ∼= L3(2). The seven subspaces identified with a
black dot form a maximum-sized (∧,∨)-free collection in [U0,W ].

Thinking of [U0,W ] as the Fano plane, F ∩ [U0,W ] is the configuration on the
left of Figure 2. In this configuration, the elements of F are three points a1, a2,
and a3 (subspaces of dimension 2) that are vertices of a triangle, and the four edges
(subspaces of dimension 3) that are not the edges of that triangle. Among the four
edges, one goes through none of the three points, and each of the three others have
one of the vertices on them. Let the latter three lines be b1, b2, and b3, and the
former be b4. We then have b1 ∩ b2 ∩ b3 = a4 6∈ F . The interval [U0,W ] has three
more lines which are not in F which we call b5, b6, and b7. There are also three
more points not in F which we call a5, a6, and a7. (See Figure 6.)

Focus on the point a4. This is a 2-dimensional subspace in [U0,W ] and has two
1-dimensional subspaces U1 and U2 other than U0. We claim that, for i = 1, 2,
[Ui,W ] is of type (0, 7). Both intervals contain a4 6∈ F and so the type cannot be
(7, 0). They also contain b1, b2, and b3, and these three lines intersect in one point,
and this means that the type is not (4, 3) (in type (4, 3), the edges form a triangle
and do not go through one point). To be of type (3, 4), F ∩ [Ui,W ] needs three
lines each with one point of F on them. At least one (actually at least two) of these
lines would have to be from among b1, b2, and b3. But the points a1, a2, and a3
are not in [Ui,W ] since, for j = 1, 2, 3, a4 ∩ aj = U0 and not U1 or U2. So at least
one of b1, b2, or b3 would need a point in F other than the corresponding aj . But
this would create a ∧, and so, for i = 1, 2, [Ui,W ] cannot be of type (3, 4) either.
We conclude that both [U1,W ] and [U2,W ] are of type (0, 7).

Note that if b is any 3-dimensional subspace in W , then dim(b∩ a4) = dim(b) +
dim(a4)−dim(b+a4) ≥ 3+2−4 = 1 and so b contains one of U0, U1, or U2. Hence,
all 3-dimensional subspaces in W are in one of [Ui,W ] for i = 0, 1, 2. We conclude
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that out of the 15 3-dimensional subspaces of W , the only ones not in F are b5, b6,
and b7, and the other 12 3-dimensional subspaces of W are in F .

If a is any 2-dimensional subspace inW , then a is contained in three 3-dimensional
subspaces of W . If a ∈ F , then it could be contained by at most one 3-dimensional
subspace in F (since otherwise F would contain a ∨). This means that a would
have to be contained in at least two of b5, b6, and b7. But these lines form a triangle
and their points of intersections are a1, a2, and a3. Hence, the only 2-dimensional
subspaces in W ∩ F are a1, a2, and a3.

The 3-dimensional subspace b5 is not in F (it is one of the edges of a triangle in
the Fano plane) and has three subspaces of dimension 2 (points in the Fano plane)
that contain U0. Which ones are these? a4 is not one of these since a4 is already
on the three lines b1, b2, and b3. The set of the three points cannot be {a1, a2, a3}
since these points are the corners of a triangle and don’t lie on the same line. Hence
b5 has a point a5 that is not in F . Now let U3 ∈ L5(2) be such that dim(U3) = 1
and U3 < a5. Then U3 < a5 < b5 < W and neither a5 not b5 are in F . Hence
[U3,W ] is not of type (0, 7). It is also not of type (7, 0) or (4, 3) because there are
only 3 2-dimensional subspaces of W that are in F . Finally, [U3,W ] cannot be of
type (3, 4) because if it was, it would have to include a1, a2, and a3. However,
a5 ∩ a0 = U0 and U0 is the only 1-dimensional subspace that is contained in both
a5 and a1. Hence U3 is not contained in a1. This means that [U3,W ] does not
have a valid type which is a contradiction. The contradiction proves that F is an
anti-chain after all and the proof is complete. �

We are now ready to prove Theorem A.

Proof of Theorem A. When n is even, the result is a special case of Theorem B.
So let n be odd and proceed by induction on n. The base case n = 3 was proved
in Proposition 4.1 and so let n = 2k + 1 > 3 and assume that the result is true
for all smaller n. We first prove that ex(Ln(q);∧,∨) =

[

n
k

]

q
. Note that ⌊n/2⌋ = k

and the collection of all subspaces of dimension k (as well as the collection of those
of dimension k + 1) does not contain a ∧ or a ∨. Hence, ex(Ln(q);∧,∨) ≥

[

n
k

]

q
.

