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Abstract
Let L be a lattice of finite length and let d denote the minimum path length metric on the
covering graph of L. For any ξ = (x1, . . . , xk) ∈ Lk , an element y belonging to L is
called a median of ξ if the sum d(y, x1) + · · · + d(y, xk) is minimal. The lattice L satisfies
the c1-median property if, for any ξ = (x1, . . . , xk) ∈ Lk and for any median y of ξ ,
y ≤ x1∨· · ·∨xk . Our main theorem asserts that if L is an upper semimodular lattice of finite
length and the breadth of L is less than or equal to 2, then L satisfies the c1-median property.
Also, we give a construction that yields semimodular lattices, and we use a particular case
of this construction to prove that our theorem is sharp in the sense that 2 cannot be replaced
by 3.

Keywords Semimodular lattice · Breadth · c1-median property · Covering path ·
Join-prime element

1 Introduction

Given a lattice L of finite length and ξ = (x1, . . . , xk) ∈ Lk , an element y ∈
L is called a median of ξ if the sum d(y, x1) + · · · + d(y, xk) is minimal, where
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d(y, xi) stands for the path distance in the Hasse diagram of L. Our goal is to prove
that

whenever L is, in addition, upper semimodular and of breadth
at most 2, to be defined in Eq. 1.10, then y ≤ x1 ∨ · · · ∨ xk

holds for every k ≥ 2 and for any median y of every ξ =
(x1, . . . , xk) ∈ Lk;

⎫
⎪⎬

⎪⎭
(1.1)

see our main result, Theorem 4.1, for more details.

1.1 Outline

The paper is structured as follows. In Section 1.2, we survey some earlier results on medians
in lattices. Section 1.3 recalls some definitions, whereby the paper is readable with minimal
knowledge of Lattice Theory. In Section 2, we give a new way of constructing semimodular
lattices; see Proposition 2.1, which can be of separate interest. As a particular case of our
construction, we present a semimodular lattice L(n, k) with breadth k and size |L(n, k)| =
2nk − (n − 1)k for any integers k ≥ 3 and n ≥ 4 such that L(n, k) fails to satisfy the
c1-median property. Section 3 is devoted to two technical lemmas that will be used later.
Finally, Section 4 presents our main result, Theorem 4.1, which asserts somewhat more
than Eq. 1.1. Using the auxiliary statements proved in Sections 2 and 3, 4 concludes with
the proof of Theorem 4.1. Note that the survey given in Section 1.2 is mainly for lattice
theorists; this is why some well-known lattice theoretical concepts occurring there are only
explained thereafter.

1.2 Survey

For any metric space (X, d) and for any k-tuple ξ = (x1, . . . , xk) belonging to Xk , y ∈ X

is called a median of ξ if

r(y, ξ) =
k∑

i=1

d(y, xi) (1.2)

is minimal. Medians are frequently used numerical attributes of, say, (discrete) probabil-
ity distributions, and they are interesting in other areas of mathematics and even outside
mathematics; see, for example, Monjardet [15].

The k-tuple ξ above is called a profile and {ξ} denotes the set of all elements belonging
to the profile. Repetition among the xi’s is permitted, so |{ξ}| ≤ k. The notation M(ξ) is
used for the set of all medians of ξ and r(y, ξ) is called the remoteness of y from ξ . One
can view M as a function with domain the set of all possible profiles and range the set
of all nonempty subsets of X. In this case, M is called the median function or the median
procedure. The median function has been extensively studied and we refer the reader to Day
and McMorris [8] for more information about this function.

If X is a lattice L of finite length and d is the minimum path length metric on the covering
graph of L, then it is sometimes possible to describe a median set M(ξ) explicitly. For
example, if L is a finite distributive lattice and ξ = (x1, . . . , xk) ∈ Lk , then

M(ξ) = [m(ξ),m′(ξ)] = {z ∈ L : m(ξ) ≤ z ≤ m′(ξ)} where

m(ξ) =
∨

{
∧

i∈I

xi : I ⊆ {1, . . . , k}, |I | ≥ k

2
+ 1} and

m′(ξ) =
∧

{
∨

i∈I

xi : I ⊆ {1, . . . , k}, |I | ≥ k

2
+ 1}.
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This result is due to Barbut [2] and Monjardet [15]. Their result was extended by Bandelt
and Barthélemy to median semilattices [1]. In addition, Barthélemy showed that M(ξ) is a
sublattice of the interval [m(ξ),m′(ξ)] if L is a finite modular lattice [3]. In the case where
L is assumed to be a finite upper semimodular lattice, Leclerc [14] proved that M(ξ) ⊆
[m(ξ), 1L] for every ξ ∈ Lk . Leclerc also showed the converse. Specifically, if a finite lattice
L has the property that M(ξ) ⊆ [m(ξ), 1L] for every ξ ∈ Lk , then L is upper semimodular.
Leclerc’s work was generalized to finite upper semimodular posets in [17].

