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19 Tensor product of dimension effect algebras

Anna Jenčová and Sylvia Pulmannová∗

Abstract

Dimension effect algebras were introduced in (A. Jenčová, S. Pul-
mannová, Rep. Math. Phys. 62 (2008), 205-218), and it was proved
that they are unit intervals in dimension groups. We prove that the
effect algebra tensor product of dimension effect algebras is a dimen-
sion effect algebra, which is the unit interval in the unital abelian
po-groups tensor product of the corresponding dimension groups.

1 Introduction

In [12], the notion of a dimension effect algebra was introduced as a counter-
part of the notion of a dimension group. Recall that a dimension group (or
a Riesz group) is a directed, unperforated interpolation group. By [5], di-
mension groups can be also characterized as direct limits of directed systems
of simplicial groups. In analogy with the latter characterization, dimension
effect algebras were defined as direct limits of directed systems of finite effect
algebras with the Riesz decomposition property. It is well known that the
latter class of effect algebras corresponds to the class of finite MV-algebras,
and in analogy with simplicial groups, we call them simplicial effect algebras.
It turns out that dimension effect algebras are exactly the unit intervals in
unital dimension groups, and simplicial effect algebras are exactly the unit
intervals in unital simplicial groups. In [12], an intrinsic characterization
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of dimension effect algebras was found, and also a categorical equivalence
between countable dimension effect algebras and unital AF C*-algebras was
shown [12, Theorem 5.2].

In this paper we continue the study of dimension effect algebras. In
particular, we study the tensor product of dimension effect algebras in the
category of effect algebras. We recall that the tensor product in the category
of effect algebras exists, and its construction was described in [3]. We first
prove that the tensor product of simplicial effect algebras is again a simpli-
cial effect algebra and is (up to isomorphism) the unit interval in the tensor
product of the corresponding unital simplicial groups (Theorem 4.3). Then
we extend this result to any dimension effect algebras, using the fact that
every dimension effect algebra is a direct limit of a directed system of simpli-
cial effect algebras. Namely, we prove that the tensor product of dimension
effect algebras is a dimension effect algebra (Theorem 4.5), and is (up to
isomorphism) the unit interval in the tensor product of the corresponding
dimension groups (Corollary 4.6). We conjecture that this last statement
holds more generally for tensor products of interval effect algebras and their
universal groups.

We note that the categorical equivalence between effect algebras with
RDP and interpolation groups proved in [12, Theorem 3.8], or the known
constructions of tensor products in the category of interval effect algebras [8]
cannot be applied here, since the category of effect algebras is much larger
than the category of effect algebras with RDP or interval effect algebras.

In the last section, we apply our results to the interval R+[0, 1] and con-
struct a directed system of simplicial groups that has this interval as its direct
limit.

2 Preliminaries

The notion of an effect algebra was introduced by D.J. Foulis and M.K.
Bennett in [6]. An alternative definition of so called D-poset was introduced
in [13]. Effect algebras and D-posets are categorically equivalent structures
[4].

2.1 Definition. An effect algebra is an algebraic system (E; 0, 1,⊕), where
⊕ is a partial binary operation and 0 and 1 are constants, such that the
following axioms are satisfied for a, b, c ∈ E:
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(i) if a⊕b is defined the b⊕a is defined and a⊕b = b⊕a (commutativity);

(ii) if a ⊕ b and (a ⊕ b) ⊕ c are defined, then a ⊕ (b ⊕ c) is defined and
(a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity);

(iii) for every a ∈ E there is a unique a⊥ ∈ E such that a⊕ a⊥ = 1;

(iv) if a⊕ 1 is defined then a = 0.

In what follows, if we write a⊕ b, a, b ∈ E, we tacitly assume that a⊕ b
is defined in E. The operation ⊕ can be extended to the ⊕-sum of finitely
many elements by recurrence in an obvious way. Owing to commutativity
and associativity, the element a1 ⊕ a2 ⊕ · · · ⊕ an is ambiguously defined. In
any effect algebra a partial order can be defined as follows: a ≤ b if there
is c ∈ E with a ⊕ c = b. In this partial order, 0 is the smallest and 1 is
the greatest element in E. Moreover, if a ⊕ c1 = a ⊕ c2, then c1 = c2, and
we define c = b ⊖ a iff a ⊕ c = b. In particular, 1 ⊖ a = a⊥ is called the
orthosupplement of a. We say that a, b ∈ E are orthogonal, written a ⊥ b, iff
a ⊕ b exists in E. It can be shown that a ⊥ b iff a ≤ b⊥. An effect algebra
which is a lattice with respect to the above ordering is called a lattice effect
algebra.

