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Abstract. Planar posets can have arbitrarily large dimension. However, a
planar poset of height h has dimension at most 192h+96, while a planar poset

with t minimal elements has dimension at most 2t+ 1. In particular, a planar

poset with a unique minimal element has dimension at most 3. In this paper,
we extend this result by showing that a planar poset has dimension at most 6

if it has a plane diagram in which every minimal element is accessible from

below.

1. Introduction

A non-empty family R of linear extensions of a poset P is called a realizer of P
when x ≤ y in P if and only if x ≤ y in L for each L ∈ R. The dimension of a
poset P , as defined by Dushnik and Miller in their seminal paper [3], is the least
positive integer d for which P has a realizer R with |R| = d.

In recent years, there has been considerable interest in bounding the dimension
of a poset in terms of graph theoretic properties of its cover graph and its order
diagram. For example, the following papers link the dimension of a poset with
tree-width, forbidden minors, sparsity and game coloring numbers: [6], [12], [20],
[7] and [8]. The results presented here continue in this theme.

Recall that a poset P is said to be planar if its order diagram (also called a Hasse
diagram) can be drawn without edge crossings in the plane. As is well known, a
planar poset has an order diagram without edge crossings in which edges are straight
line segments. Nevertheless, we elect to consider order diagrams in which covering
edges can be piecewise linear, as this convention simplifies our illustrations. Given
a planar poset P , a drawing of the order diagram of P using piecewise linear paths
for edges such that there are no edge crossings will simply be called a plane diagram
of P .

In discussing a plane diagram D for a poset P , we will assume, without loss of
generality, that no two points of P lies on the same horizontal or vertical line in
the plane. We will also discuss points in the plane which do not correspond to
elements of P . In particular, the set of points in the plane which do not correspond
to elements of P and do not lie on the piecewise linear covering edges in D is
partitioned into one or more simply connected regions. In general, there can be
arbitrarily many bounded regions, however the boundaries of these regions need not
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Figure 1. The diagram on the right is an AFB-Diagram

be simple closed curves. Among these regions, there is always a unique, unbounded
region which is usually referred to as the exterior region.

Let D be a plane diagram for poset P , and let x be a minimal element of P . We
will say that x is accessible from below when there is a positive number ε = ε(x) so
that any point p in the plane which is distinct from x, on the vertical ray emanating
downwards from x and within distance ε from x is in the exterior region. In turn
we say that a plane diagram D is accessible from below if if every minimal element
of P is accessible from below.

We find it convenient to abbreviate the phrase “accessible from below” with the
acronym AFB, so we will say that a minimal element x is AFB in a diagram D,
and we will refer to an AFB-diagram. We then say that a poset P is an AFB-poset
if it has an AFB-diagram. All AFB-posets are planar, but there are planar posets
which are not AFB. Also, an AFB-poset can have many plane diagrams with some
of them AFB-diagrams and others not. We illustrate this situation in Figure 1
where we show two plane diagrams of an AFB-poset P . The diagram on the right
is an AFB-diagram while the diagram on the left is not.

The principal goal of this paper is to prove the following upper bound on the
dimension of an AFB-poset.

Theorem 1. If P is an AFB-poset, then dim(P ) ≤ 6.

The remainder of this paper is organized as follows. Some background material
necessary for the proof of Theorem 1 is summarized in the next section, and the
proof our main theorem is given in Section 3. We close in Section 4 with some
comments on the motivation for this line of research and connections with open
problems.

We note that for every d ≥ 6, it is an easy exercise to construct an AFB-poset
P for which one cannot argue that dim(P ) ≤ d by any of the other known results
for planar posets. Although we do not know if our upper bound is best possible,
as detailed in Section 4, a finite upper bound on the dimension of AFB-posets is
sufficient for our long range goals.

2. Background Material

We use (essentially) the same notation and terminology for working with dimen-
sion as has been employed by several authors in recent papers, including: [5], [14],
[6], [18] and [19], so our treatment will be concise.

Let P be a poset with linear extension L and let (x, y) ∈ Inc(P ). We say L
reverses (x, y) when x > y in L. When S ⊂ Inc(P ), we say that L reverses S when
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L reverses every pair in S. When R is a family of linear extensions of P , we say
R reverses S when, for each (x, y) ∈ S, there is some L ∈ R such that L reverses
(x, y). Evidently, the dimension of P is just the minimum size of a non-empty
family of linear extensions which reverses Inc(P ).

In the discussion to follow, we sometimes express a linear order on a finite set
by writing [u1 < u2 < · · · < ur], for example.

A subset S ⊂ Inc(P ) is reversible when there is a linear extension L of P which
reverses S. When k ≥ 2, a sequence {(xi, yi) : 1 ≤ i ≤ k} of incomparable pairs in P
is called an alternating cycle (of length k) when xi ≤ yi+1 in P for all i ∈ [k], which
should be interpreted cyclically, i.e., we also intend that xk ≤ y1 in P . For the
balance of the paper, we will use similar cyclic notation without further comment.