While Leclerc [14] above gives a lower bound of M(ξ), here we are interested in a
reasonable upper bound. Namely, following White [21], we will say that a lattice L satisfies
the c1-median property if for any positive integer k and any ξ = (x1, . . . , xk) ∈ Lk ,

y ≤ c1(ξ) :=
k∨

i=1

xi (1.3)

for all y ∈ M(ξ). This is obviously equivalent to
∨

M(ξ) ≤ c1(ξ).
Since m′(ξ) ≤ c1(ξ) for all ξ , it follows that every finite modular lattice satisfies the

c1-median property. Finite (upper) semimodular lattices are known to be graded. (As usual,
“semimodular” will always mean “upper semimodular”.) Czédli, Powers, and White [5]
proved that

every planar graded lattice satisfies the c1-median property. (1.4)

Let us emphasize that a planar lattice is finite by definition; see Grätzer and Knapp [11,
page 447] or Czédli and Grätzer [4, page 92]. Clearly, Eq. 1.4 implies immediately that

planar semimodular lattices satisfy the c1-
median property.

}

(1.5)

It belongs to the folklore and we will prove in Section 3 that

every planar lattice is of breadth at most 2. (1.6)

Hence (1.1) is a generalization of Eq. 1.5. Furthermore, this is a proper generalization since
there are non-planar finite semimodular lattices of breadth 2; see Fig. 1 for an example.
Note at this point that the class of all semimodular lattices of finite length and breadth 2 is
plentiful since, for example, Rival [18] proved that this class contains lattices with arbitrarily
large finite width and length. Note also that a graded lattice need not be semimodular, and
so it is easy to see that none of Eqs. 1.1 and 1.4 implies the other one.

In 2000, Li and Boukaabar [13] gave a semimodular lattice with 101 elements that fails
to satisfy the c1-median property; we will denote this lattice by LLiBou. Hence, Eq. 1.1 can-
not be extended to all semimodular lattices of finite length. Our Theorem 4.1 will assert
even more: as L(n, 3) in Section 2 exemplifies, Eq. 1.1 cannot be extended to finite length
semimodular lattices of breadth 3. Note that Section 2 builds on the essence of LLiBou but,
in addition that we will show that L(n, 3) is of breadth 3, there is a significant difference
between the two approaches. Namely, as opposed to [13], where LLiBou is defined by its
involved Hasse diagram, tedious work is needed to show that it is a lattice and it is semimod-
ular, and most of this work is left to the reader, our argument proving the same properties of
L(n, 3) does not rely on any diagram and it is easy to read.

It was proved in White [21] that

semimodular lattices of height at most 6 satisfy the
c1-median property.

}

(1.7)
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Fig. 1 A nonplanar semimodular
lattice of breadth two

Each of the conditions given in Eqs. 1.1, 1.4, 1.5, and 1.7 determines an interesting class of
semimodular lattices of finite length satisfying the c1-median property. Although interesting
additional such classes of semimodular lattices will hopefully be discovered in the future,
we do not see much hope for a reasonable characterization of semimodular lattices of finite
length that satisfy the c1-median property.

1.3 Basic concepts

All the elementary concepts and notation not defined in this paper can easily be found
in Grätzer [9] or in its freely downloadable Part I. A Brief Introduction to Lattices and
Glossary of Notation at tinyurl.com/lattices101, and also in Nation [16], freely
available again. Alternatively, the reader can look into Davey and Priestley [7] or Stern [20].
However, for convenience, we recall the following. A lattice L is of finite length if there is
a nonnegative integer n such that every chain of L consists of at most n + 1 elements; if so,
then the smallest such n is the length of the lattice, denoted by �(L). A lattice of finite length
is graded if any two of its maximal chains have the same (finite) number of elements. A
lattice L is upper semimodular, or simply semimodular, if for every x, y ∈ L, the covering
x ∧ y ≺ x implies y ≺ x ∨ y. The condition lower semimodular is defined dually. It is
well known that every semimodular lattice of finite length is graded. For x, y ∈ L, the
distance between x and y in the undirected covering graph associated with L is denoted by
d(x, y). It is straightforward to see that in a semimodular lattice L of finite length, for any
x, y, u, v, w ∈ L,

d(x, y) = d(x, x ∨ y) + d(x ∨ y, y) = �([x, x ∨ y]) + �([y, x ∨ y]) (1.8)

and u ≤ v ≤ w implies that d(u,w) = d(u, v) + d(v,w). (1.9)
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Finally, recall that

the breadth of a lattice L, to be denoted by br(L), is the least posi-
tive integer n such that any join

∨m
i=1 xi , xi ∈ L, m ≥ n, is always

a join of n of the joinands xi .

