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BOOLEAN DIMENSION, COMPONENTS AND BLOCKS

TAMÁS MÉSZÁROS, PIOTR MICEK, AND WILLIAM T. TROTTER

Abstract. We investigate the behavior of Boolean dimension with respect
to components and blocks. To put our results in context, we note that for
Dushnik-Miller dimension, we have that if dim(C) ≤ d for every component
C of a poset P , then dim(P ) ≤ max{2, d}; also if dim(B) ≤ d for every block
B of a poset P , then dim(P ) ≤ d + 2. By way of constrast, local dimension is
well behaved with respect to components, but not for blocks: if ldim(C) ≤ d

for every component C of a poset P , then ldim(P ) ≤ d+ 2; however, for every
d ≥ 4, there exists a poset P with ldim(P ) = d and dim(B) ≤ 3 for every block
B of P . In this paper we show that Boolean dimension behaves like Dushnik-
Miller dimension with respect to both components and blocks: if bdim(C) ≤ d

for every component C of P , then bdim(P ) ≤ 2+d+4 ·2d; also if bdim(B) ≤ d

for every block of P , then bdim(P ) ≤ 19 + d + 18 · 2d.

1. Notation and Terminology

We consider combinatorial problems for finite posets. As has become standard
in the literature, we use the terms elements and points interchangeably in referring
to the members of the ground set of some poset P = (X,<). We will write x ‖ y
when x and y are incomparable in P , and we let Inc(P ) denote the set of all ordered
pairs (x, y) with x ‖ y in P . As a binary relation, Inc(P ) is symmetric. The dual

of a poset P will be denoted by P ∗, while the dual of a linear order L on X by L∗.
If L is a linear order on X and Y ⊆ X , then we will write L(Y ) for the restriction
of L to Y . We will also use the notation L = [A < B] when the elements of X
can be labeled so that L = [u1 < u2 < · · · < um] and A = [u1 < u2 < · · · < uk],
B = [uk+1 < uk+2 < · · · < um] for some index k. This notation then generalizes
naturally to an expression such as L = [A1 < A2 < · · · < As]. For two elements
x, y ∈ P we say that x covers y if y < x and there is no element z ∈ P with
y < z < x. The cover graph of P has vertex set the elements of P , and two vertices
x and y are joined by an edge if one of them covers the other in P . Finally, we will
also use the now standard notation [n] = {1, 2, . . . , n}.

A nonempty family R = {L1, L2, . . . , Ld} of linear extensions of P is called a
realizer of P when x ≤ y in P if and only if x ≤ y in Li for each i = 1, 2, . . . , d.
Clearly,R is a realizer if and only if for each (x, y) ∈ Inc(P ), there is some i for which
x > y in Li. The dimension of a poset P , as defined by Dushnik and Miller in their
seminal paper [2], is the least positive integer d for which P has a realizer of size d. A
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Tamás Mészáros is supported by the Dahlem Research School of Freie Universität Berlin.
Piotr Micek is partially supported by a Polish National Science Center grant (SONATA BIS

5; UMO-2015/18/E/ST6/00299).
William T. Trotter is supported by a Simons Foundation Collaboration Grant.

1

http://arxiv.org/abs/1801.00288v3
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subset S of Inc(P ) is called reversible if there is a linear extension L of P with x > y
in L for every (x, y). When P is not a chain then the dimension of P is the least
positive integer d for which there is a partition Inc(P ) = S1∪S2∪· · ·∪Sd with each
Si reversible. A subset {(xα, yα) : α ∈ [k]} of Inc(P ) is called an alternating cycle

if xα ≤ yα+1 for all α ∈ [k], with addition on the indicies understood cyclically. It
is easy to see that alternating cycles are not reversible. On the other hand, Trotter
and Moore [9] proved that they are the only obstructions for a set of incomparable
pairs to be reversible, i.e., S ⊆ Inc(P ) is reversible if and only if it does not contain
an alternating cycle. For more details about now standard concepts and techniques
for working with Dushnik-Miller dimension, the reader may consult any of several
recent research papers, e.g., [4], [7] and [11] or the research monograph [8].

In recent years, researchers have been investigating combinatorial problems for
two variations of Dushnik-Miller dimension, known as Boolean dimension and local

dimension, respectively.

Let P be a poset with at least two elements and let B = {L1, L2, . . . , Ld} be
a nonempty family of linear orders (need not to be linear extensions of P ) on the
ground set of P . Also, let τ be a Boolean function which maps all 0-1 strings of
length d to {0, 1}. For each ordered pair (x, y) of distinct elements of P , we form
the bit string q(x, y,B) of length d which has value 1 in coordinate i if and only if
x < y in Li. We call the pair (B, τ) a Boolean realizer of P if for every ordered pair
(x, y) of distinct elements of P , we have x < y in P if and only if τ(q(x, y,B)) = 1.
Nešetřil and Pudlák [5] (by slightly modifying the definition of Gambosi, Nešetřil
and Talamo [3]) defined the Boolean dimension of P , denoted bdim(P ), as the
least positive integer d for which P has a Boolean realizer (B, τ) with |B| = d. By
convention, the Boolean dimension of a one element poset is 1.