Let E and F be effect algebras. A mapping φ : E → F is an effect algebra
morphism iff φ(1) = 1 and φ(e⊕ f) = φ(e)⊕ φ(f) whenever e⊕ f is defined
in E. The category of effect algebras with effect algebra morphisms will be
denoted by EA.

2.1 Interval effect algebras and RDP

Important examples of effect algebras are obtained in the following way. Let
(G,G+, 0) be a (additively written) partially ordered abelian group with a
positive cone G+ and neutral element 0. For a ∈ G+ define the interval
G[0, a] := {x ∈ G : 0 ≤ x ≤ a}. Then G[0, a] can be endowed with a struc-
ture of an effect algebra by defining x ⊥ y iff x + y ≤ a, and then putting
a⊕ b := a+ b. Effect algebras obtained in this way are called interval effect
algebras. We note that a prototype of effect algebras is the interval [0, I] in
the group of self-adjoint operators on a Hilbert space, so-called algebra of
Hilbert space effects. Hilbert space effects play an important role in quan-
tum measurement theory, and the abstract definition was motivated by this
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example. On the other hand, there are effect algebras that are not interval
effect algebras, see e.g. [14].

The partially ordered abelian group G is directed if G = G+ − G+. An
element u ∈ G+ is an order unit if for all a ∈ G, a ≤ nu for some n ∈ N. If G
has an order unit u, it is directed, indeed, if g ≤ nu, then g = nu− (nu− g).
An element u ∈ G+ is called a generating unit if every a ∈ G+ is a finite
sum of (not necessarily different) elements of the interval G[0, u]. Clearly, a
generating unit is an order unit, the converse may be false.

If G and H are partially ordered abelian groups, then a group homomor-
phism φ : G→ H is positive if φ(G+) ⊆ H+. An isomorphism φ : G→ H is
an order isomorphism if φ(G+) = H+. If G and H have order units u and
v, respectively, then a positive homomorphism φ : G → H is called unital if
φ(u) = v. The category of partially ordered abelian groups having an order
unit, with positive unital homomorphisms will be denoted by POG.

Relations between interval effect algebras and partially ordered abelian
groups are described in the following theorem, proved in [1]. Recall that a
mapping φ : E → K, where E is an effect algebra and K is any abelian
group, is called a K-valued measure on E if φ(a⊕ b) = φ(a) +φ(b) whenever
a⊕ b is defined in E.

2.2 Theorem. Let E be an interval effect algebra. Then there exists a unique
(up to isomorphism) partially ordered directed abelian group (G,G+) and an
element u ∈ G+ such that the following conditions are satisfied:

(i) E is isomorphic to the interval effect algebra G+[0, u].

(ii) u is a generating unit.

(iii) Every K-valued measure φ : E → K can be extended uniquely to a
group homomorphism φ∗ : G→ K.

The group G in the preceding theorem is called a universal group for E,
and will be denoted by GE . In what follows we consider a property that
ensures that a partially ordered group with order unit is the universal group
for its unit interval. There are examples (see [7, Example 11.3, 11.5]) that
show that this is not true in general.

A partially ordered abelian group G is said to have the Riesz interpolation
property (RIP), or to be an interpolation group, if given ai, bj (1 ≤ i ≤ m, 1 ≤
j ≤ n) with ai ≤ bj for all i, j, there exists c ∈ G such that ai ≤ c ≤ bj for all
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i, j. The Riesz interpolation property is equivalent to the Riesz decomposition
property (RDP): given ai, bj ∈ G+, (1 ≤ i ≤ m, 1 ≤ j ≤ n) with

∑

ai =
∑

bj ,
there exist cij ∈ G+ with ai =

∑

j cij , bj =
∑

i cij . An equivalent definition of
the RDP is as follows: given a, bi in G

+, i ≤ n with a ≤
∑

i≤n bi, there exist
ai ∈ G+ with ai ≤ bi, i ≤ n, and a =

∑

i≤n ai. To verify these properties, it
is only necessary to consider the case m = n = 2 (cf. [9, 10]).

For interpolation groups we have the following theorem [16], [12, Theorem
3.5].

2.3 Theorem. Let G be an interpolation group with order unit u. Put E :=
G+[0, u]. Then (G, u) is the universal group for E.