}

(1.10)

2 Semimodular Constructs and an Example

An element u in a lattice L is join-irreducible if for every x, y ∈ L, u = x ∨ y implies
that u = x or u = y. Similarly, if u ≤ x ∨ y implies that u ≤ x or u ≤ y, then u

is join-prime. Finally, u is codistributive (or dually distributive) if for every x, y ∈ L,
u∧(x∨y) = (u∧x)∨(u∧y); see, for example, Šešelja and Tepavčevič [19] and Grätzer[10].

Clearly, a join-prime element is join-distributive. If an element is codistributive and join-
irreducible, then it is join-prime; see (the easy proof of) Nation [16, Theorem 8.6(1)]. So
there are many examples of join-prime elements in lattices. Note that each of the three
free generators of the 28-element free modular lattice is join-prime, join-irreducible, but
not codistributive; see Grätzer [10, Figure 20 in page 85]. Observe that, for every positive
integer t and any lattices K1, . . . , Kt of finite length,

a nonzero element e = (e1, . . . , et ) ∈ K1 × · · · × Kt is join-prime if and
only if there exists a unique i = i(e) ∈ {1, . . . , t} such that ei is a nonzero
join-prime element of Ki and ej is the bottom element 0j of Kj for all
j ∈ {1, . . . , t} \ {i}.

⎫
⎪⎬

⎪⎭
(2.1)

In order to verify (2.1), assume that e has at least two nonzero coordinates, say, e1 and e2.
Then e ≤ (e1, 02, . . . .0t ) ∨ (01, e2, . . . , et ) witnesses that e is not join-prime. The rest of
the argument proving (2.1) is even more trivial and will not be detailed.

Proposition 2.1 Let K be a lattice of finite length.

(i) If e is a nonzero join-prime element of K , f ∈ K , and e ≤ f , then the subposet
L := K \ [e, f ] of L is a lattice.

(ii) If t is a positive integer, K1, . . . , Kt are semimodular lattices of finite length, K =
K1 × · · · × Kt is their direct product, e = (e1, . . . , et ) ∈ K is a nonzero join-prime
element, i = i(e) denotes the subscript defined in Eq. 2.1, and f = (f1, . . . , ft ) is an
element of K such that fi is the top element 1i of Ki , then the subposet L := K \[e, f ]
of K is a semimodular lattice, and it is a join-subsemilattice of K .

Note that Eq. 2.1 and the assumptions of part (ii) above imply that e ≤ f , whereby the
interval [e, f ] in (ii) makes sense. Note also that the case t = 1 is also interesting, but this
case would be easier to prove than the general case t ∈ {1, 2, 3, . . . }.

Proof First, we are going to prove (i). Since 0K < e, the subposet L has a least element,
0 := 0K . Observe that L is of finite length since so is K . Thus, to prove that L is a lattice, it
suffices to prove that L is join-closed. So it suffices to show that L is a join-subsemilattice
of K . Suppose, for a contradiction, that x, y ∈ L but x ∨y /∈ L. Then e ≤ x ∨y ≤ f . Since
e is join-prime, we obtain that e ≤ x or e ≤ y, and we can assume that e ≤ x by symmetry.
This with x ≤ x ∨ y ≤ f lead to x ∈ [e, f ], contradicting x ∈ L. Thus, L is join-closed
and part (i) holds.
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Next, we turn our attention to (ii). We can assume that i = 1. Then, by Eq. 2.1,

e1 > 01, e2 = 02, . . . , et = 0t . (2.2)

We obtain from part (i) that L is a lattice. We are going to show that

whenever {x, y} ⊆ L and y covers x in L, then
y covers x in K .

}

(2.3)

First of all, observe that for any a, b ∈ K , we trivially have that

a ≺K b if and only if aj ≺ bj for exactly one subscript j and as = bs

for every other subscript s; note that this holds even if K1, . . . , Kt are
not assumed to be semimodular.

}

(2.4)

For the sake of contradiction, suppose that x ≺L y but x 
≺K y. Then there is at least one
element in [e, f ] ∩ [x, y]. Hence, for a := e ∨ x and b := f ∧ y, we have that a ≤ b.
Note that x ≤ a ≤ b ≤ f , so x /∈ [e, f ] yields that e 
≤ x. Similarly, e ≤ a ≤ b ≤ y and
y /∈ [e, f ] give that y 
≤ f . Since a ∈ [e, f ] but x /∈ [e, f ], we have that x < a. If we had
an x′ ∈ K such that x < x′ < a, then x < x′ < a ≤ b < y and x ≺L y would imply that
x′ /∈ L, whereby e ≤ x′ would lead to the contradiction a = e ∨ x ≤ x′ < a. Thus, x ≺K a

in K . Similarly, b ≺K y. Let us summarize:

x ≺K x ∨ e = a ≤ b = y ∧ f ≺K y,

e 
≤ x, y 
≤ f, e ≤ y, x ≤ f .