Clearly, bdim(P ) ≤ dim(P ), since if R = {L1, L2, . . . , Ld} is a realizer of P , we
can simply take τ to be the function which maps the all ones bit string (1, . . . , 1) to
itself while all other bit strings of length d are mapped to 0. Trivially, bdim(P ) = 1
if and only if P is either a chain or an antichain; if Q is a subposet of P , then
bdim(Q) ≤ bdim(P ); and bdim(P ) = bdim(P ∗). It is an easy exercise to show
that if bdim(P ) = 2, then dim(P ) = 2, while Trotter and Walczak [10] proved the
modestly more challenging fact that if bdim(P ) = 3, then dim(P ) = 3.

Again, let P be a poset. A partial linear extension, abbreviated ple, of P is a
linear extension of a subposet of P . Whenever L is a family of ple’s of P and u ∈ P ,
we set µ(u,L) = |{L ∈ L : u ∈ L}|. In turn, we set µ(P,L) = max{µ(u,L) : u ∈ P}.
A family L of ple’s of a poset P is called a local realizer of P if for every pair (x, y)
of distinct elements of the ground set of P , we have x < y in P unless there is
some L ∈ L with x > y in L. The local dimension of P , denoted ldim(P ), is then
defined1 to be the least positive integer d for which P has a local realizer L with
µ(P,L) = d.

Clearly, ldim(P ) ≤ dim(P ) since every realizer P is also a local realizer. It is
again easily seen that ldim(P ) = 1 if and only if P is a chain; if Q is a subposet

1The concept of local dimension is due to Torsten Ueckerdt [12] and was shared with partic-
ipants of the workshop Order and Geometry held in Gu ltowy, Poland, September 14–17, 2016.
Ueckerdt’s new concept resonated with participants at the workshop and served to rekindle interest
in the notion of Boolean dimension as well.
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of P , then ldim(Q) ≤ ldim(P ); and ldim(P ∗) = ldim(P ). It is an easy exercise to
show that if ldim(P ) = 2, then dim(P ) = 2.

Recall that for n ≥ 2, the standard example Sn is a height 2 poset with minimal
elements A = {a1, a2, . . . , an}, maximal elements B = {b1, b2, . . . , bn} and ai < bj
in Sn if and only if i 6= j. As is well known, dim(Sn) = n. On the other hand, it is
another easy exercise to show that bdim(Sn) = 4 for all n ≥ 4, while ldim(Sn) = 3
for all n ≥ 3.

2. Statements of Results

To state our main results, we will need some basic concepts of graph theory,
including connected and disconnected graphs, components, cut vertices, and k-
connected graphs for an integer k ≥ 2. Recall that when G is a graph, a connected
induced subgraph H of G is called a block of G when H is maximal connected
subgraph without a cut vertex, or quivalently it is either a maximal 2-connected
subgraph, a bridge (with its ends) or an isolated vertex. Now a poset P is said
to be connected if its cover graph is connected. A subposet B of P is said to be
convex if x, z ∈ B and x < y < z in P imply y ∈ B. When B is a convex subposet
of P , the cover graph of B is an induced subgraph of the cover graph of P . A
convex subposet B of P is called a component of P when the cover graph of B is
a component of the cover graph of P . A convex subposet B of P is called a block

of P when the cover graph of B is a block of the cover graph of P . A point x in a
poset P is called a cut vertex of P when x is a cut vertex of the cover graph of P .

As is well known, when P is a disconnected poset with components C1, C2, . . . ,
Ct, then

dim(P ) = max{2,max{dim(Ci) : 1 ≤ i ≤ t}}.

For local dimension, it is an easy exercise to show that

ldim(P ) ≤ 2 + max{ldim(Ci) : 1 ≤ i ≤ t},

but we do not know whether this inequality is best possible.
We prove a corresponding, but somewhat more complicated, result for Boolean

dimension. This is the first of our two main results.

Theorem 2.1. Let P be a disconnected poset with components C1, C2, . . . , Ct. If

d = max{bdim(Ci) : 1 ≤ i ≤ t}, then bdim(P ) ≤ 2 + d+ 4 · 2d.

The situation with blocks is more complex. For Dushnik-Miller dimension, Trot-
ter, Walczak and Wang [11] proved that when P is a connected poset with blocks
B1, B2, . . . , Bt, then

dim(P ) ≤ 2 + max{dim(Bi) : 1 ≤ i ≤ t}.

Furthermore, this inequality is best possible. Neither the proof of the inequality, nor
the proof that the inequality is best possible is elementary. Surprisingly, however,
there is no parallel result for local dimension, as Bosek, Grytczuk and Trotter [1]
proved that for every d ≥ 4, there is a poset P with ldim(P ) ≥ d, such that
ldim(B) ≤ 3 whenever B is a block in P .