Now, let F be a family of subspaces that does not contain a ∧ or a ∨. By Corollary
3.5, to show that |F| ≤

[

n
k

]

q
, we can assume that F consists only of subspaces of

dimensions k or k + 1.
If U,W ∈ Ln(q) with dim(U) = 1 and dim(W ) = n − 1, then the interval

[U,W ] = {V ∈ Ln(q) | U ⊆ V ⊆ W} is a poset isomorphic to Ln−2(q)—the
poset [U,W ] is isomorphic to the poset of subspaces of W/U—and so by induction
|F ∩ [U,W ]| ≤

[

n−2
k−1

]

q
. Now consider

S = {(V, [U,W ]) | V ∈ F , U ⊆ V ⊆ W, dim(U) = 1, dim(W ) = n− 1}.

Note that in Ln(q), there are
[

n
n−1

]

q
= [n]q subspaces of dimension n−1 and each of

these contains
[

n−1
1

]

q
= [n− 1]q subspaces of dimension 1. Hence, there are a total

of [n]q[n−1]q intervals [U,W ] with dim(U) = 1 and dim(W ) = n−1. Likewise, any
subspace of dimension k (or k+1) contains [k]q (or [k+1]q) subspaces of dimension
1 and is contained in [k + 1]q(or [k]q) subspaces of dimension n − 1. Hence, every
subspace of dimension k or k + 1 is contained in [k]q[k + 1]q intervals [U,W ] with
dim(U) = 1 and dim(W ) = n−1. Now, counting the size of S in two different ways
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we get

|F| [k]q[k + 1]q = |S| =
∑

U⊆W
dim(U)=1

dim(W )=n−1

|F ∩ [U,W ]| ≤ [n]q[n− 1]q

[

n− 2

k − 1

]

q

.

Hence,

|F| ≤
[n]q[n− 1]q[n− 2]q!

[k + 1]q[k]q[k − 1]q![k]q!
=

[n]q!

[k]q![k + 1]q!
=

[

n

k

]

q

,

and we have proved that ex(Ln(q);∧,∨) =
[

n
k

]

q
.

Now let F be a maximum-sized (∧,∨)-free family of subspaces in Ln(q). Initially,
we assume that every element of F is of dimension k or k + 1. In the calculation
above for |S|, we must have equality throughout and so |F ∩ [U,W ]| =

[

n−2
k−1

]

q
for

every interval [U,W ] where U ⊆ W and dim(U) = 1 and dim(W ) = n − 1. Since
F∩ [U,W ] is (∧,∨)-free, and as long as n−2 > 3 or q > 2, by induction all elements
of F ∩ [U,W ] have rank k (in Ln(q)), or all elements have rank k + 1. We claim
that this means that F is an anti-chain. This is because if a, b ∈ F and a < b, then
both a and b are contained in the same interval [U,W ] (take U be a 1-dimensional
subspace of a and W an n− 1 dimensional subspace that contains b), and we just
proved that the subspaces in F ∩ [U,W ] are all of the same dimension. Hence, F
is an anti-chain of size

[

n
k

]

q
and by the strict Sperner property (Theorem 1.1), F

is one of the middle levels of Ln(q). The only case remaining (given the additional
assumption that F is limited to the middle two levels) is when n = 5 and q = 2,
and this was proved in Lemma 4.2.

We now complete the proof by showing that a maximum-sized (∧,∨)-free family
F must be limited to the middle two levels. Assume F is a (∧,∨)-free family of
subspaces of Ln(q) of size