In a similar way as for partially ordered abelian groups, RDP can be
defined for effect algebras. We say that an effect algebra E has the Riesz
decomposition property (RDP) if one of the following equivalent properties is
satisfied:

(R1) a ≤ b1 ⊕ b2 ⊕ · · ·⊕ bn implies a = a1 ⊕ a2 ⊕ · · ·⊕ an with ai ≤ bi, i ≤ n;

(R2) ⊕i≤mai = ⊕j≤mbj , m,n ∈ N, implies ai = ⊕jcij , i ≤ m, and bj =
⊕icij , j ≤ n, where cij ∈ E.

Similarly as for partially ordered groups, it suffices to consider the case m =
n = 2.

Let us remark that RIP can be also defined for effect algebras. In contrast
with the case of partially ordered abelian groups, RIP and RDP are not
equivalent for effect algebras: RDP implies RIP, but there are examples of
effect algebras with RIP which do not have RDP (e.g., the ”diamond” is
lattice ordered effect algebra that does not satisfy RDP, [4]).

It was proved by Ravindran [18], that every effect algebra with RDP is
an interval effect algebra, and its universal group is an interpolation group.
Ravindran’s result can be extended to a categorical equivalence between the
category of effect algebras with RDP with effect algebra morphisms and the
category of interpolation groups with order unit with positive unital group
homomorphisms, [12, Theorem 3.8].
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3 Dimension groups and dimension effect al-

gebras

In this section, we study dimension groups and their effect algebra counter-
part, introduced in [12]. These are interpolation groups with some additional
properties.

A partially ordered abelian group G is called unperforated if given n ∈ N

and a ∈ G, then na ∈ G+ implies a ∈ G+. Every Archimedean, directed
abelian group is unperforated [10, Proposition 1.24], and also every lattice
ordered abelian group is unperforated [10, Proposition 1.22].

3.1 Definition. [10] A partially ordered group G is a dimension group (or a
Riesz group) if it is directed, unperforated and has the interpolation property.

A simple example of a dimension group is as follows.

3.2 Definition. [10, Definition p. 183], [11] A simplicial group is any par-
tially ordered abelian group that is isomorphic (as partially ordered abelian
group) to Zn (with the product ordering) for some nonnegative integer n. A
simplicial basis for a simplicial group G is any basis (x1, . . . , xn) for G as a
free abelian group such that G+ = Z+x1 + · · ·+ Z+xn.

It was proved by Effros, Handelman and Shen [5] that the dimension
groups with order unit are precisely the direct limits of directed systems of
simplicial groups with an order unit in the category POG.

Note that an element v ∈ Zr is an order unit if and only if all of its
coordinates are strictly positive. In this case, the interval (Z+)r[0, v] is the
direct product of finite chains (0, 1, . . . , vi), i = 1, 2, . . . , r and therefore is a
finite effect algebra with RDP. Conversely, every finite effect algebra with
RDP is a unit interval in a simplicial group. Below, such effect algebras will
be called simplicial.

In analogy with dimension groups, in [12], direct limits of directed systems
of simplicial effect algebras have been called dimension effect algebras. It
was shown that an effect algebra is a dimension effect algebra if and only
if its universal group is a dimension group. An intrinsic characterization of
dimension effect algebras was found in [12, Theorem 4.2].

For the convenience of the readers, we give a short description of the
directed system and direct limit of effect algebras [4, Definition 1.9.36].
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A directed system of effect algebras is a family AI := (Ai; (fij : Aj →
Ai, i, j ∈ I, j ≤ i) where (I,≤) is a directed set, Ai is an effect algebra for
each i ∈ I, and fij is a morphism such that

(i1) fii = idAi
fir every i ∈ I;

(i2) if m ≤ j ≤ i in I, then fijfjm = fim.

Let AI be a directed system of effect algebras, then f := (A; (fi : Ai →
A; i ∈ I)) is called the direct limit of AI iff the following conditions hold:

(ii1) A is an effect algebra; fi is a morphism for each i ∈ I;

(ii2) if j ≤ i in I, then fifij = fj (i.e., f is compatible with AI);

(ii3) if g := (B; (gi : Ai → B, i ∈ I)) is any system compatible with AI , then
there exists exactly one morphism g : A → B such that gfi = gi, for
every i ∈ I.