}

(2.5)

Since e 
≤ x, Eq. 2.2 gives that e1 
≤ x1. We know from Eq. 2.5 that x ≤ f , and so we
obtain that x2 ≤ f2, . . . , xt ≤ ft . Hence, if we had that x2 = y2, . . . , xt = yt , then we
would get that y ≤ f since f1 = 11, but y ≤ f would contradicts Eq. 2.5. Thus, there is a
subscript j ∈ {2, . . . , t} such that xj < yj . By symmetry, we can assume that j = 2, that
is, x2 < y2. Take the element z := (x1, y2, x3, . . . , xt ) in K . Since e1 
≤ x1 = z1, we have
that e 
≤ z, whereby z ∈ L. Using x2 < y2 = z2, we obtain that x < z. Since x < y, we
have that z ≤ y. Using that e1 
≤ x1 = z1 but Eq. 2.5 gives that e1 ≤ y1, it follows that
z 
= y. So z < y. Since x < z, z < y, and z ∈ L contradict x ≺L y, we conclude Eq. 2.3.

Next, recall from Czédli and Walendziak [6] that

the direct product of finitely many semimodular lattices is semimodular. (2.6)

This yields that K is semimodular. This fact, Eq. 2.3, and Exercise 3.1 in [4] imply the
semimodularity of L. This proves part (ii) and completes the proof of Proposition 2.1.

Lemma 2.2 For any integer t ≥ 2 and non-singleton lattices L1, . . . , Lt of finite breadth,

br(L1 × · · · × Lt) = br(L1) + · · · + br(Lt ).

Having no reference at hand, we present a straightforward proof of this easy lemma.

Proof We can assume that t = 2, because then the lemma follows by induction. For i ∈
{1, 2}, denote br(Li) by ni , and pick an ni-element subset {a(i)1, . . . , a(i)ni

} of Li such
that no element of this subset is the smallest element of Li (which need not exist), and
b(i) := a(i)1 ∨ · · · ∨ a(i)ni

∈ Li is an irredundant join, that is, none of the joinands can
be omitted without making the equality false. Pick c(i) ∈ Li such that c(i) < b(i) and
c(i) ≤ a(i)j for all j ∈ {1, . . . , ni}; this is possible either because ni > 1 and we can let
c(i) = a(i)1∧· · ·∧a(i)ni

, or because ni = 1 and we can pick an element smaller than a(i)1.
Since the join (b(1), b(2)) of the elements (a(1)1, c(2)), (a(1)2, c(2)), . . . , (a(1)n1 , c(2)),
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(c(1), a(2)1), (c(1), a(2)2), . . . , (c(1), a(2)n2) is clearly an irredundant join, br(L1 ×L2) ≥
n1 + n2 = br(L1) + br(L2).

To prove the converse inequality, assume that (w1, w2) = ∨
S in L1 × L2 with |S| ≥

n1 + n2. For each i ∈ {1, 2}, we can pick an ni-element subset Ti of S such that wi =∨
v∈Ti

vi . Letting T be an (n1 +n2)-element subset of S such that T1 ∪T2 ⊆ T , we have that
(w1, w2) ≤ ∨

T ≤ ∨
S = (w1, w2). Thus, br(L1 ×L2) ≤ n1 +n2 = br(L1)+br(L2).

For integers n ≥ 4 and k ≥ 3, we define a lattice L(n, k) as follows. Let Cn =
{0, 1, 2, . . . , n−1} be the n-element chain with the usual ordering from Z. Let K = K(n, k)

be the (k + 1)-fold direct product

K = K(n, k) = Cn × Cn × · · · × Cn × C2.

After defining e = (e1, . . . , ek+1) and f = (f1, . . . , fk+1) by

e := (0, . . . , 0, 1, 0) and f := (n − 2, . . . , n − 2, n − 1, 0),

we define L = L(n, k) as K \ [e, f ]. At present, L(n, k) is only a poset.

Proposition 2.3 For integers n ≥ 4 and k ≥ 3, L(n, k) is a (2nk − (n − 1)k)-element
semimodular lattice of breadth k, and this lattice fails to satisfy the c1-median property.

Proof In a chain, every element is join-prime. Thus, it follows from Proposition 2.1 that
L = L(n, k) is a semimodular lattice. Clearly, |L| = |K| − |[e, f ]| = 2nk − (n − 1)k .