[

n
k

]

q
, and assume F has elements outside of the two

middle levels, then we can use Proposition 3.3 and/or Proposition 3.4 to find F ′ a
(∧,∨)-free family of subspaces of exactly the same size that is limited to the middle
two levels. These propositions replace all subspaces of dimension greater than
⌈

n
2

⌉

with an equal number of subspaces of dimension
⌈

n
2

⌉

. Likewise, all subspaces

of dimension less than
⌊

n
2

⌋

are replaced with an equal number of subspaces of

dimension
⌊

n
2

⌋

. If F originally contained subspaces of dimensions more than n/2 as
well as subspaces with dimensions less than n/2, then the resulting family F ′ would
have subspaces of dimensions ⌊n/2⌋ as well as ⌈n/2⌉. But we just proved that such
a maximum-sized family does not exist. Hence, without loss of generality, assume
that the dimension of all subspaces in F is greater than n/2. Now use Proposition
3.3 to construct a maximum-sized (∧,∨)-free family F ′ that is confined to levels
⌈n/2⌉ and ⌈n/2⌉+1. (In other words, stop one step before pushing all elements of
F into level ⌈n/2⌉). At this point, apply Proposition 3.2 (in the parlance of that
Proposition α > 0) to get a larger family that is confined to the level ⌈n/2⌉. This
family will certainly be (∧,∨)-free since it is confined to one level. This proves that
the original family could not have been maximum-sized if it originally contained
any elements outside of the middle two levels. This completes the proof. �

Remark 4.3. While it was convenient to organize the proof by using the fact

that the only maximum-sized anti-chains in Ln(q) are
(Ln(q)
⌊n/2⌋

)

and
(Ln(q)
⌈n/2⌉

)

, this

wasn’t strictly necessary. It is not too difficult to provide direct arguments thereby
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providing an alternative proof for Theorem 1.1, the characterization of maximum
anti-chains in Ln(q).

5. Butterflies, Y, and Y’

To get an upper bound for the maximal size of a butterfly-free or (Y, Y’)-free
family in Ln(q), we will partition any such family F into anti-chains, and then use
the familiar technique for proving LYM inequalities by counting maximal chains
of Ln(q) that pass through these. This is the strategy of De Bonis et al. [3] in
proving Theorem 1.3, and our proof of the preparatory inequalities (Lemma 5.1
and Proposition 5.2) follows their proof, with modifications for the linear lattice
case.

Lemma 5.1. Let n be a positive integer, and q a power of a prime. Let M,A ⊆
Ln(q) − {{0}, (Fq)

n} be two disjoint anti-chains such that either for all A ∈ A,
there exists a unique M ∈ M such that A < M , or for all A ∈ A, there exists a
unique M ∈ M such that A > M . Then

∑

M∈M

[

n

dimM

]−1

q

+
q

q + 1

∑

A∈A

[

n

dimA

]−1

q

≤ 1.

Proof. For A ∈ A, denote by f(A) the unique element of M comparable to A.
We prove the case where A < f(A), for all A ∈ A (the argument for the other
case is identical). The total number of maximal chains in Ln(q) is [n]q! and, if
U, V ∈ Ln(q) with U ≤ V , then the interval [U, V ] = {W ∈ Ln(q) | U ≤ W ≤ V }
is isomorphic as a poset to the linear lattice of dimension dim V − dimU , and so
has [dimV − dimU ]q! maximal chains. As a result, for every V ∈ Ln(q), there
are [dimV ]q! [n− dimV ]q! maximal chains going through V . Since A and M are
anti-chains, the total number of maximal chains that go through A ∪ M are the
sum of the number of maximal chains that go through each element of A and M
minus the number of such chains that go through one element in A and one element
in M. For A ∈ A and f(A) ∈ M, the number of maximal chains of Ln(q) that go
through both A and f(A) is

[dimA]q! [dim f(A)− dimA]q! [n− dim f(A)]q!.

Hence, we have

[n]q! ≥
∑

A∈A

[dimA]q! [n− dimA]q! +
∑

M∈M

[dimM ]q! [n− dimM ]q!

−
∑

A∈A

[dimA]q! [dim f(A)− dimA]q! [n− dim f(A)]q!.

Dividing both sides by [n]q! and rearranging gives

1 ≥
∑

M∈M

[

n

dimM

]−1

q

+
∑

A∈A

[

n

dimA

]−1

q

(

1−

[

n− dimA

n− dim f(A)

]−1

q

)

.

Since (Fq)
n 6∈ M, for all A ∈ A we have dimA < dim f(A) < n; in particular,

n− dimA ≥ 2. Thus
[

n− dimA

n− dim f(A)

]

q

≥ [n− dimA]q ≥ [2]q = q + 1.

Hence our desired inequality follows. �
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We now prove an LYM-type inequality for (Y,Y’)-free families in Ln(q).