An alternating cycle is strict if for each i ∈ [k], xi ≤ yj in P if and only if
j = i + 1, and further, the sets {x1, x2, . . . , xk} and {y1, y2, . . . , yk} are k-element
antichains.

A poset has dimension 1 if and only if it is a chain. When P is not a chain,
the dimension of P is just the least positive integer d ≥ 2 for which there is a
covering Inc(P ) = S1 ∪ S2 ∪ · · · ∪ Sd with Si reversible for each i ∈ [d], The
following elementary lemma of Trotter and Moore [16] characterizing reversible
sets has become an important tool in dimension theory.

Lemma 2. Let P be a poset and let S ⊆ Inc(P ). Then the following statements
are equivalent.

(1) S is reversible.
(2) There is no k ≥ 2 for which S contains an alternating cycle of length k.
(3) There is no k ≥ 2 for which S contains a strict alternating cycle of length k.

When x < y in a poset P , we refer to a sequence W [x, y] = (u1, u2, . . . , ur) of
elements of P as a witnessing path from x to y when u1 = x, ur = y and ui is
covered by ui+1 in P whenever 1 ≤ i < r. In general, there are many different
witnessing paths from x to y and, in most instances, it will not matter which one
is chosen.

When D is a plane diagram for a poset P and x < y in P , we will take advantage
of the fact that there is a uniquely determined “left-most” witnessing path from
x to y. Analogously, there is a uniquely determined “right-most” witnessing path
from x to y. In Figure 2, we show a portion of a plane diagram where there are a
total of 12 witnessing paths from x to y. The left-most path is shown using dotted
edges while the right-most path is shown using bold face edges.

We can view a witnessing path W [x, y] as a finite sequence of points of the poset
P , but we can also view it as the simply connected (and therefore infinite) set
of points in the plane which belong to the covering edges in the path. From the
context of the discussion, it should be clear whether we intend a witnessing path
to be simply a finite set of points from P or an infinite set of points in the plane.
In the same spirit, we will splice witnessing paths together to form simple closed
curves in the plane. These will always be infinite sets of points.

At a critical stage in our proof, we will discuss a simple closed curve E such that
the minimal elements of P are on E , while all other elements of P are in the interior
of E .

2.1. Planar Posets with a Zero. When a poset has a unique minimal element,
that element is usually referred to as a “zero.” Dually, if a poset has a unique
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y

x

Figure 2. Left-most and right-most witnessing paths

maximal element, then it is called a “one.” We state formally the theorem of
Trotter and Moore [16], and give a short synopsis of a more modern proof given
in [18], as these details will be important in proving our main theorem.

Theorem 3. If P is a planar poset and P has a zero, then dim(P ) ≤ 3.

Since a poset and its dual have the same dimension, we also know that a planar
poset with a one has dimension at most 3.

Given a plane diagram D for a poset P with a zero, let L1 be the linear extension
of P obtrained from a depth-first search using a local left-to-right preference rule.
Similarly, let L2 be another linear extension of P which is also obtained via a
depth-first search, but with a right-to-left preference. As noted in [18], for every
(x, y) ∈ Inc(P ), exactly one of the following four statements applies:

(1) x is right of y (i.e. x > y in L1 and x < y in L2).
(2) x is left of y (i.e. x < y in L1 and x > y in L2).
(3) x is outside y (i.e. x < y in both L1 andL2).
(4) x is inside y (i.e. x > y in both L1 andL2).

In Figure 3, we show a plane diagram D for a poset P with a zero in which 10 is
right of 5, 7 is left of 9, 14 is outside 6 and 10 is inside 13.

Accordingly, it is natural to partition Inc(P ) as R∪L∪O∪I, where R consists
of all pairs (x, y) with x right of y, etc. The binary relations R and L are comple-
mentary in the sense that x is left of y if and only if y is right of x. Similarly, the
binary relations I and O are complementary. Also both L and R are transitive,
e.g., if x is left of y and y is left of z, then x is left of z.

The inequality dim(P ) ≤ 3 is proved by showing that the following sets are
reversible: (1) R ∪ O, (2) L ∪ O, and (3) I. The arguments given in [18] for the
first two of these statements are constructive, as the desired linear extensions are
obtained via depth-first searches. Note that the labeling used in Figure 3 results
from a depth-first search using a local left-to-right preference rule. This linear
extension illustrates that R ∪ O is reversible. A depth-first search using a local
right-to-left preference rule will produce a linear extension reversing all pairs in
L ∪ O.
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Figure 3. A planar poset with a zero

To complete the proof, it is then only necessary to show that I is reversible.
However, as pointed out in [18], a somewhat more general result holds: planar
posets with t minimal elements have dimension at most 2t+ 1.

Let D be a plane diagram for a planar poset P (with no restriction on the number
of minimal elements of P ). When z ∈ P , we let UP [z] consist of all elements x ∈ P
with z ≤ x in P . The subposet UP [z] is planar and z is a zero. Accordingly, we
can classify the incomparable pairs in UP [z] using the same four labels R, L, O,
and I. We will say that an incomparable pair (x, y) in P is an enclosed pair when
there is some z ∈ P such that x is inside y in UP [z].