The second of our two main results is the following theorem showing that Boolean
dimension behaves like Dushik-Miller dimension and not like local dimension when
it comes to blocks, i.e., we show that the Boolean dimension of a poset is bounded
in terms of the maximum Boolean dimension among its blocks.
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Theorem 2.2. Let P be a poset with blocks B1, B2, . . . , Bt. If d = max{bdim(Bi) :
1 ≤ i ≤ t}, then bdim(P ) ≤ 19 + d+ 18 · 2d.

We doubt that the inequalities in Theorem 2.1 and Theorem 2.2 are sharp, but
in some sense they are not so far from the truth, as we will show that for large d,
there is a disconnected poset P with bdim(P ) = 2Ω(d) and bdim(C) ≤ d for every
component C of P (and hence bdim(B) ≤ d for every block B of P ).

3. Proofs

In discussing Boolean realizers for a poset P , the phrase “a pair (x, y)” will
always refer to an ordered pair of distinct elements of P . Trivially, a poset P has
Boolean dimension at most d, if P has a Boolean realizer (B, τ) with |B| = d. In
defining a Boolean realizer, most of the work will go into the construction of the
linear orders in the family B. Typically, B will be made up of subfamilies of linear
orders, each subfamily serving to reveal certain details concerning a pair (x, y). As
far as the Boolean formula τ is considered, rather than explicitly writing out the
rule for the function τ , we will simply explain how we can determine whether x is
less than y in P based on the bits associated with the linear orders in B. As we
shall see, there are times when we know whether x < y in P after seeing just a few
of the bits in q(x, y,B), while in other instances, we may need to see all or nearly
all of the bits.

We will make frequent use of two simple lemmas. Both are standard tools in the
field, but we nevertheless include the short proofs, as they are instructive for the
more complex results to follow.

Lemma 3.1. Let P be a poset with ground set X, and let φ be a t-coloring of X.

Then there is a family F = {N1, N2} of two linear orders on X so that given a

pair (x, y) of distinct elements of X, we can determine whether φ(x) is the same

as φ(y) from the bits associated with the linear orders in F .

Proof. We may, without loss of generality, assume φ uses the integers in [t] as colors.
For each i ∈ [t], let Xi consist of all x ∈ X with φ(x) = i, and let Li be an arbitrary
linear order on Xi. Then set

N1 = [L1 < L2 < L3 < · · · < Lt−1 < Lt] and

N2 = [L∗

1 < L∗

2 < L∗

3 < · · · < L∗

t−1 < L∗

t ].

Now for the family F = {N1, N2}, if φ(x) = φ(y), we will get either (0, 1) or (1, 0),
but if φ(x) 6= φ(y), we will get either (0, 0) or (1, 1). � �

Lemma 3.2. Let P be a poset with ground set X, and let φ be a t-coloring of X.

Then there is a family F of 4⌈log2 t⌉ linear orders on X so that given a pair (x, y)
of distinct elements of X, we can determine the pair (φ(x), φ(y)) of colors from the

bits associated with the linear orders in F .

Proof. Setting r = ⌈log2 t⌉, we may, without loss of generality, assume φ uses the
subsets of [r] as colors. For each j ∈ [r], let Xj consist of all u ∈ X with j ∈ φ(u)
and let L0 be an arbitrary linear order on X . Then for each j ∈ [r], we add the
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following four linear orders to the family F :

M1(j) = [L0(Xj) < L0(X \Xj)]

M2(j) = [L∗

0(Xj) < L0(X \Xj)]

M3(j) = [L0(X \Xj) < L0(Xj)]

M4(j) = [L0(X \Xj) < L∗

0(Xj)]

If j ∈ φ(x) and j ∈ φ(y), then the bits for the query will either be (1, 0, 1, 0) or
(0, 1, 0, 1). If j ∈ φ(x) and j 6∈ φ(y), then the bits will be (1, 1, 0, 0). Conversely, if
j /∈ φ(x) and j ∈ φ(y), then we will have (0, 0, 1, 1). Finally, if j 6∈ φ(x) and j 6∈ φ(y),
then the query will return either (1, 1, 1, 1) or (0, 0, 0, 0). Hence the 4r linear orders
together will clearly enable us to determine the pair (φ(x), φ(y)). � �

3.1. Boolean Dimension and Components. In this subsection, we prove The-
orem 2.1.

Proof. Let P be a disconnected poset with components C1, C2, . . . , Ct, and assume
that bdim(Ci) ≤ d, for each i ∈ [t]. Let X be the ground set of P , and for each
i ∈ [t] let Xi be the ground set of the component Ci. Furthermore, for each i ∈ [t],
let (Bi, τi) be a Boolean realizer of Ci with |Bi| = d. We label the linear orders in
Bi as {Li

j : j ∈ [d]}.