It was proved (cf. [4, Theorem 1.9.27]) that the direct limit in the category
of effect algebras exists. A sketch of the construction of the direct limit is as
follows. Let A = ∪̇i∈IAi be the disjoint union of Ai, i ∈ I. Define a relation ≡
on A as follows. Put a ≡ b (a ∈ Ai, b ∈ Aj) if there exists a k ∈ I with i, j ≤ k
such that fki(a) = fkj(b) in Ak. Then ≡ is an equivalence relation, and the
quotient Ā := A/ ≡ can be organized into an effect algebra with the operation
⊕ defined as follows: let ā denotes the equivalence class corresponding to a.
For a ∈ AI , b ∈ Aj , ā ⊕ b̄ is defined iff there is k ∈ I, i, j ≤ k such that

fki(a) ⊕ fkj(b) exists in Ak, and then ā ⊕ b̄ = (fki(a)⊕ fkj(b)) in Ā. For
every i ∈ I, define fi : Ai → A/ ≡ as the natural projection fi(a) = ā. Then
lim→A := (Ā; fi : Ai → Ā, i ∈ I) is the desired direct limit.

From this construction, it can be derived that properties involving finite
number of elements, such as RDP or being a dimension effect algebra (cf.
the characterization in [12, Thm. 4.2]), are preserved under direct limits in
EA.

4 Tensor product of dimension effect alge-

bras

The tensor product in the category EA is defined below as an universal
bimorphism. We will show that such a tensor product always exists and that
it is essentially given by the construction in [3], see also [4, Chap. 4.2].
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Let E, F, L be effect algebras. A mapping β : E × F → L is called a
bimorphism if

(i) a, b ∈ E with a ⊥ b, q ∈ F imply β(a, q) ⊥ β(b, q) and β(a ⊕ b, q) =
β(a, q)⊕ β(b, q);

(ii) c, d ∈ F with c ⊥ d, p ∈ E imply β(p, c) ⊥ β(p, d) and β(p, (c⊕ d)) =
β(p, c)⊕ β(p, d);

(iii) β(1, 1) = 1.

4.1 Definition. Let E and F be effect algebras. A pair (T, τ) consisting of
an effect algebra T and a bimorphism τ : E×F → T is said to be the tensor
product of E and F if whenever L is an effect algebra and β : E×F → L is a
bimorphism, there exists a unique morphism φ : T → L such that β = φ ◦ τ .

It is clear that if the tensor product exists, it is unique up to isomorphism.
We will use the notation E ⊗ F for the effect algebra T and ⊗ for the
bimorphism τ : τ(e, f) = e⊗ f ∈ E ⊗ F .

4.2 Theorem. The tensor product always exists in EA.

Proof. The theorem was essentially proved in [3, Theorem 7.2], see also [4,
Theorem 4.2.2]. There a somewhat different definition of a tensor product is
considered and the bimorphisms are assumed nontrivial, that is, the target
algebra is required to satisfy 0 6= 1. If at least one such bimorphism exists,
it is easy to see that [3] provides a construction of a tensor product in our
sense. On the other hand, if there are no nontrivial bimorphisms, then the
tensor product is given by the one-element effect algebra {0 = 1} and the
unique bimorphism E × F → {0}.

The tensor product of dimension groups in the category POG was stud-
ied by Goodearl and Handelman [11] and it was proved that such a tensor
product is a dimension group as well. Recall that the tensor product of G1

and G2 in POG can be constructed as the abelian group tensor product
G1 ⊗ G2, endowed with the positive cone G+

1 ⊗ G+

2 , generated by simple
tensors of positive elements.

Our aim in this section is to describe the tensor product of dimension
effect algebras in the category EA. Note that we cannot directly apply the
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above result via the categorical equivalence of [12, Theorem 3.8], since the
category EA is much larger than the category of effect algebras with RDP.

We first consider the case of simplicial effect algebras. Let E and F be
simplicial effect algebras, with atoms

(e1, . . . , en), (f1, . . . , fm)

and unit elements
u =

∑

i

uiei, v =
∑

j

vjfj,

respectively. Then GE and GF are simplicial groups and GE ⊗ GF is a
simplicial group with generators

gij = ei ⊗ fj , i = 1, . . . , n; j = 1, . . . , m.

Hence the unit interval GE ⊗ GF [0, u⊗ v] is a simplicial effect algebra with
atoms gij and and unit element w =

∑

i,j uivjgij.

4.3 Theorem. Tensor product of simplicial effect algebras in the category
EA is a simplicial effect algebra, namely

E ⊗ F ≃ GE ⊗GF [0, u⊗ v].