The 2k-element boolean lattice is isomorphic to, say, {2, 3}× · · ·× {2, 3}× {1}, which is
a join-subsemilattice of L. Hence, we obtain from Lemma 2.2 (or we conclude easily even
without this lemma) that br(L) ≥ k. In order to prove the converse inequality, let W =
{w(1), w(2), . . . , w(m)} with m ≥ k + 1 be a collection of elements from L. (In order to
avoid avoid four-level formulas with microscopic subscripts of superscripts later, we prefer
w(i) to the notation w(i).) The j -th component of w(i) will be denoted by w(i)j . Denote∨W by y. It suffices to find an at most k-element subset W∗ of W such that

∨W∗ = y.
For each i = 1, . . . , k + 1, we can find at least one w(ji) ∈ W such that yi = w(ji)i . Let
W ′ := {w(j1), . . . , w(jk+1)}. Clearly,

∨W ′ = y and |W ′| ≤ k + 1. Suppose that yi = 0
for some i ∈ {1, . . . , k + 1}. Then

∨
(W ′ \ {w(ji)}) still equals y, so W ′ \ {w(ji)} serves as

W∗. Now assume that every coordinate of y is nonzero; in particular, yk+1 = 1. We can also
assume that w(jk)k+1 = 0 since otherwise the equality w(jk)k+1 = 1 would make w(jk+1)

superfluous, that is, we could let W∗ := W ′ \ {w(jk+1)}. Since w(jk)k = yk 
= 0 gives that
e ≤ w(jk) but w(jk) /∈ [e, f ], it follows that w(jk) 
≤ f . This fact and w(jk)k+1 = 0 give
that w(jk)i = n − 1 for some i ∈ {1, . . . , k − 1}. So n − 1 = w(jk)i ≤ yi = w(ji)i , where
the inequality turns into an equality since n − 1 is the largest element of Cn. Thus, we can
let W∗ := W ′ \ {w(ji)}. We have proved that br(L) = k.

Next, to prove that L does not satisfy the c1-median property, let

x(0) = ( 0, 0, 0, . . . , 0, 0, 0 ),

x(1) = ( n − 1, 0, 0, . . . , 0, n − 1, 0 ),

x(2) = ( 0, n − 1, 0, . . . , 0, n − 1, 0 ),

⎫
⎬

⎭
(2.7)
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and define ξ := (x(0), x(1), x(2)) ∈ L3. Clearly, c1(ξ) = (n−1, n−1, 0, . . . , 0, n−1, 0);
see Eq. 1.3. By Eqs. 1.2 and 1.8, the remoteness of an arbitrary y = (y1, y2, . . . , yk, yk+1) ∈
L with respect to ξ is

r(y, ξ) =
2∑

i=1

[(n − 1) − yi + 2yi] +
k−1∑

i=3

3yi + 2(n − 1) − yk

+ 3yk+1 = 4(n − 1) + y1 + y2 − yk + 3yk+1 +
k−1∑

i=3

3yi . (2.8)

Consider z = (0, 0, 0, . . . , 0, n − 1, 1) ∈ L. By Eq. 2.8 or trivially,

r(z, ξ) = 2(n − 1) + n − 1 + 3 = 3n. (2.9)

We are going to show that, for every y ∈ K = K(n, k),

r(y, ξ) < r(z, ξ) implies y 
∈ L. (2.10)

Suppose that r(y, ξ) < r(z, ξ). Thus, using yk ≤ n − 1, Eqs. 2.8, and 2.9, we obtain after
rearranging and simplifying that

n + y1 + y2 + 3yk+1 +
k−1∑

i=3

3yi < yk + 4 ≤ n − 3. (2.11)

This implies that y1 + y2 + 3 · (
yk+1 + ∑k−1

i=3 yi

)
< 3, whereby

yi = 0 for i ∈ {3, 4 . . . , k − 1, k + 1} and yi ≤
2 ≤ n − 2 for i = 1, 2.

}

(2.12)

The first inequality in Eq. 2.11 together with n ≥ 4 yield that that 1 ≤ yk . This fact
and Eq. 2.12 imply that y ∈ [e, f ], that is, y /∈ L. Consequently, Eq. 2.10 holds, and so
z ∈ M(ξ). Since z 
≤ c1(ξ), it follows that L does not satisfy the c1-median property.

For lattices (L′; ≤′) with top 1′ and (L′′; ≤′′) with bottom 0′′, their glued sum is defined
to be

(
(L′ \ {1′})∪{1′ = 0′′}∪ (L′′ \ {0′′});≤)

where x′ ≤ y′′ for any (x′, y′′) ∈ L′ ×L′′ and
the restriction of ≤ to L′ and that to L′′ are ≤′ and ≤′′, respectively. Saying in a pragmatical
way for the finite case: we put the diagram of L′′ atop that of L′ and we identify 1′ with
0′′. For example, the glued sum of the 2-element chain and the 3-element chain is the 4-
element chain. The following remark is a trivial consequence of the case (n, k) = (4, 3) of
Proposition 2.3; note that the proof of this particular case would not be significantly shorter
than that of Lemma 2.3.