We now show that P has a Boolean realizer (B, τ), with |B| = 2+ d+4 · 2d. The
family B will be the union

B = F1 ∪ F2 ∪ F3,

where

|F1| = 2, |F2| = 4 · 2d, |F3| = d.

We begin by defining a coloring φ1 : X → [t] by setting φ1(x) = i when x ∈ Xi.
We use Lemma 3.1 to determine a family F1 of size 2 such that for each pair (x, y),
the bits for the linear orders in F1 determine whether φ1(x) is equal to φ1(y).

Next consider the set T = {τi : i ∈ [t]}. Although the integer t is not bounded in

terms of d, the size of T is at most 22
d

. Therefore, the coloring φ2 : X → T defined

by setting φ2(x) = τi when x ∈ Xi uses at most 22
d

colors. Using Lemma 3.2, we
take F2 as a family of 4 · 2d linear orders on X so that given a pair (x, y), we can
determine the pair (φ2(x), φ2(y)) from the bits associated with the linear orders in
F2.

Finally for each j ∈ [d], let Lj be a linear order on X such that for each i ∈ [t],
the restriction of Lj to Xi is L

i
j, and take F3 = {Lj : j ∈ [d]}.

Now let (x, y) be a pair. From the bits associated with the linear orders in F1,
we know whether x and y are in the same component or not. If not, then we know
that x and y are incomparable in P . So we can assume that we have learned that
x and y are in the same component. Next, from the bits associated with the linear
orders in F2, we can learn the common color φ2(x) = φ2(y), which is the truth
function τi for the component Ci containing both x and y. Then we can apply the
truth function τi to the bits for the linear orders in F3. Since the restriction of
these linear orders to Xi is Bi, this will finally answer whether x is less than y in
Ci, and hence in P . This finishes the proof of Theorem 2.1. � �

Now we explain why the bound in Theorem 2.1 cannot be improved dramatically.
Consider a large integer n and the family Pn of all posets P of height at most 2 on



6 MÉSZÁROS, MICEK, AND TROTTER

the ground set X = A∪B, with all elements of A = {a1, a2, . . . , an} being minimal
in P and all elements of B = {b1, b2, . . . , bn} being maximal in P . Clearly, there

are 2n
2

such posets, since for each pair (ai, bj) ∈ A×B, we can choose whether or
not ai < bj in P .

In [5], Nešetřil and Pudlák show that if P is a poset on 2n points, then bdim(P ) ≤
c log2 n for some universal constant c, and they basically use the family Pn to show
that this inequality is essentially best possible. This follows from the fact that there
are not more then ((2n)!)

s
22

s

Boolean realizers with s linear orders, and hence if

bdim(P ) ≤ s for all P ∈ Pn, then we must have ((2n)!)
s
22

s

≥ |Pn| = 2n
2

. However,
this implies that s = Ω(log2 n).

Now consider the disconnected poset P formed by taking the disjoint sum of a
copy of each poset in Pn. Setting d = c log2 n, we then have bdim(C) ≤ d for every
component C of P . On the other hand, we claim that bdim(P ) = 2Ω(d). To see
this, suppose that bdim(P ) = m and let (B, τ) be a Boolean realizer for P with
|B| = m. Now let Q be any poset from Pn, and let BQ be the family of linear orders
obtained by taking the restrictions of the linear orders in B to the ground set of
Q. Then (BQ, τ) is a Boolean realizer for Q. Since τ is now fixed, the number of
realizers we can produce in such a way is at most ((2n)!)

m
. However, then we must

have (2n!)m ≥ |Pn| = 2n
2

, which implies m = Ω
(

n
log

2
n

)

= 2Ω(d).

3.2. Boolean Dimension and Blocks. In this subsection, we prove Theorem 2.2.
To start with, we first describe one of the key ideas, extracted from [11]. In the
argument to follow, we will encounter the following situation. We will have a poset
P with a cut vertex w and two connected convex subposets Q and Q′, such that
their ground sets, Y and Y ′, respectively, share only the element w. Then clearly
the subposet Q′′ of P with ground set Y ′′ = Y ∪Y ′ is connected and convex, and the
point w is a cut vertex of Q′′. Then if L = [A < w < B] and L′ = [C < w < D] are
linear orders of Y and Y ′, respectively, there are many ways to determine a linear
order L′′ on Y ′′ such that L′′(Y ) = L and L′′(Y ′) = L′. However, in our argument,
we will always do it using the following merge rule: L′′ = [A < C < w < D < B].
It is important to note that this choice forces points in A∪B to the “outside” while
concentrating points of C ∪D in the “inside”.

Now on to the proof. First let P be a connected poset with bdim(B) ≤ d for every
block B of P . We will build a Boolean realizer (B, τ) for P with |B| ≤ 17+d+18·2d.
The family B will be the union

B = F1 ∪ F2 ∪ · · · ∪ F11

where:

|F1| = |F5| = |F6| = 2, |F2| = |F8| = |F9| = 4 · 2d, |F3| = d

|F4| = 3 |F7| = |F11| = 4,

and F10 is the union of 2 · 2d families, each of size 3. As a consequence, we will
have |B| = 17 + d+ 18 · 2d, as required.