Proposition 5.2. Let n ≥ 3 be an integer, q a power of a prime, and let F be a
(Y,Y’)-free subposet of Ln(q)− {{0}, (Fq)

n}. Then

(1)
∑

V ∈F

[

n

dimV

]−1

q

≤ 2.

Furthermore, if we have equality in (1), then F is the union of its maximal and
minimal elements.

Proof. LetM1 be the set of maximal elements of F , M2 the set of minimal elements
of F −M1, and A = F − (M1 ∪M2). The families M1, M2 are anti-chains, and,
by their definitions, for each A ∈ A there exists elements M1 ∈ M1 and M2 ∈ M2

such that M1 < A < M2. Moreover, since F is (Y,Y’)-free, M1 and M2 are unique.
The family A is also an anti-chain since otherwise F would include a chain of length
3, and would not be Y-free.

We now apply Lemma 5.1 twice, once to M1 and A and once to M2 and A. For
i = 1, 2, we have

∑

M∈Mi

[

n

dimM

]−1

q

+
q

q + 1

∑

A∈A

[

n

dimA

]−1

q

≤ 1.

Adding the two inequalities for i = 1 and 2, we get

∑

M∈M1

[

n

dimM

]−1

q

+
∑

M∈M2

[

n

dimM

]−1

q

+
2q

q + 1

∑

A∈A

[

n

dimA

]−1

q

≤ 2.

Now since M1, M2, and A partition F , and 1− 2q
q+1 = q−1

q+1 > 0, we have

∑

V ∈F

[

n

dim V

]−1

q

+
q − 1

q + 1

∑

A∈A

[

n

dimA

]−1

q

≤ 2.

As a result (1) follows, and, in the case of equality, A = ∅. �

We also need the following straightforward lemma.

Lemma 5.3 (Thanh, 1998[15]). Let m be a positive integer, δ a nonnegative real
number, and S = {xj}j∈J a finite multiset of nonnegative real numbers indexed by
J . Then

max{|I| | I ⊆ J,
∑

i∈I

xi ≤ δ} = Kδ,

where Kδ is the largest integer (not exceeding |J |) such that the sum of the Kδ

smallest elements in S does not exceed δ.

Note that an index set I for the above lemma is maximal if and only if the
elements indexed by I form a set of Kδ smallest numbers of S. This observation
will be useful when we characterize our maximal family F . We are now ready to
prove Theorem C.

Proof of Theorem C. The intersection of two subspaces is a unique subspace,
and so the union of any two consecutive levels of Ln(q) is butterfly-free. Also, any
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butterfly-free family is (Y,Y’)-free. Hence,

ex(Ln(q); , ) ≥ ex(Ln(q); ) ≥

[

n

⌊n/2⌋

]

q

+

[

n

⌊n/2⌋+ 1

]

q

.

To establish equalities througout, we now show that

ex(Ln(q); , ) ≤

[

n

⌊n/2⌋

]

q

+

[

n

⌊n/2⌋+ 1

]

q

.

Let F be a maximum-sized (Y,Y’)-free family in Ln(q). We first show that it
suffices to assume that F does not contain {0} or (Fq)

n. Indeed, assume that
{0} ∈ F . If there was a 1-dimensional subspace that was not in F , then we could
replace {0} with this subspace and continue to have a (Y,Y’)-free family of the
same size as F . On the other hand, if F contained {0} and every 1-dimensional
subspace, then, since F is Y-free, it can contain at most one subspace containing
each of the 1-dimensional subspaces. This would mean that the |F| ≤ 2[n]q+1. For
n ≥ 4,

[

n
⌊n/2⌋

]

q
+
[

n
⌊n/2⌋+1

]

q
, the sum of the sizes of the two largest level in Ln(q), is

bigger than 2[n]q+1, contradicting the maximality of the size of F . The remaining
case is n = 3, and F contains {0} and every 1-dimensional subspace. If F also
contains (Fq)