Proof. Let G denote the simplicial effect algebra on the right hand side. Ob-
viously, (bi)morphisms on simplicial effect algebras are uniquely determined
by their values on the atoms. Let τ : E × F → G be the bimorphism
determined by

τ(ei, fj) = gij , i = 1, . . . , n, j = 1, . . . , m.

We need to prove that for any effect algebra H and bimorphism β : E×F →
H , there is a morphism ψ : G→ H , such that

ψ(gij) = β(ei, fj), i = 1, . . . , n, j = 1, . . . , m.

Since gij generate G, uniqueness of such a morphism is clear. So let z ∈ G,
then z =

∑

i,j zijgij , for zij ≤ uivj for all i and j. There are nonnegative
integers qij , rij such that

zij = vjqij + rij , rij < vj ,

9



then since vjqij ≤ zij ≤ uivj , we have qij ≤ ui, with equality only if rij = 0.
Then aj :=

∑

i qijei ∈ E and rijfj ∈ F . We have

z =
∑

j

(
∑

i

qijvjgij +
∑

i

rijgij)

=
∑

j

τ(aj , vjfj) +
∑

i,rij>0

τ(ei, rijfj)

Put a′j :=
∑

i,rij>0
ei, then aj ⊥ a′j . Now we can write

H ∋ 1 = β(u, v) =
∑

j

β(u, vjfj)

=
∑

j

[

β(aj, vjfj) + β(a′j, vjfj) + β(u− (aj + a′j), vjfj)
]

=
∑

j

[β(aj, vjfj) +
∑

i

β(ei, rijfj) +
∑

i,rij>0

β(ei, (vj − rij)fj)

+ β(u− (aj + a′j), vjfj)]

It follows that
∑

i,j

zijβ(ei, fj) =
∑

i,j

[qijvjβ(ei, fj) + rijβ(ei, fj)]

=
∑

j

[β(aj, vjfj) +
∑

i

β(ei, rijfj)]

is a well defined element in H and we may put

ψ(z) =
∑

i,j

zijβ(ei, fj),

which clearly defines a morphism G→ H .

Let

AI = (Ai; (fij : Aj → Ai); i, j ∈ I, j ≤ i),

BJ = (Bk; (gkℓ : Bℓ → Bk); k, ℓ ∈ J, ℓ ≤ k)

be directed systems of simplicial effect algebras. Let us define the index set
(I,≤) as the product I×J with pointwise ordering. By the previous theorem,
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each Ai ⊗ Bk, (i, k) ∈ I is a simplicial effect algebra. Let (j, ℓ) ∈ I be such
that (j, ℓ) ≤ (i, k), then we have morphisms fij : Aj → Ai and gkℓ : Bℓ → Bk.
For a ∈ Aj , b ∈ Bℓ, put β(a, b) = fij(a) ⊗ gkℓ(b) ∈ Ai ⊗ Bk, this defines a
bimorphism Aj×Bℓ → Ai⊗Bk. By properties of tensor product, this extends
to a unique morphism fij ⊗ gkℓ : Aj ⊗ Bℓ → Ai ⊗ Bk.

4.4 Theorem. Let

AI ⊗ BJ := (Ai ⊗ Bk; (fij ⊗ gkℓ : Aj ⊗ Bℓ → Ai ⊗ Bk),

(i, k), (j, ℓ) ∈ I, (j, ℓ) ≤ (i, k)).

Then AI ⊗ BJ is a directed system of simplicial effect algebras.

Proof. We have to check properties (i1) and (i2). For (i1), note that fii =
idAi

, gkk = idBk
imply fii⊗gkk = idAi⊗Bk

. For (i2), let (m,n) ≤ (j, ℓ) ≤ (i, k).
Then

m ≤ j ≤ i =⇒ fijfjm = fim

n ≤ ℓ ≤ k =⇒ gkℓgℓn = gkn

and for am ∈ Am, bn ∈ Bn,

(fij ⊗ gkℓ)(fjm ⊗ gℓn)(am ⊗ bn) = (fij ⊗ gkℓ)(fjm(am)⊗ gℓn(bn))

= fijfjm(am)⊗ gkℓgℓn(bn)

= fim(am)⊗ gkn(bn)

= fim ⊗ gkn(am ⊗ bn).

Since this holds on simple tensors, it extends to whole Am ⊗Bn.