For the benefit of readers who may be new to arguments using alternating cycles,
we give a proof for the following elementary lemma.

Lemma 4. Let D be a plane diagram for a poset P . Then the set S of all enclosed
pairs in P is reversible.

Proof. We argue by contradiction, supposing that S is not reversible. Then by
Lemma 2, there is an integer k ≥ 2 and a strict alternating cycle {(xi, yi) : 1 ≤ i ≤
k} of enclosed pairs. For each i ∈ [k], let zi be the unique element of P which is
highest in the plane with xi inside yi in UP [zi]. Then let y′i be the unique element
of P which is lowest in the plane and satisfies both y′i ≤ yi in P and xi is inside y′i
in UP [zi]. Then there are two witnessing paths W1[zi, y

′
i] and W2[zi, y

′
i] which form

a simple closed curve Ci with xi in its interior.
Since xi ≤ yi+1 in P and xi ‖ yi in P , it follows that yi+1 is also in the interior

of Ci. Therefore yi+1 is lower in the plane than y′i. This is a contradiction since
this statement cannot hold for all i ∈ [k]. �

In a dual manner, when D is a plane diagram for a poset P and z ∈ P , we define
DP [z] as the subposet consisting of all x ∈ P with x ≤ z in P . The subposet DP [z]
is planar, and the element z is a one. Now we can classify the incomparable pairs
in the subposet DP [z] using the same four labels but applied with the obvious dual
interpretation. In general, if (x, y) is an incomparable pair in a subposet of the form
DP [z], then any of the four labels may be correct for the pair (x, y). However, if D
is an AFB-diagram for a poset P , then two of the four labels cannot be applicable.
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We state formally the following nearly self-evident proposition for emphasis. It does
not hold for planar posets in general.

Proposition 5. Let D be an AFB-diagram for a poset P , and let z ∈ P . If (x, y)
is an incomparable pair in DP [z], then either x is left of y in DP [z] or x is right of
y in DP [z]. Furthermore, if z′ ∈ P and x, y ∈ DP [z′], then x is left of y in DP [z]
if and only if x is left of y in DP [z′].

3. Proof of our Main Theorem

In this section, we prove Theorem 1, i.e., we show that if P is an AFB-poset,
then dim(P ) ≤ 6. Our first step is to reduce the problem to a somewhat simpler
one.

Reduction. To show that the dimension of any AFB-poset is at most d, it suf-
fices to show that whenever D is an AFB-diagram for a poset P , the set of all
incomparable pairs in Min(P )× P can be covered by d− 1 reversible sets.

Proof. Let P be an AFB-poset. To show that dim(P ) ≤ d, we need to show that
there is a covering of the set of all incomparable pairs of P by d reversible sets. Let
D be an AFB-diagram for P . We will now show that D can be modified into an
AFB-diagram D′ for a poset P ′ such that:

(1) P ′ contains P as a subposet.
(2) If (x, y) is an enclosed pair in P , then (x, y) is an enclosed pair in P ′.
(3) If (x, y) is an incomparable pair of P and is not an enclosed pair in P , then

there is a minimal element x′ ∈ P ′ with x′ ≤ x in P ′ and x′ ‖ y in P ′.

We will then let S0 consist of all incomparable pairs (x, y) in P such that (x, y)
is an enclosed pair in P ′. The set S0 is reversible by Lemma 4, and it contains all
enclosed pairs in P . It remains to consider the incomparable pairs in P which are
not enclosed in P ′. In view of the third condition for P ′, if the incomparable pairs
(x′, y) ∈ Min(P ′)× P ′ in P ′ can be covered by d− 1 reversible sets, it follows that
the set of all incomparable pairs of P can be covered by d reversible sets. So it only
remains to explain how the poset P ′ should be constructed from P .

Let S be the set of all incomparable pairs of P which are not enclosed pairs in
P and do not belong to Min(P ) × P . If S = ∅, simply take D′ = D and P ′ = P .
So we may assume that S 6= ∅. Let r = |S| and let S = {(xi, yi) : 1 ≤ i ≤ r} be an
arbitrary labeling of the pairs in S.

To initialize a recursive construction, we set D0 = D and P0 = P . We will now
explain how to construct a sequence {(Di, Pi) : 1 ≤ i ≤ r} such that for each i ∈ [r],
Di is an AFB-diagram for the poset Pi where Mi = Min(P ). The construction will
ensure that Pi−1 is a subposet of Pi and Mi−1 is a subset of Mi whenever 1 ≤ i ≤ r.
Furthermore, for each 1 ≤ j ≤ i ≤ r, either (xj , yj) is an enclosed pair in Pi or
there is a minimal element x′j ∈Mj such that x′j ≤ xj in Pi and x′j ‖ yj in Pi. The
AFB-poset P ′ is just Pr.

Now suppose that 0 ≤ i < r and that we have defined the AFB-diagram Di for Pi.
We then consider the pair (x, y) = (xi+1, yi+1). Let x′ be the uniquely determined
element of P which is lowest point in the plane and satisfies x′ ≤ x in Pi and x′ ‖ y
in Pi. If (x′, y) is an enclosed pair in Pi, so is (x, y). Accordingly, if x′ ∈ Min(Pi),
or (x′, y) is an enclosed pair, we simply take Di+1 = Di and Pi+1 = Pi.