Let B denote the set of all blocks of P , and let t = |B|. We may assume t ≥ 2,
otherwise P itself is a block and bdim(P ) ≤ d. Let B = {B1, B2, . . . , Bt} be a
labelling of the blocks in P so that whenever 2 ≤ i ≤ t, block Bi has a (necessarily
unique) point in common with B1 ∪ B2 ∪ · · · ∪ Bi−1. This point will be called the
root of Bi and denoted ρ(Bi). The block B1 does not have a root. For each i ∈ [t],
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we put Xi for the ground set of Bi, and we let Yi = X1 ∪X2 ∪ · · · ∪Xi. We also
set Z1 = X1 and Zi = Xi − {ρ(Bi)} for 2 ≤ i ≤ t. Then clearly Z1 ∪ Z2 ∪ · · · ∪ Zt

is a partition of X .
The first part of the proof will closely parallel the argument for Theorem 2.1.

As before, we first define a coloring φ1 : X → [t] by setting φ1(u) = i when u ∈ Zi.
Using Lemma 3.1, we then take F1 as a family of two linear orders so that given a
pair (x, y), the bits for the linear orders in F1 determine whether φ1(x) = φ1(y).

For each i ∈ [t], let (Bi, τi) be a Boolean realizer for Bi with |Bi| = d. Then we

again take the set T = {τi : i ∈ [t]} which has size at most 22
d

, and consider the
coloring φ2 : X → T defined by setting φ2(x) = τi when x ∈ Zi. Just as before, this

is a coloring using at most 22
d

colors, so using Lemma 3.2, we can take F2 to be
the family of 4 · 2d linear orders on X so that given a pair (x, y), we can determine
the pair (φ2(x), φ2(y)) from the bits associated with the linear orders in F2.

Now we label the linear orders in Bi as {Li
j : j ∈ [d]}. Recall that in the proof

of Theorem 2.1, we chose a family {Lj : j ∈ [d]} of linear orders on X such that
for each (i, j) ∈ [t] × [d], the restriction of Lj to Xi is Li

j . Here we must be more

careful in the construction of these linear orders. For each j ∈ [d], we define a linear
order Lj on X using the following recursive procedure. First, set Lj(1) = L1

j . Then

suppose that for some k ∈ [t − 1], we have already defined a linear order Lj(k)
on the set Yk. Now let w = ρ(Bk+1). Then w is both in Yk and Xk, so there
is a suitable A and B such that Lj(k) = [A < w < B], and a suitable C and D

such that Lk+1
j = [C < w < D]. We now can define Lj(k + 1) by the merge rule

discussed previously, i.e., we put Lj(k + 1) = [A < C < w < D < B]. At the end,
when this procedure stops, we take Lj = Lj(t) and set F3 = {Lj : j ∈ [d]}. Note
that for each pair (i, j) ∈ [t]× [d], the restriction of Lj to Xi is still L

i
j.

We summarize what we have accomplished with the families F1, F2 and F3.
Let (x, y) be a pair. If there is some i ∈ [t] such that x, y ∈ Zi ⊆ Xi, then this
fact will be detected by the linear orders in F1. The linear orders in F2 will then
detect the truth-function τi = φ2(x) = φ2(y) of Bi. Then, as the restriction of the
linear orders in F3 is Bi, we can determine whether x is less than y in P simply by
applying τi to the bits for the linear orders in F3. As a consequence, for the balance
of the argument, from now on we restrict our attention to pairs (x, y) satisfying the
following property.

Property 3.3. φ1(x) 6= φ1(y), i.e., there is no i ∈ [t] for which x, y ∈ Zi.

Next we define a digraph, which we will call the root digraph of P . Its vertex set
is X and for each 2 ≤ i ≤ t, we have an edge between ρ(Bi) and every u ∈ Zi if u is
comparable with ρ(Bi) in P . The edge is directed from u to ρ(Bi) when u < ρ(Bi)
in P and it is directed from ρ(Bi) to u when ρ(ui) < u in P . Evidently, the root
digraph of P is a directed forest.

The root digraph determines a poset Q whose ground set is X and u is covered
by v in Q when there is an edge from u to v in the root digraph. Evidently, the
poset Q is a “forest”, i.e., there are no cycles in the cover graph of Q. A well known
theorem of Trotter and Moore [9] asserts that the dimension of a poset whose cover
graph is a forest is at most 3, so we add to B a family F4 which is a realizer of
size 3 for Q.

Clearly, Q is a suborder of P , i.e., if x < y (resp. x > y) in Q, as detected by
the bits for F4 being (1, 1, 1) (resp. (0, 0, 0)), then x < y (resp. x > y) in P , so
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for the balance of the argument, we restrict our attention to pairs (x, y) which also
satisfy the following. property

Property 3.4. x ‖ y in Q, i.e., the bits for the linear orders in F4 are not (1, 1, 1) or
(0, 0, 0).