Remark 2.4 For k > 3, we can easily construct a finite semimodular lattice G(k) of breadth
k such that G(k) does not satisfy the c1-median property and its size is less than |L(4, k)| =
2 ·4k −3k . Namely, let G(k) be the glued sum of L(4, 3) and the 2k-element boolean lattice;
its size is |G(k)| = 2 · 43 − 33 + 2k − 1 = 2k + 100.

3 Two Technical Lemmas

Before formulating two technical lemmas, we prove Eq. 1.6, simply because we could not
find any reference to this almost trivial statement.
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Proof of Eq. 1.6 For the sake of contradiction, suppose that L is a planar lattice but not of
breadth at most 2. Then we can take a join x1 ∨ · · · ∨ xn =: y in L such that n ≥ 3 but
y 
= xi ∨ xj for any i, j ∈ {1, . . . , n}. Since {x1, . . . , xn} is clearly not a chain, we can
assume that x1 and x2 are incomparable (in notation, x1 ‖ x2) and x1 ∨ x2 is a maximal
element of {xi ∨ xj : {i, j} ⊆ {1, . . . , n}}. There is a t ∈ {3, . . . , n} such that xt 
≤ x1 ∨ x2
since otherwise we would have that y = x1∨x2. We claim that H := {x1∨x2, x1∨xt , x2∨xt }
is a three-element antichain. Since xt 
≤ x1∨x2, we have that xi ∨xt 
≤ x1∨x2 for i ∈ {1, 2}.
In particular, xi ∨xt 
= x1 ∨x2. So if we had x1 ∨x2 ≤ xi ∨xt , then x1 ∨x2 < xi ∨xt would
contradict the maximality of x1 ∨x2. If we had that x1 ∨xt 
 ‖ x2 ∨xt , say, x1 ∨xt ≤ x2 ∨xt ,
then x1 ∨x2 ≤ (x1 ∨xt )∨ (x2 ∨xt ) = x2 ∨xt would lead to an already excluded case. So H

is a three-element antichain. We know from, say, Grätzer [10, Lemma 73] that H generates
a sublattice isomorphic to the eight-element boolean lattice. This contradicts the planarity
of L by Kelly and Rival [12].

The next two lemmas will be needed later in the paper.

Lemma 3.1 (White [21]) Let L be a semimodular lattice of finite length. If ξ = (x1, x2) ∈
L2, then for all x ∈ M(ξ), x ≤ x1 ∨ x2.

Let L be a lattice and ξ = (x1, . . . , xk) ∈ Lk . Recall that {ξ} denotes the set {x1, . . . , xk}.
Suppose z ∈ L with z 
≤ c1(ξ). We note that for each xi ∈ {ξ} it is the case that xi ‖ z or
xi < z . Let

ξP = {i : xi ∈ {ξ} and xi ‖ z} and
ξB = {i : xi ∈ {ξ} and xi < z};

}

(3.1)

the subscripts come from “parallel” and “below”, respectively. Note that |ξP| + |ξB| = k.

Lemma 3.2 Let L be a semimodular lattice of finite length. Let ξ = (x1, . . . , xk) ∈ Lk and
z ∈ L such that z 
≤ c1(ξ). If |ξP| ≤ |ξB|, then z 
∈ M(ξ).

Proof If |ξP| = 0, then z > c1(ξ). By Lemma 2.2 in [5], z 
∈ M(ξ). From now on we will
assume that |ξP| ≥ 1 and so z ‖ c1(ξ). If |ξP| = |ξB| = 1, then z 
∈ M(ξ) follows from
Lemma 3.1. Assume that |ξB| ≥ 2 and let y := ∨{xi ∈ {ξ} : xi < z} = ∨{xi : i ∈ ξB}.
Since y ≤ c1(ξ), y ≤ z, and z ‖ c1(ξ), it is the case that y < z. We observe that for each
xi ∈ {ξ} with xi ‖ z (that is, for each i ∈ ξP) the triangle inequality gives that

d(y, xi) ≤ d(y, z) + d(z, xi), (3.2)

and for each xi ∈ {ξ} with xi < z (that is, for each i ∈ ξB), Eq. 1.9 implies that

d(y, xi) = d(z, xi) − d(y, z). (3.3)

We may assume without loss of generality that 1 ∈ ξP and so x1 ‖ z. Note that y ∨ x1 ≤
z ∨ x1. Since y ∨ x1 ≤ c1(ξ) and z ∨ x1 
≤ c1(ξ), it follows that y ∨ x1 < z ∨ x1. Thus

d(y, y ∨ x1) < d(y, z ∨ x1) and d(y ∨ x1, x1) < d(z ∨ x1, x1). (3.4)

We may assume that 2 ∈ ξB and so x2 < z. Using Eqs. 1.8 and 3.4, and the triangle
inequality at ≤′, we get

d(y, x1) + d(y, x2)
(1.8)= d(y, y ∨ x1) + d(y ∨ x1, x1) + d(y, x2)
(3.4)
< d(y, z ∨ x1) + d(z ∨ x1, x1) + d(y, x2)