Now suppose (x′, y) is not an enclosed pair in Pi, and x′ is not a minimal element
in Pi. It follows that x′ covers one or more elements in Pi. We claim that x′ has a
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Figure 4. The Construction for the Reduction

unique lower cover. Suppose to the contrary that x′ covers distinct elements u and
u′ in Pi. In view of our choice of x′, we know u, u′ ∈ DP [y]. However, since (x′, y)
is not an enclosed pair in Pi and u ‖ u′, the induced AFB-diagram of the subposet
of Pi determined by {u, u′, x′, y} violates Proposition 5. The contradiction shows
that x′ covers a unique point u as claimed.

Our choice of x′ implies that u < y in Pi. We consider the first edge of a
witnessing path W [u, y] and the edge ux′. The construction for Di+1 depends on
which of these two edges is left of the other at u. In Figure 4, we show the first
edge of W [u, y] on the left, so the following discussion will be reversed if the edge
ux is on the left.

Starting with u and traveling down in the diagram, we always proceed to the
right-most lower cover until we reach a minimal element of P . In Figure 4, we
suggest that this would result in the chain (u > v > z > w) and it should be clear
how the following details should be modified if the actual chain is of a different
length.

Starting just above u and headed downward, we insert new points very close
to the existing vertices—together with intermediate vertices to ensure that the
resulting figure is a diagram. This results in a new minimal element x′′ with x′′ <
x′ ≤ x in Pi+1 and x′′ ‖ y in Pi+1. Again, we refer to Figure 4 as an example for
how these changes are to be made. Note that no new comparabilities are introduced
among the points of Pi−1 with the addition of these new points.

With this construction in hand, the proof for the reduction is complete. �

Given an AFB-diagram for a poset P , we know of no simple argument to show
that the set of incomparable pairs from Min(P )×P can be covered with a bounded
number of reversible sets, but in time, we will show that 5 are enough. With the
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reduction, this completes the proof that dim(P ) ≤ 6 when P is an AFB-poset.
However, to simplify the proof, we will first prove a weaker result asserting that
the set of incomparable pairs from Min(P )×P can be covered by 7 reversible sets.
The slight modification necessary to lower 7 to 5 will be presented later.

Lemma 6. Let D be an AFB-diagram for a poset P . Then the set of all incompa-
rable pairs of P in Min(P )× P can be covered by 7 reversible sets.

Proof. Clearly, it is enough to prove the lemma when P is connected and has at
least two minimal elements. We let S0 denote the set of all incomparable pairs in
Min(P )× P , and we abbreviate the set Min(P ) as M .

Since D is an AFB-diagram, it is easy to see that there is a simple closed curve
E in the plane satisfying the following requirements:

(1) All elements of M are on E .
(2) All elements of P −M are in the interior of E .
(3) If x covered by y in P , then all points of the plane which are on the covering

edge from x to y in the diagram are in the interior of E , except x when
x ∈M .

We illustrate such a curve in Figure 5 where we show E using dashed lines. We
find it natural to refer to E as an envelope for P .

Starting at an arbitrary minimal element m1, we label the elements of M as they
appear in a counter-clockwise traversal of E to obtain a linear order

L = [m1 < m2 < · · · < mn]

on M . For each element y ∈ P , we let M [y] = M ∩DP [y].
We will make repeated use of the following elementary proposition. In fact, a

stronger result holds, but this is the exact form we need.

Proposition 7. Let y ∈ P , and let m and m′ be distinct elements of M with
m,m′ ∈ DP [y]. Then let Z be the subposet of P consisting of all elements z ∈ P
with z ∈ DP [y] such that m,m′ ∈ DP [z]. Then the subposet Z has a unique minimal
element which we will denote z(y,m,m′).

We will also make repeated use of a construction that produces simple closed
curves and regions in the plane. Again, let y ∈ P and let (m,m′) be an ordered
pair of distinct elements of M [y]. Form a path E [m,m′] by traversing the simple
closed curve E in a counter-clockwise direction starting at m and stopping at m′.
Now E [m,m′] and E [m′,m] share only m and m′ as endpoints. Their union is the
entire curve E .

Let z = z(y,m,m′). We then take witnessing paths from m and m′ to z using
the following convention: If m is left of m′ in DP [z], then we take W [m, z] as the
right-most witnessing path from m to z, while we take W [m′, z] as the left-most
path from m′ to z. These conventions are reversed if m′ is left of m in DP [z].

In either situation, the two witnessing paths W [m, z] and W [m′, z] together with
the path E [m,m′] form a simple closed curve which we denote C(y,m,m′). Also,
we let R(y,m,m′) denote the region in the plane enclosed by C(y,m,m′). Note
that y is on C(y,m,m′) when y = z(y,m,m′). However, when y 6= z(y,m,m′), y is
in the exterior of R(y,m,m′) when m is left of m′ in DP [y], and y is in the interior
of R(y,m,m′) when m is right of m′ in DP [y].