Now let (x, y) be a pair satisfying Property 1 and 2. We first decide on the
relative position of x and y in the cover graph G of P . For this observe that there
is a natural tree structure T on the Zi’s, with Zi being a neighbour of Zj when
ρ(Bi) ∈ Zj or ρ(Bj) ∈ Zi. We consider T as rooted at Z1 and also fix a planar
upward drawing of T . Then for every vertex of T there is a natural left-to-right
ordering of its children. Let ix 6= iy be such that x ∈ Zix and y ∈ Ziy . We can
distinguish four cases:

• “x is below y” if Zix is on the path from Ziy to Z1 in T ,
• “y is below x” if Ziy is on the path from Zix to Z1 in T ,
• “x is left of y” if there is some Zi which has two children Zj and Zk, with
Zj left of Zk, such that Zix is in the subtree rooted at Zj and Ziy is in the
subtree rooted at Zk, and

• “y is left of x” which is defined analogously.

To identify which case are we in, let [Zi1 , Zi2 , . . . , Zit ] be the left-to-right and
[Zj1 , Zj2 , . . . , Zjt ] the right-to-left depth-first search order of the Zi’s according
to T . For evety i ∈ [t] choose an arbitrary linear order Mi on the elements of Zi

and put

F5 =
{

[Mi1 < Mi2 < · · · < Mit ], [Mj1 < Mj2 < · · · < Mjt ]
}

.

Then, looking at the bits associated to the linear orders in F5, we see (1, 1) exactly
if x is below y, (0, 0) exactly if y is below x, (1, 0) exactly if x is left of y and (0, 1)
exactly if y is left of x. In what follows, we handle all four cases separately, but,
before doing so, we introduce some further notation.

For each i ∈ [t] and each u ∈ Xi, we define the tail of u from Xi, denoted
T (u,Xi), as the set of all points v ∈ X with the property that every path in the
cover graph G of P starting at v and ending at a point of X1 contains u. Note
that, in particular, u ∈ T (u,Xi) and T (u,Xi) is a set of consecutive elements in
each linear order Lj ∈ F3.

We put Cut(x, y) for the set of cut vertices in the cover graph G of P which
are on every path from x to y in G. Since there is no i ∈ [t] for which x, y ∈ Zi,
Cut(x, y) is clearly nonempty. Let i = i(x, y) denote the least j ≥ 1 such that
Cut(x, y) ∩Xj 6= ∅, u = u(x, y) the element of Cut(x, y) ∩ Zi which is closest to x
in G, while v = v(x, y) the element of Cut(x, y) ∩ Zi which is closest to y in G.

Case “x below y” Suppose we learned from the family F5 that x is below y and
let

S =
{

(x, y) ∈ Inc(P ) : x is below y and v = v(x, y) 6< y in P
}

.

We claim that S is reversible. Indeed, suppose to the contrary that S is not re-
versible, hence it must contain some alternating cycle {(xα, yα) : α ∈ [k]}. For
α ∈ [k] we have xα ≤ yα+1 and vα+1 = v(xα+1, yα+1) 6≤ yα+1, which is possible only
if xα+1 is below xα. Clearly, this statement cannot hold for all α ∈ [k] (cyclically).

Let M be the linear extension reversing S. We clearly have x 6< y unless the bit
for M is 1, which we assume from now on. In this case x and v = v(x, y) must
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necessarily be different, otherwise we would get a contradiction either with Property
2 (if x and y are comparable) or with the fact that the bit corresponding to M is
1 (if x and y are incomparable). As x is below y, we have ix = i(x, y). Then, as
y ∈ T (v,Xix) and T (v,Xix) is a set of consecutive elements (not containing x) in
each of the Li’s, we have that the relative position of x and y in Li is always the
same as that of x and v, i.e., q(x, v,F3) = q(x, y,F3). On the other hand, using the
family F2 we already learned what τix is, and we also know that the restriction of
F3 to Xix is Bix . Hence we can apply τix to the bit string q(x, y,F3) = q(x, v,F3) =
q(x, v,Bix) to decide whether x < v or not. If not, we clearly also have x 6< y. On
the other hand, we claim that if we arrive at x < v, then this already implies x < y.
Indeed suppose to the contrary that x 6< y. As M is a linear extension and the
corresponding bit is 1, we know that y 6< x, hence necessarily x ‖ y. However, as
(x, y) was not reversed by M we must have v < y and hence x < v < y.

Case “y below x” This case can clearly be handled in a symmetric manner
involving some other linear extension M ′.

To cover these two cases we add to B the family F6 = {M,M ′}.

Case “x left of y” Suppose we learned from the family F5 that x is left of y. This
in particular implies that x 6= u(x, y) and y 6= v(x, y).