4.5 Theorem. Let AI , BJ be directed systems of simplicial effect algebras,
and let (Ā; (fi : Ai → Ā, i ∈ I)) and (B̄; (gj : Bj → B̄, j ∈ J)) be their
corresponding direct limits. Then (Ā ⊗ B̄; (fi ⊗ gj : Ai ⊗ Bj → Ā ⊗ B̄, i ∈
I, j ∈ J)) is the direct limit of AI ⊗BJ .

Proof. We have to check properties (ii1), (ii2) and (ii3). The first one is
clear: since Ā, B̄ are effect algebras, Ā ⊗ B̄ is an effect algebra as well. To
prove compatibility, let (j, ℓ) ≤ (i, k). Then j ≤ i, ℓ ≤ k and we have

(fi ⊗ gk)(fij ⊗ gkℓ) = fifij ⊗ gkgkℓ = fj ⊗ gℓ.

11



For (ii3), let (C; (hij : Ai ⊗ Bj → C, i ∈ I, j ∈ J)) be another system
compatible with AI ⊗ BJ (i.e., hik(fij ⊗ gkℓ) = hjℓ, j ≤ i, ℓ ≤ k). Let a ∈ Ā,
b ∈ B̄. Since Ā and B̄ are direct limits, there are some indices i ∈ I, k ∈ J
and elements ai ∈ Ai and bk ∈ Bk such that a = fi(ai) and b = gk(bk), see the
construction on page 7. Define h(a, b) := hik(ai ⊗ bk). Then h : Ā× B̄ → C
is a bimorphism, which extends to a morphism h̄ : Ā⊗ B̄ → C.

4.6 Corollary. Let E and F be dimension effect algebras, and let GE and
GF be their universal groups with units uE and uF . Then the tensor product
E ⊗ F is isomorphic to the unit interval [0, uE ⊗ uF ] in the tensor product
GE ⊗GF of their universal groups, that is

GE[0, uE]⊗GF [0, vF ] ≃ GE ⊗GF [0, uE ⊗ uF ].

Proof. Let E = Ā, F = B̄ be direct limits of directed systems AI and BJ .
Each Ai, i ∈ I and Bk, k ∈ J is a simplicial effect algebra and GAi

, GBk

are simplicial groups. By [12, Theorem 4.1], we obtain that GE is a direct
limit of (GAi

, f ∗
ij), where f

∗
ij are the unique morphisms in POG, extending

fij, similarly for GF .
By Theorem 4.3, Ai ⊗ Bk is a simplicial effect algebra and GAi⊗Bk

≃
GAi

⊗GBk
. By Theorem 4.5, E⊗F is the direct limit of the directed system

AI ⊗ BJ . Since AI ⊗ BJ has RDP, it follows by [12, Theorem 4.1] that the
universal group GE⊗F is a direct limit of the system of universal groups

{GAi⊗Bk
≃ GAi

⊗GBk
, (fij ⊗ gkℓ)

∗ ≃ f ∗
ij ⊗ g∗kℓ},

Using [11, Lemma 2.2], we obtain

GE⊗F ≃ GE ⊗GF , uE⊗F = uE ⊗ uF .

5 Conclusions and a conjecture

We have proved that the EA tensor product of dimension effect algebras is
again a dimension effect algebra. The tensor product E ⊗ F is proved to be
the direct limit of a directed system of simplicial effect algebras, obtained as
a ”tensor product” of the directed systems corresponding to dimension effect
algebras E and F .

12



It is also proved that E ⊗ F is (isomorphic to) the unit interval in the
POG tensor product of the corresponding universal groups GE and GF . We
conjecture that this is true for general interval effect algebras. Note that in
the category of interval effect algebras, the tensor product exists [8, Theorem
9.1] and our conjecture says that it is (isomorphic to) the EA tensor product.

A special class of interval effect algebras are the algebras with RDP. It
is again an open question whether in this case the EA tensor product has
RDP. If our conjecture is true, E⊗F is the unit interval in the POG tensor
product of groups with RDP. As it was shown in [19, cf. Remark 2.13], the
POG tensor product of groups with RDP might not have RDP, but in the
presence of generating units, RDP holds in an asymptotic form in the sense
of [15].

6 An example: R[0, 1]

Let us consider the interval [0, 1] in (R,R+, 0). This is clearly a dimension
group with order unit 1 and hence the interval [0, 1] is a dimension effect
algebra. It was proved in [17] that the EA tensor product [0, 1]⊗ [0, 1] is not
lattice ordered and thus not isomorphic to [0, 1]. By our results, [0, 1]⊗ [0, 1]
is a dimension effect algebra, which is the interval R⊗R[0, 1⊗ 1]. Note that
the fact that the POG tensor product R⊗R is not lattice ordered was shown
in [19].