≤′ d(y, z) + d(z, z ∨ x1) + d(z ∨ x1, x1) + d(y, x2)
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(1.8)= d(z, x1) + d(z, y) + d(y, x2)
(1.9)= d(z, x1) + d(z, x2), whereby

d(y, x1) + d(y, x2) < d(z, x1) + d(z, x2). (3.5)

Finally, let ξ ′
P = ξP \ {1} and let ξ ′

B = ξB \ {2}. Using the inequality |ξ ′
P| ≤ |ξ ′

B| at ≤′, we
get the following calculation.

r(y, ξ) =
∑

i∈ξP

d(y, xi) +
∑

i∈ξB

d(y, xi)

=
∑

i∈ξ ′
P

d(y, xi) + d(y, x1) +
∑

i∈ξ ′
B

d(y, xi) + d(y, x2)

(3.2,3.3)≤
∑

i∈ξ ′
P

d(z, xi) + |ξ ′
P| · d(y, z) + d(y, x1) +

∑

i∈ξ ′
B

d(z, xi) − |ξ ′
B| · d(z, y) + d(y, x2)

≤′ ∑

i∈ξ ′
P

d(z, xi) + d(y, x1) +
∑

i∈ξ ′
B

d(z, xi) + d(y, x2)

(3.5)
<

∑

i∈ξ ′
P

d(z, xi) + d(z, x1) +
∑

i∈ξ ′
B

d(z, xi) + d(z, x2) = r(z, ξ).

Hence r(y, ξ) < r(z, ξ), and so z 
∈ M(ξ), as required.

Note that in the proof of Proposition 2.3, where ξ is given in Eq. 2.7 modulo notational
changes and z = (0, . . . , 0, n−1, 1), we have |ξP| = 2 > 1 = |ξB|. Therefore the restriction
|ξP| ≤ |ξB| given in Lemma 3.2 cannot be dropped.

4 Main Result

In harmony with the general convention that the empty join is the least element, note that
the breadth of the singleton lattice is 0.

Theorem 4.1

(i) Let L be a semimodular lattice of finite length. If L is of breadth at most 2, then L

satisfies the c1-median property.
(ii) For each integer k ≥ 3, there exists a finite semimodular lattice of breadth k that fails

to satisfy the c1-median property.
(iii) Let t be a positive integer. For i = 1, . . . , t , letLi be a lattice of finite length satisfying

the c1-median property. Then the direct productL := L1×· · ·×Lt is a lattice of finite
length and it also satisfies the c1-median property. If all the Li are of finite breadth,
then br(L) = br(L1)+· · ·+ br(Lt ). Furthermore, if all the Li are semimodular, then
so is L.

Proof In order to prove part (i), let L be a semimodular lattice of finite length with breadth
2. Let ξ = (x1, . . . , xk) ∈ Lk and z ∈ L with z 
≤ c1(ξ); we need to show that z /∈ M(ξ).
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If k = 2, then z 
∈ M(ξ) follows from Lemma 3.1. From now on we will assume that
k ≥ 3. With the notation of Eq. 3.1, |ξP| ≤ |ξB| implies z 
∈ M(ξ) by Lemma 3.2. Now
suppose that |ξP| > |ξB|. Consider the set T = {z ∨ xi : i ∈ ξP}. Let z ∨ xi, z ∨ xj ∈ T .
Breadth 2 implies that (z ∨ xi) ∨ (z ∨ xj ) = z ∨ xi ∨ xj ∈ {xi ∨ xj , z ∨ xi, z ∨ xj }. Note
that z ∨ xi ∨ xj = xi ∨ xj would imply that z < xi ∨ xj ≤ c1(ξ), a contradiction. So
(z ∨ xi) ∨ (z ∨ xj ) ∈ {z ∨ xi, z ∨ xj }. Thus T is a chain; let z ∨ xj be its least element.

We claim that for each xi ∈ {ξ} with xi ‖ z (that is, for each i ∈ ξP),

d(z ∨ xj , xi) ≤ d(z, xi) − d(z, z ∨ xj ). (4.1)

To see this consider that for each i ∈ ξP we have that

d(z, xi)
(1.8)= d(z, z ∨ xi) + d(z ∨ xi, xi)

(1.9)= d(z, z ∨ xj ) + d(z ∨ xj , z ∨ xi) + d(z ∨ xi, xi).