Now back to the argument for covering S0 with 7 reversible sets. We will use the
linear order L to label the incomparable pairs in S0 using the following 8 labels:
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Figure 5. An Envelope for an AFB-poset

1A 1B 1C 2A 2B 2C 2D 2E.

The integer part of the label applied to a pair (x, y) depends only on y while the
letter in the label depends on both x and y.

Let y be an element of P . Then the elements of M [y] are linearly ordered from
left-to-right in DP [y]. We let s(y) and t(y) denote, respectively, the least element
and the greatest element of M [y] in this linear order. Let |M [y]| = r and let
[u1 < u2 < · · · < ur] be the left-to-right order on M [y] in DP [y], so that s(y) = u1

and t(y) = ur.
However, the elements of M [y] are also linearly ordered in L. Now we let a(y)

and b(y) denote, respectively, the least element and the greatest element of M [y] in
L. Since the envelope E is traversed in a counter-clockwise manner, it is easy to see
that y can be characterized as one of two types, since exactly one of the following
two statements holds for y:

Type 1. u1 < u2 < · · · < ur in L.
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Type 2. There is an integer j with 1 < j ≤ r such that:
uj < uj+1 < · · · < ur < u1 < u2 < · · · < uj−1 in L.

We note that an element y ∈ P is Type 1 when |M [y]| = 1. In general, when y
is Type 1, a(y) = s(y) ≤ t(y) = b(y) in L. When y is Type 2, a(y) ≤ t(y) < s(y) ≤
b(y) in L. Also, we observe that either a(y) = b(y) or a(y) is left of b(y) in DP [y]
when y is Type 1. However, a(y) is right of b(y) in DP [y] when y is Type 2.

Now let (x, y) be a pair in S0. If y is Type 1, we will say that (x, y) is Type 1A
if x < a(y) in L; Type 1B if a(y) < x < b(y) in L; and Type 1C if x > b(y) in L.
In Figure 5, the elements y2 and y3 are Type 1. The pairs (m1, y2) and (m5, y3)
are Type 1A; the pairs (m3, y2) and (m5, y2) are Type 1B; and the pairs (m8, y2)
and (m12, y3) are Type 1C.

When y is Type 2, we say the pair (x, y) is Type 2A if x < a(y) in L; Type 2B if
a(y) < x < t(y) in L; Type 2C if t(y) < x < s(y) in L; Type 2D if s(y) < x < b(y)
in L; and Type 2E if x > b(y) in L. In Figure 5, the elements y0 and y1 are Type 2.
Now (m1, y0) and (m1, y1) are Type 2A; (m4, y0) is Type 2B; (m6, y1) is Type 2C;
(m8, y0) and (m10, y1) are Type 2D; and (m13, y0) and (m13, y1) are Type 2E.

We then define a covering of S0 by six sets defined as follows:

(1) S1 consists of all Type 1A and 2A pairs.
(2) S2 consists of all Type 1C and 2E pairs.
(3) S3 consists of all Type 1B pairs.
(4) S4 consists of all Type 2B pairs.
(5) S5 consists of all Type 2D pairs.
(6) S6 consists of all Type 2C pairs.

We pause to examine the AFB-poset shown in Figure 6 just to understand that
there are obstacles to overcome in covering S0 by a small number of reversible sets.
Referring to Figure 6, the set S1∪S2 need not be reversible since (x4, y4) is Type 1A
and (x5, y5) is Type 1C, but together these form a strict alternating cycle. Also,
(x1, y1) and (x2, y2) are Type 2C while (x3, y3) is Type 2B. No reversible set can
contain any two of these three pairs so S4 ∪ S6 is not reversible and neither is S6.

Despite these challenges, the proof of Lemma 6 and the proof of the (weak) upper
bound dim(P ) ≤ 8 will be complete once we have verified the following claim.

Claim 2. Each of the sets in the family {S1,S2,S3,S4,S5} is reversible. Further-
more, the set S6 can be covered by two reversible sets.

Proof. We will examine one set at a time, grouping sets with symmetric arguments.

Case S1 (S2). We will first give a proof by contradiction to show that S1 is
reversible. The argument for S2 is symmetric. Suppose to the contrary that S1 is
not reversible. Let S = {(xi, yi) : 1 ≤ i ≤ k} be a strict alternating cycle contained
in S1. For each i ∈ [k], let ai = a(yi), the least element of M [yi] in the linear order
L.

For each i ∈ [k], since (xi, yi) ∈ S1, we know that xi < ai in L. On the other
hand, we know that xi ≤ yi+1 in P . Therefore ai+1 ≤ xi in L. In turn, this implies
ai+1 < ai in L. Clearly, this statement cannot hold for all i ∈ [k]. The contradiction
completes the proof for this part of the claim.

Case S3. Now we give a proof by contradiction to show that the set S3 of Type 1B
pairs is reversible. This argument will be more substantive than the preceding case.
Suppose that S = {(xi, yi) : 1 ≤ i ≤ k} is a strict alternating cycle of pairs from
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Figure 6. Challenges in Reversing Pairs in S0

S3. For each i ∈ [k], we let ai = a(yi), bi = b(yi), si = s(yi) and ti = t(yi). Since
(xi, yi) ∈ S3, we know

ai = si < xi < ti = bi in L.