As an example, we will present [0, 1] as a direct limit of a directed system
of simplicial effect algebras. The tensor product [0, 1]⊗ [0, 1] is then obtained
as a direct limit as in Theorem 4.5.

We first need to introduce some notations. For any n-tuple

A = (x1, . . . , xn)

of elements in R+, let fA denote the positive group homomorphism

fA : Zn → R, eni 7→ xi, i = 1, . . . , n

and let

L(A) := fA(Z
n), L(A)+ := fA((Z

n)+), L>(A)
+ := fA((Z

n
>)

+),

where (Zn
>)

+ := {
∑

i zie
n
i with zi > 0 for all i = 1, . . . , n}. We also use the

notations
Q(A) := LinQ(A), Q(A)+ := Q(A) ∩ R+.
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Let us define the index set as

I := {A ⊂ [0, 1], finite, Q− linearly independent, 1 ∈ L>(A)
+}.

Any A ⊂ R+ with cardinality n can be identified with the n-tuple of its
elements (x1, . . . , xn), indexed so that x1 < · · · < xn. For A,B ∈ I, write
B � A if B ⊂ L(A)+. It is easy to see that � is a preorder in I.

6.1 Proposition. (I,�) is directed.

For the proof, we need some lemmas.

6.2 Lemma. Let B = (y1, . . . , yk) be a tuple of elements in R+. Assume
that for some 1 ≤ N < k,

N
∑

i=1

yi =
k

∑

i=N+1

yi.

Then there is some tuple A = (x1, . . . , xl) of elements in Q(B)+ such that
l < k and yi ∈ L(A)+, i = 1, . . . , k.

Proof. We proceed by induction on k. By the assumptions, we see that k is
at least 2, in which case we have y1 = y2. Put A := {y2} and we are done.

Now let k > 2 and assume that the assertion is true for tuples of length
k − 1. By reindexing and rearranging the sums, we may assume that yk =
min{y1, . . . , yk}. Put y

′
1 := y1−yk, then y

′
1 ∈ Q(B)+ and we have the equality

y′1 + y2 + · · ·+ yN = yN+1 + · · ·+ yk−1

containing only k − 1 elements. By the induction hypothesis, there is some
tuple A′ = (x1, . . . , xl′) with elements in Q(B)+ and l′ < k − 1, and some
(k − 1)× l′ matrix Z ′ with values in nonnegative integers such that

y′1 = fA′(z′1·), yi = fA′(z′i·), i = 2, . . . , k − 1,

here z′i· denotes the i-th row of Z ′. Let A = (x1, . . . , xl′ , yk) and

Z =















Z ′

1
0
...
0

0 1















.

14



Then A is an l-tuple of elements in Q(B)+, l = l′ + 1 < k and yi = fA(zi·) ∈
L(A)+ for all i.

6.3 Lemma. Let B = (y1, . . . , yk) be a tuple of elements in R+. Then there
is a Q-linearly independent tuple A = (x1, . . . , xn) of elements in Q(B)+ such
that yi ∈ L(A)+, i = 1, . . . , k.

Proof. If B is Q-linearly independent, there is nothing to do. Otherwise,
there are some ri ∈ Q such that

∑

i riyi = 0 with some ri 6= 0. Clearly, by
multiplying by a common denominator, we may assume that ri ∈ Z. Assume
that the elements are arranged in such a way that

ri







> 0 for i = 1, . . . , N
< 0 for i = N + 1, . . .M
= 0 for i =M + 1, . . . k.

Put pi = Πi 6=j≤M |rj | and let y′i =
yi
pi

for i = 1, . . . ,M . Clearly, y′1, . . . , y
′
M ∈

Q(B)+. Then by multiplying the equality by ΠM
j=1|ri|

−1, we obtain

N
∑

i=1

y′i =

M
∑

i=N+1

y′i.

Applying Lemma 6.2, there is some l-tuple A′ = (x′1, . . . , x
′
l) ∈ Q(B)+ with

l < M such that y′i ∈ L(A′)+ for i = 1, . . . ,M , so that also yi = piy
′
i ∈

L(A′)+, i = 1, . . . ,M .
We now repeat the same process with B′ = (x′1, . . . , x

′
l, yM+1, . . . , yk).