Let I(P ) denote the set of all pairs (x, y) which satisfy Property 1 and 2, with x
left of y and x ‖ y in P . Using the linear order L1 from F2, we define four subsets
R1, R2, R3, R4 of I(P ) as follows:

(1) R1 consists of all pairs (x, y) ∈ I(P ) such that u(x, y) ≤ v(x, y) in L1 and
x 6< u(x, y).

(2) R2 consists of all pairs (x, y) ∈ I(P ) such that u(x, y) ≤ v(x, y) in L1 and
v(x, y) 6< y.

(3) R3 consists of all pairs (x, y) ∈ I(P ) such that u(x, y) ≥ v(x, y) in L1 and
x 6< u(x, y).

(4) R4 consists of all pairs (x, y) ∈ I(P ) such that u(x, y) ≥ v(x, y) in L1 and
v(x, y) 6< y.

We claim that each set in {R1, R2, R3, R4} is reversible. We give the argument for
R1, as it is clear that the reasoning for the other three cases is symmetric. Suppose
to the contrary that R1 is not reversible and hence it contains an alternating cycle
{(xα, yα) : α ∈ [k]}. Let α ∈ [k] and iα = i(xα, yα), uα = u(xα, yα), vα = v(xα, yα).
Recall that xα is left of yα and xα 6< uα hence we can have xα ≤ yα+1 in P only if
yα+1 is also left of yα. Clearly, this statement cannot hold for all α ∈ [k] (cyclically).

For j ∈ [4] let then Nj be a linear extensions of P that reverses all pairs in Rj

and set F7 = {N1, N2, N3, N4}. Then given a pair (x, y), we conclude that x 6< y in
P unless the bits for the linear orders in F7 are (1, 1, 1, 1). So for the balance of the
argument, we restrict our attention to pairs (x, y) which also satisfy the following
property:

Property 3.5. The bits for the linear orders in F7 are (1, 1, 1, 1).

Let (x, y) be a pair satisfying Property 1 through 3, and let i = i(x, y), u =
u(x, y) and v = v(x, y). We claim that the properties enforced on (x, y) imply that
x < u, v < y in P and u 6= v. We give the argument for x < u, the reasoning
for v < y is clearly symmetric. Suppose to the contrary that x 6< u and hence
x 6< y. As the linear orders in F7 are linear extensions and the corresponding bits
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are (1, 1, 1, 1), we know that y 6< x, so necessarily we have x ‖ y. However then
(x, y) is either in R1 or in R3 and hence has to be reversed by either N1 or N3

contradicting Property 3. Finally to see that u 6= v just note that otherwise we
would have x < u = v < y and hence x < y in Q which would contradict Property 2.

As a consequence we have x < y in P if and only if u < v in P . As x is
left of y, we clearly have x ∈ T (u,Xi) and y ∈ T (v,Xi). Moreover, as u 6= v,
T (u,Xi) and T (v,Xi) are disjoint intervals in each of the linear orders in F3,
therefore q(x, y,F3) = q(u, v,F3). Also, by the properties of F3, we have that
q(u, v,F3) = q(u, v,Bi) and hence we can determine whether u < v in P by applying
τi to these bits. The rub in these observations is that, in general, we do not have
any apparent method for determining τi. Accordingly, our goal for the remainder
of the argument is to work around this difficulty.

Given any a ∈ X , we define a uniquely determined pair (σ1(a), σ2(a)) by the
following rule. For σ1(a), we consider sequences of the form W = (w0, w1, . . . , wm)
where

(1) w0 = a and
(2) if 0 ≤ j < m and wj ∈ Zi, then wj+1 = ρ(Bi) and wj < wj+1 in P .

Among all such sequences, it is easy to see that there is a largest non-negative
integer m and a uniquely determined element v ∈ X for which there is a sequence
of this form with wm = v. We then set σ1(a) = v. When a 6= σ1(a), we have
a < σ1(a) in P . The definition for σ2(a) is symmetric and when a 6= σ2(a), we have
a > σ2(a).

Now we define two further colorings φ3, φ4 : X → T as follows. For a ∈ X we
put φ3(a) = τi and φ4(a) = τj if σ1(a) ∈ Zi and σ2(a) ∈ Zj . Let F8 and F9 be the
families of 4 · 2d linear orders guaranteed by Lemma 3.2 so that given a pair (x, y),
we can determine (φ3(x), φ3(y)) and (φ4(x), φ4(y)) by looking at the bits for the
family F8 and F9, respectively.

For each i ∈ [t], let us fix an arbitrary linear extension Li
0 of Bi. Then for

every subset S of T, we define a poset Q(S) with ground set X by describing its
cover relations. A point a is covered by a point b in Q(S) if either of the following
conditions are satisfied:

(1) There is i ∈ [t] such that a, b ∈ Xi, τi /∈ S and the root digraph contains an
edge from a to b.