Furthermore, we know ai is left of bi in DP [yi]. Let zi = z(yi, ai, bi), Ei = E [ai, bi],
Ci = C(yi, ai, bi) and Ri = R(yi, ai, bi)

Now let i ∈ [k] be arbitrary. Since ai < xi < bi in L, we know xi is on the path
Ei. Since S is a strict alternating cycle, we know xi < yi+1 in P and yi ‖ yi+1 in
P . Let W [xi, yi+1] be an arbitrary witnessing path. Clearly, yi+1 is not a minimal
element in P , so all points in the plane on the witnessing path W [xi, yi+1] except
xi are in the interior of Ci.

Next we consider the set M [yi+1] which includes xi. We assert that all elements
of W [yi+1] are on Ei. To see this, suppose u ∈M [yi+1], and u is not on Ei. Then u
is in the exterior of Ci. Let W [u, yi+1] be an arbitrary witnessing path. Then this
path must intersect the boundary of Ci, and this forces u < yi in P , which is false.
The contradiction confirms our assertion.

We conclude that:

(1) ai ≤ ai+1 and bi+1 ≤ bi in L.

Of course, we also know that ai+1 ≤ bi in L, but we elect to write the two
inequalities in (1) in a weak form. Since i ∈ [k] was arbitrary, these inequalities
hold for all i ∈ [k]. We conclude that are minimal elements a0 and b0 so that ai = a0

and bi = b0 for each i ∈ [k]. The rules for determining zi and the witnessing paths
W [a0, zi] and W [b0, z] force Ri+1 to be a proper subset of Ri. Clearly, this is a
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contradiction since the strict set inclusion statement cannot hold for all i ∈ [k]. This
completes the proof that the set S3 consisting of all Type 1B pairs is reversible.

Case S4 (S5). Next, we argue by contradiction that the set S4 of all Type 2B
pairs is reversible. The argument for the set S5 of all Type 2D pairs is symmetric.
Suppose to the contrary that S4 is not reversible, and let S = {(xi, yi) : 1 ≤ i ≤ k}
be a strict alternating cycle contained in S4. We use the same abbreviations as
in the preceding case for ai, bi, si and ti. Since (xi, yi) is Type 2B, we know
ai < xi < ti < si ≤ bi in L.

For each i ∈ [k], we set zi = z(yi, ai, ti), Ei = E [ai, ti], Ci = C(yi, ai, ti) and
Ri = R(yi, ai, ti). It follows that yi+1 is in the interior of Ri. We now assert
that all points of M [yi+1] come from E [ai, bi]. To see this, let u be an element of
M [yi+1] which does not belong to E(ai, bi). Then u is in the exterior of Ri, and a
witnessing path W [u, yi+1] would have to intersect Ci. This forces u < yi in P so
that u ∈ E(ai, bi), as desired. In turn, this implies that inequality (1) holds. Since
this inequality holds for all i ∈ [k], we know there are elements a0, b0 ∈ M so that
ai = a0 and bi = b0 for all i ∈ [k].

Now we assert that ti+1 ≤ ti for all i ∈ [k]. To the contrary, suppose that ti+1

does not belong to E [a0, ti]. Let W [ti+1, yi+1] be any witnessing path. Then this
path intersects Ci. Let v be the unique element of P which is lowest in the plane,
and is common to W [ti+1, yi+1] and the boundary of Ci. Clearly, v < zi in P . If v
is on W [a0, zi], we conclude that a0 < ti+1 < ti in the left-to-right order in DP [yi].
This would imply that ti+1 < ti in L which is false. We are left to conclude that
v ∈ W [ti, zi] so that a0 < ti < ti+1 in DP [yi], which contradicts the definition of
ti. We conclude that our assertion that ti+1 ≤ ti in L is correct. Since S is a strict
alternating cycle, we know that there is a point t0 ∈M so that ti = t0 for all i ∈ [k].

Now the same argument used in proving that the set S3 of all Type 1B pairs is
reversible shows that region Ri+1 is a proper subset of Ri. Clearly, this statement
cannot hold for all i ∈ [k], and this completes the proof that the set S4 consisting
of all Type 2B pairs is reversible.

Case S6. Now we turn to the last statement of Claim 2 where we must prove that
the set S6 of all Type 2C pairs can be covered by two reversible sets. Note that
two Type 2C pairs in Figure 6 shows that S6 may not be reversible.

Let (x, y) be a Type 2C pair, and let a = a(y), b = b(y) and z = z(y, a, b).
We will say that (x, y) is left-biased if there is a Type 2 element y′ ∈ P such that
(1′) a(y′) = a and b(y′) = b; (2′) z(y′, a, b) = z; and (3′) x is left of b(y) in DP [y′].
Similarly, we will say that (x, y) is right-biased if there is an a Type 2 element y′′

satisfying (1′′) a(y′′) = a and b(y′′) = b; (2′′) z(y′′, a, b) = z; and also (3′′) x is right
of a in DP [y′′].