Since Q(B′) = Q(B) and |B′| < k, after a finite number of steps we obtain a
Q-linearly independent set A = {x1, . . . , xn} with the required properties.

Proof of Proposition 6.1. Let B,C ∈ I, then by Lemma 6.3 there is some
Q-linearly independent tuple A = (x1 < · · · < xn) of elements in Q(B ∪C)+

such that B ∪ C ⊂ L(A)+. By assumptions, 1 ∈ L>(B)+ ⊂ L(A)+, so that
1 =

∑

i zixi for unique coefficients z1, . . . , zn ∈ Z+. Assume that zi0 = 0 for
some i0. Let B = (y1 < · · · < yk). There are some positive integers v1, . . . , vk
such that 1 =

∑k

j=1
vjyj and some nonnegative integers wj

1, . . . , w
j
n such that

yj =
∑

i w
j
ixi. It follows that

1 =

k
∑

j=1

vjyj =
∑

i

(
∑

j

vjw
j
i )xi =

∑

i

zixi,
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so that
∑

j vjw
j
i = zi, in particular,

∑

j vjw
j
i0
= 0. Since all vj are positive,

this implies that wj
i0
= 0 for all j and we have

yj =
∑

i 6=i0

wj
ixi.

Hence B ⊂ L(A \ {xi0})
+, similarly also C ⊂ L(A \ {xi0})

+. It follows that
we may assume that 1 ∈ L>(A)

+. This means that 1 =
∑

i zixi for positive
integers zi, which implies that we must have 0 < xi ≤ 1. It follows that
A ∈ I and I is directed.

We now construct a directed system of simplicial effect algebras. Let
A ∈ I. Since A is Q-linearly independent, fA is a POG isomorphism onto
its range. Let EA be the interval [0, f−1

A (1)] in Z|A| and let gA = fA|EA
. Then

gA is an effect algebra isomorphism onto the interval [0, 1] in (L(A), L(A)+, 0).
Let B ∈ I, B � A, then since L(B)+ ⊆ L(A)+, we have gB(EB) ⊆ gA(EA).
Put

gAB : EB → EA, gAB = g−1

A gB,

then it is clear that

E = (EA, A ∈ I; gAB, B � A)

is a directed system of simplicial effect algebras.

6.4 Proposition. ([0, 1]; gA, A ∈ I) is the direct limit of E .

Proof. It is clear that ([0, 1]; gA, A ∈ I) is compatible with E . Note also that
any x ∈ [0, 1] is contained in the range of some gA. Indeed, assume that
x ∈ Q∩ [0, 1], then x = m

n
for n ∈ N, m ∈ Z+. Let A = { 1

n
}, then A ∈ I and

we have EA = [0, n]Z, x = gA(m). If x /∈ Q, then A = {x, 1 − x} ∈ I and
x ∈ A ⊂ gA(EA).

Now let E be an effect algebra and let kA : EA → E be a morphisms for
A ∈ I, such that (E; kA, A ∈ I) is compatible with E . Let x ∈ [0, 1] be in
the range of gA and put

ψ(x) = kA(g
−1

A (x)).

Assume that B ∈ I is such that x is also in the range of gB and let C ∈ I
be such that A,B � C. Then gA(EA) ⊆ gC(EC) and by compatibility

kA(g
−1

A (x)) = kCgCA(g
−1

A (x)) = kC(g
−1

C (x)).
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Similarly we obtain that kB(g
−1

B (x)) = kC(g
−1

C (x)), hence ψ is a well defined
map.

Let I = {1}, then clearly I ∈ I, EI = {0, 1} ⊂ Z and we have

ψ(0) = kI(0) = 0, ψ(1) = kI(1) = 1,

since kI is an effect algebra morphism. Further, let x1, x2, x ∈ [0, 1] be such
that x = x1 + x2. Let A ∈ I be such that x1, x2 ∈ gA(EA), then clearly
also x ∈ gA(EA) and we have g−1

A (x1) + g−1

A (x2) = g−1

A (x), since gA is an
isomorphism onto its range. Hence

ψ(x) = kA(g
−1

A (x)) = kA(g
−1

A (x1) + g−1

A (x2)) = ψ(x1) + ψ(x2).

This proves that ψ is an effect algebra morphism [0, 1] → E. Further, for
any A ∈ I and z ∈ EA,

kA(z) = kA(g
−1

A gA(z)) = ψgA(z),

so that kA = ψgA. Since ψ is obviously the unique map [0, 1] → E with this
property, this proves the statement.
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