3, then it cannot contain any other subspace (since otherwise F would

contain a Y ′). But now |F| = [3]q + 2 < 2[3]q =
[

3
1

]

q
+
[

3
2

]

q
, a contradiction. If

F does not contain (Fq)
3, then F cannot contain all 2-dimensional subspaces, and

we can replace {0} with a 2-dimensional subspace not in F and get a (Y,Y’)-free
family of the same size as F . Thus, without loss of generality we can assume that
{0} is not in F . The argument for (Fq)

n would be identical.
Proposition 5.2 now applies and we have inequality (1). Apply Lemma 5.3 with

the multiset S =
{

[

n
dimV

]−1

q

}

V ∈Ln(q)
and δ = 2. If n is odd, then

[

n
⌊n/2⌋

]

q
and

[

n
⌊n/2⌋+1

]

q
are the two largest rank numbers; if n is even, then

[

n
n/2

]

q
is the single

largest rank number, and
[

n
n/2+1

]

q
=
[

n
n/2−1

]

q
are the two second largest rank

numbers. Thus, we see that Kδ as defined in Lemma 5.3 is equal to
[

n
⌊n/2⌋

]

q
+

[

n
⌊n/2⌋+1

]

q
. Since F indexes a subset of numbers in S whose sum does not exceed

δ = 2, we deduce that

(2) |F| ≤ Kδ =

[

n

⌊n/2⌋

]

q

+

[

n

⌊n/2⌋+ 1

]

q

,

which gives us the desired upper bound for ex(Ln(q); , ).
It remains to show that the only families achieving the bounds are the union of

two of the largest levels in the linear lattice. For a maximum-sized family, both
inequalities (1) and (2) must be equality. In particular, the equality for (2) means
that the family F indexes a subset of Kδ smallest elements in S. If n is odd, then
(Ln(q)
⌊n/2⌋

)

∪
( Ln(q)
⌊n/2⌋+1

)

is the unique such family.

If n is even, then F must consist of
(Ln(q)

n/2

)

and
[

n
n/2−1

]

q
elements from P =

(Ln(q)
n/2+1

)

∪
(Ln(q)
n/2−1

)

. We have to show that F cannot pick and choose and must

contain either all subspaces of dimension n/2− 1 or all the subspaces of dimension

n/2 + 1. View P as a subposet of Ln(q), and denote F ′ = F −
(Ln(q)

n/2

)

⊆ P .
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Suppose there exists X,Y ∈ F ′ such that Y < X . Then X ∈
(Ln(q)
n/2+1

)

, Y ∈
(Ln(q)
n/2−1

)

, and we can find A ∈
(Ln(q)

n/2

)

⊂ F such that Y < A < X . But this cannot

happen, since the case of equality for (1) requires that every element of F is either
maximal or minimal in F . Hence F ′ is an anti-chain in P .

As a graded poset, P has height 2 and width
[

n
n/2−1

]

q
= |F ′|. By Dilworth’s

Theorem (see Anderson [1, Theorem 3.2.1]), P can be partitioned into
[

n
n/2−1

]

q

chains of length 1. In fact, if X < Y are two elements of P , we can always arrange
the chain X < Y to be one of the chains in this chain partition of P . Now F ′ is
an anti-chain with as many elements as chains in the partition. Hence, it has to
contain exactly one of X or Y .

Now assume that F ′ contained a subspace A of dimension n/2 − 1, and let B
be an arbitrary subspace of dimension n/2 + 1. Since the Hasse diagram of P
(viewed as a bipartite graph) is connected, we can find a sequence of subspaces
A = A1, B1, A2, B2, . . . , An, Bn = B in P , such that, for 1 ≤ i ≤ n, Ai < Bi and,
for 1 ≤ i ≤ n − 1, Bi > Ai+1. Our previous observation says that since A1 ∈ F ′

and A1 < B1, then B1 6∈ F ′. Continuing along the sequence of subspaces, we get
that A1, A2, . . ., An must be in F ′ while B1, B2, . . ., Bn = B cannot be in F ′.
We conclude that all subspaces in F ′ have the same dimension and the proof is
complete. �

6. A conjecture

Let Yk denote a poset with 3 + k elements a, b, c0, c1, . . ., ck, and with relation
ck < ck−1 < . . . < c1 < c0 < a as well as c0 < b. Note that Y0 is just a ∨ and Y1

is just Y. Likewise, define Y ′
k to have the same elements as Yk but all the relations

reversed. Hence, Y ′
0 is ∧ and Y ′

1 is Y′. Our Theorems A and C show that

ex(Ln(q);Y0, Y
′
0) = ex(Ln(q); )

ex(Ln(q);Y1, Y
′
1) = ex(Ln(q); ).

Let Pk be a chain of length k (and size k + 1), then we conjecture that

ex(Ln(q);Yk, Y
′
k) = ex(Ln(q); Pk+1).
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