We assert that there is no Type 2C pair (x, y) which is both left-biased and
right-biased. If this were to happen, we observe that a, b, z belong to both DP [y′]
and DP [y′′]. We would require that x < a < b in the left-to-right order on DP [y′]
and a < b < x in the left-to-right order in DP [y′′]. In particular, both the pairs
(a, x) and (b, x) violate Proposition 5. This proves that the assertion is correct.

We now show that the set S ′ of all Type 2C pairs which are not right-biased is
reversible. The argument to show that the set S ′′ of all Type 2C pairs which are
not left-biased is symmetric. Once this has been accomplished, the proof that the
set S6 consisting of all Type 2C pairs can be covered by two reversible sets will be
complete.
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We argue by contradiction and let S = {(xi, yi) : 1 ≤ i ≤ k} be a strict al-
ternating cycle of Type 2C pairs, none of which are left-biased. For each i ∈ [k],
we use the now standard abbreviations ai, bi, si, ti. We then take zi = z(yi, ai, bi),
Ei = E [ai, bi], Ci = C(yi, ai, bi) and Ri = R(yi, ai, bi).

Arguments just like those applied earlier show that inequality (1) holds. There-
fore, there are elements a0, b0 ∈M such that ai = b0 and bi = b0 for all i ∈ [k].

Now let i ∈ [k] be arbitrary. We then observe that Ri+1 is a proper subset of
Ri unless zi+1 = zi. In this case, Ri+1 = Ri. It follows that there is an element
z0 ∈ P and a simple closed curve C0 enclosing a region R0 so that zi = z0, Ci = C0
and Ri = R0 for all i ∈ [k].

After a relabeling if necessary, we may assume that s1 ≤ si in L for each i ∈ [k].
Then t1 < x1 < s1 in L. Since x1 < y2 in P , either s2 < x1 < b0 in L or
a0 < x1 < t2 in L. If s2 ≤ x1 < b0 in L, then s2 < s1 in L which is false. We
conclude that a0 < x1 ≤ t2 in L. Therefore, x1 is right of a0 in DP [y2]. This shows
that (x1, y1) is right-biased. The contradiction completes the proof. �

As promised, we now show how to improve Claim 2 by showing the set S0 can
be covered by 5 reversible sets. This will be accomplished by proving the following
two claims.

Claim 3. The set S3 ∪ S4 of all pairs which are either Type 2B or Type 2D is
reversible.

Claim 4. The set S7 consisting of all pairs which are either Type 1B or Type 2C
but not right-biased is reversible.

Proof. We first show by contradiction that S3 ∪S4 is reversible. Let S = {(xi, yi) :
1 ≤ i ≤ k} be a strict alternating cycle of pairs from S3 ∪ S4 In view of our earlier
arguments, there must be at least one pair in S of Type 2B and at least one pair
of Type 2D.

The abbreviations ai, bi, si, , ti are just as before. Now we know that ai ≤ ti <
si ≤ bi in L. Furthermore, if (xi, yi) is Type 2B, we know ai < xi < ti in L, and if
(xi, yi) is Type 2D, we know si < xi < bi in L.

Now let i ∈ [k]. If ai = ti, we set zi = ai, and we let Ri be the region in
the plane consisting only of the point ai. If ai < ti in L, we set zi = z(yi, ai, ti),
Ci = C(yi, ai, bi) and Ri = R(yi, ai, ti). Analogously, if si = ti, we set vi = bi and
we take Ti as the region in the plane consisting only of the point bi. If si < bi in
L, we let vi = z(yi, si, bi), Di = C(yi, si, bi) and Ti = R(yi, si, ti),

Repeating arguments already presented, we quickly learn that there are elements
a0, b0, s0, t0 ∈ M , elements z0, v0 ∈ P , simple closed curves C0 and D0 and regions
R0, T0 so that ai = a0, bi = b0, zi = z0, vi = v0, Ci = C0, Ri = R0, Di = D0, and
Ti = T0 for all i ∈ [k].

If i ∈ [k] and (xi, yi) is Type 2B, then it is easy to see that Ri+1 ( Ri while
Ti+1 = Ti. Analogously, if (xi, yi) is Type 2D then Ti+1 ( Ti while Ri+1 = Ri.
Clearly, these statements result in a contradiction, so we have completed the proof
that S3 ∪ S4 is reversible.

Now we prove by contradiction that S7, which consists of all Type 1B pairs and
all Type 2C pairs which are not right-biased is reversible. Let S = {(xi, yi) : 1 ≤
i ≤ k} be a strict alternating cycle contained in S7. Then we know that S contains
both a Type 1B pair and a Type 2C pair.
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Now suppose that i ∈ [k]. We set ai = a(yi), bi = b(yi), zi = z(yi, ai, bi),
Ci = C(yi, zi, bi) and Ri = R(yi, ai, bi). Then yi+1 is in the interior of Ri and all
elements of M [yi+1] are on the path E(ai, bi). It follows that the inequalities in (1)
hold. We conclude that there are elements a0, b0 ∈M such that ai = a0 and bi = b0
for all i ∈ [k].