Hence d(z, xi) − d(z, z ∨ xj ) = d(z ∨ xj , z ∨ xi) + d(z ∨ xi, xi), which implies (4.1) by
the triangle inequality. Further, for each xi ∈ {ξ} with xi < z (that is, for i ∈ ξB),

d(z ∨ xj , xi)
(1.9)= d(z, xi) + d(z, z ∨ xj ) (4.2)

since xi < z < z ∨ xj . Armed with Eqs. 4.1 and 4.2, we have that

r(z ∨ xj , ξ) =
∑

i∈ξP

d(z ∨ xj , xi) +
∑

i∈ξB

d(z ∨ xj , xi)

≤
∑

i∈ξP

d(z, xi) − |ξP| · d(z, z ∨ xj ) +
∑

i∈ξB

d(z, xi) + |ξB| · d(z, z ∨ xj )

= r(z, ξ) − d(z, z ∨ xj ) · (|ξP| − |ξB|)
< r(z, ξ) (since d(z, z ∨ xj ) > 0 and |ξP| > |ξB|).

Hence r(z ∨ xj , ξ) < r(z, ξ), and so z 
∈ M(ξ). This proves part (i).
Part (ii) of the theorem follows from Proposition 2.3 or from Remark 2.4.
Next, to prove part (iii), assume that L := L1 × · · · × Lt such that Li is a lattice of finite

length satisfying the c1-median property for i = 1, . . . , t . Clearly, we can assume that t = 2
since then the case t > 2 follows by a trivial induction. So, L = L1 × L2. We can assume
that none of L1 and L2 is a singleton. We claim that for any x = (x1, x2) and y = (y1, y2)

in L,
d(x, y) = d(x1, y1) + d(x2, y2). (4.3)

To prove this, let n := d(x1, y1) and m := d(x2, y2). The neighboring relation “≺” ∪ “�”,
which means connectivity by an edge in the Hasse diagram, will be denoted by ◦−◦. By
the definition of our distance function d , there are sequences x1 = a0, a1, . . . , an = y1
in L1 and x2 = b0, b1, . . . , bm = y2 in L2 such that ai ◦−◦L1 ai+1 for all i < n and
bj ◦−◦L2 bj+1 for all j < m. Since the pair of any two consecutive members of the sequence
x = (x1, x2) = (a0, b0), (a1, b0), . . . (an, b0), (an, b1), . . . , (an, bm) = (y1, y2) = y

belongs to ◦−◦, we obtain that d(x, y) ≤ m + n = d(x1, y1) + d(x2, y2). Conversely, let
x = (x1, x2) = (u0, v0), (u1, v1), . . . , (us, vs) = (y1, y2) = y be a sequence in L such that
the pairs of its consecutive members belong to ◦−◦. Let

A := {i : 0 ≤ i < s, ui ◦−◦L1 ui+1, vi = vi+1} and
B := {i : 0 ≤ i < s, vi ◦−◦L2 vi+1, ui = ui+1}.
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It follows from Eq. 2.4 that {1, 2, . . . , s} is the disjoint union of A and B. In particular,
|A| + |B| = s. Observe that {ui : i ∈ A} is a sequence of ◦−◦L1 -neighboring elements
from x1 to y1; for example, if s = 7 and A = {2, 4, 5}, then this sequence is x1 = u0 =
u1 = u2 ◦−◦ u3 = u4 ◦−◦ u5 ◦−◦ u6 = u7 = y1. Hence, n = d(x1, y1) ≤ |A|. Similarly,
m = d(x2, y2) ≤ |B|. Thus s = |A| + |B| ≥ d(x1, y1) + d(x2, y2), and we conclude that
d(x, y) ≥ d(x1, y1) + d(x2, y2), proving Eq. 4.3.

Next, for an arbitrary profile ξ = (x(1), . . . , x(k)) ∈ Lk and i ∈ {1, 2}, we let ξi :=
(x(1)i , . . . , x(k)i) ∈ Lk

i . For every y ∈ L, Eq. 4.3 gives that

r(y, ξ) = r(y1, ξ1) + r(y2, ξ2). (4.4)

Now assume that y ∈ M(ξ), that is, r(y, ξ) is minimal for this ξ . Let i ∈ {1, 2}. If r(y1, ξ1)

was not minimal for ξ1, then we could pick an element y′
1 ∈ L1 with r(y′

1, ξ1) < r(y1, ξ1),
we could take ŷ := (y′

1, y2) in L, and we would have r(ŷ, ξ) < r(y, ξ) by Eq. 4.4, con-
tradicting the minimality of r(y, ξ). Hence, r(y1, ξ1) is minimal and y1 ∈ M(ξ1). Since
the indices 1 and 2 play a symmetric role, we obtain in the same way that y2 ∈ M(ξ2).
Since Li satisfies the c1-median property for i ∈ {1, 2}, we obtain that yi ≤ c1(ξi) =
x(1)i ∨ · · · ∨ x(k)i . Consequently, y ≤ x(1) ∨ · · · ∨ (k), which proves that L satisfies the
c1-median property.

The assertion on br(L) is Lemma 2.2. Finally, Eq. 2.6 completes the proof of Theo-
rem 4.1.
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