(2) There is i ∈ [t] such that a, b ∈ Xi, τi ∈ S and a is covered by b in Li
0.

Lemma 3.6. For every S ⊆ T, dim(Q(S)) ≤ 3.

Proof. By the result of Trotter and Moore [9] mentioned earlier, to prove that
dim(Q(S)) ≤ 3 it is enough to show that the cover graph of Q(S) is a forest. This
is easily seen, as for i ∈ [t], the restriction of the cover graph of Q(S) to Xi is either
a star centered at ρ(Bi) (if τi /∈ S) or a path of length |Xi| (if τ ∈ S). � �

A classic result of Rényi [6] says that given a finite set A there is always a family
A of ⌈log2 |A|⌉ subsets of A that separates every pair of elements, i.e., for every
distinct a, b ∈ A there is some set in A which contains exactly one of them. By
adding the complement of every set in A we arrive at a family A′ of size 2⌈log2 |A|⌉
with the property that for every ordered pair of distinct elements (a, b) ∈ A2 there
is some set in A′ which contains a but does not contain b. By applying this result
to A = T, fix a family S = {S1, S2, . . . , Sm} of subsets of T of size m = 2 · 2d, so
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that for every ordered pair (τα, τβ) of distinct elements of T, there is some j ∈ [m]
such that τα ∈ Sj and τβ 6∈ Sj . For each j ∈ [m] also fix a realizer of size 3 for
the poset Q(Sj), guaranteed by Lemma 3.6, and let F10 be the union of all these
2 · 2d realizers. They enable us to determine the relation of any x and y in Q(Sj)
for each j ∈ [m].

Now let (x, y) be again a pair satisfying Property 1 through 3 with i = i(x, y),
u = u(x, y), v = v(x, y), τα = φ3(x) and τβ = φ4(y). Further let Wx and Wy be the
sequences witnessing σ1(x) and σ2(y). As x < u and v < y, we clearly have that
u and v are in the sequences Wx and Wy, respectively. Furthermore, we also have
that ρ(Bi) is in at most one of the sequences Wx and Wy , as otherwise we would
have x < y in Q, which would contradict Property 2. This clearly implies that at
least one of the following statements holds:

(1) σ1(x) = u and so τα = τi.
(2) σ2(y) = v and so τβ = τi.

If τα = τβ , then necessarily τα = τβ = τi, so the answer as to whether x < y in
P is given by applying the truth-function τi to the bits for the linear orders in F3.
Therefore it remains to consider the case where τα 6= τβ .

Using the properties of S, let j1 and j2 be distinct integers in [m] such that τα
belongs to Sj1 but not to Sj2 , while τβ belongs to Sj2 but not to Sj1 . Then, by
the definition of the posets Q(Sj1) and Q(Sj2), if σ1(x) = u and τα = τi then we
have x ‖ y in Q(Sj2), while if σ2(y) = v and τβ = τi then we have x ‖ y in Q(Sj1).
If from F10 we learn that x ‖ y both in Q(Sj1) and in Q(Sj2) then u 6< v in the
linear extension Li

0 and so we conclude x 6< y in P . Therefore, we may assume
that x ‖ y in only one of them. In this case this property also identifies in which
of the previous two cases we are in, i.e., whether we have τi = τα or τi = τβ . Then
we may apply this truth function to the bits for the linear orders in F3 to learn
whether x is less than y in P .

Case “y left of x” This case can clearly be handled in a symmetric manner. As far
as the linear orders involved are considered, we may reuse the families F8,F9,F10

from the previous case, but we need to replace F7 with a new, but analogous family
F11 of size 4.

This finishes the description of the families of linear orders and hence the proof
of Theorem 2.2 for connected posets.

To extend the preceding proof to disconnected posets, we simply add at the
beginning two linear orders, guaranteed by Lemma 3.1, to detect for each pair
(x, y) whether x and y belong to the same component. Afterwards, we apply the
construction given in the proof to each component. The manner in which the linear
orders on the components are merged is arbitrary.
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[6] A. Rényi, On random generating elements of a finite Boolean algebra, Acta. Sci. Math. 22

(1961), 75–81.
[7] N. Streib and W. T. Trotter, Dimension and height for posets with planar cover graphs,
European Journal of Combinatorics 3 (2014), 474–489.

[8] W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, The Johns
Hopkins University Press, Baltimore (1992).

[9] W. T. Trotter and J. I. Moore, The dimension of planar posets, Journal of Combinatorial

Theory Series B 21 (1977), 51–67.
[10] W. T. Trotter and B. Walczak, Boolean dimension and local dimension, Electronic Notes in

Discrete Mathematics 61 (2017), 1047–1053.
[11] W. T. Trotter, B. Walczak and R. Wang, Dimension and cut vertices: An application of
Ramsey theory, In: S. Butler et al. (eds.), Connections in Discrete Mathematics, Cambridge
University Press (2018), 187–199.

[12] T. Ueckerdt, personal communication.
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