Let i and j be integers in [k] so that (xi, yi) is Type 1B and (xj , yj) is Type 2C.
Then a0 is left of b0 in DP [yi] and a0 is right of b0 in DP [yj ]. These statements
contradict Proposition 5. With these observations, the proof of Claim 3 is complete.
This also completes the proof of our main theorem. �

�

4. Closing Comments and Open Problems

We pause to explain our motivation in studying the class of AFB-posets. Let
P be a planar poset and let x0 be an arbitrary minimal element of P . Then set
A0 = {x0} and let B0 consist of all elements y in P such that y > x0 in P .
If i ≥ 0 and we have defined a sequence (A0, B0, A1, B1, . . . , Ai, Bi) of pairwise
disjoint subposets of P and their union is a proper connected subposet Q of P , we
let Ai+1 consist of all elements x ∈ P −Q for which there is some y ∈ Bi such that
x < y in P . Also, when Q ∪ Ai+1 is a proper subposet of P , we take Bi+1 as the
set of all y ∈ P − (Q ∪ Ai+1) for which there is some x ∈ Ai+1 for which x < y in
P .

The resulting partition of P is now known as an unfolding of P , and this concept
has been used in several papers, including [14], [12] and [7]. The key feature for
our purposes is that for all i ≥ 0, the subposet Bi is an AFB-poset, and the dual of
the subposet Ai is an AFB-poset. As is well known there is some i ≥ 0 for which:

max{dim(Ai ∪Bi),dim(Bi ∪Ai+1)} ≥ dim(P )/2.

It follows that when the dimension of P is very large, we now know that there is
a subposet of P in which the difficulty of the dimension problem has a “bipartite
flavor,” i.e., the poset is the union of two relatively simple subposets, one a down
set and the other an up set and the challenge is to reverse incomparable pairs of
the form (x, y) where x is in the down set and y is in the up set. Reversing the
remaining incomparable pairs takes at most 6 linear extensions.

Our motivation for this line of research has from the outset been to develop ma-
chinery for attacking the following long-standing and apparently quite challenging
conjectures:

Conjecture 8. A planar poset with large dimension contains a large standard
example, i.e., for every d ≥ 2, there exists a constant d0 so that if P is a planar
poset and dim(P ) ≥ d0, then P contains the standard example Sd as a subposet.

We believe, but cannot be certain, that the first reference to this conjecture is
on page 119 in [15], as it has become part of the folklore of the subject.

In fact, probably the following considerably stronger conjecture is true.

Conjecture 9. For every pair (n, d) of positive integers with d ≥ 2, there is an
integer d0 so that if P is a poset and dim(P ) ≥ d0, then either P contains the
standard example Sd or the cover graph of P contains a Kn minor.
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In just the last two years, there has been considerable interest in two variants of
the original Dushnik-Miller notion of dimension. They are called Boolean dimension
and local dimension. We refer readers to [17], [4], [11] and [2] for definitions and
results.

Specific to our interests here is the proof by Bosek, Grytczuk and Trotter [2]
that local dimension is not bounded for planar posets. The following conjecture is
due to Nešetřil and Pudlak and is given in question form in their 1989 paper [13]
in which the concept of Boolean dimension is first introduced.

Conjecture 10. The Boolean dimension of planar posets is bounded, i.e., there is
a constant d0 so that if P is a planar poset, then the Boolean dimension of P is at
most d0.

We believe that the results presented here will prove useful in attacking this
conjecture with the assistance of the concept of unfolding.
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[11] T. Mészáros, P. Micek and W. T. Trotter, Boolean dimension, components and blocks, sub-

mitted (available on the arXiv at 1801.00288).
[12] P. Micek and V. Wiechert, Topological minors of cover graphs and dimension, J. Graph

Theory 86 (2017), 415–420.

[13] A Note on Boolean dimension of posets, in Irregularities of Partitions, Vol. 8 of Algorithms
and Combinatorics, G. Halász and V. T. Sós, eds., Springer, Berlin (1989), 137–140.

[14] N. Streib and W. T. Trotter, Dimension and height for posets with planar cover graphs,
European J. Combin. 3 (2014), 474–489.

[15] W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, The Johns
Hopkins University Press, Baltimore, 1992.

[16] W. T. Trotter and J. I. Moore, The dimension of planar posets, J. Combin. Theory Ser. B
21 (1977), 51–67.

[17] W. T. Trotter and B. Walczak, Boolean dimension and local dimension, Extended abstract
published at Electronic Notes in Discrete Mathematics 61 (2017), 1047–1053 (with B. Wal-

czak). Full journal version is under review and is available on the arXiv at 1705.09167.
[18] W. T. Trotter and R. Wang, Planar posets, dimension, breadth and the number of minimal

elements, Order 33 (2016), 333–346.
[19] W. T. Trotter, B. Walczak and R. Wang, Dimension and cut vertices: An application of

Ramsey theory, in Connections in Discrete Mathematics, S. Butler, et al., eds., Cambridge
University Press, to appear.
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