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Abstract

Building on classical theorems of Sperner and Kruskal-Katona, we investigate
antichains F in the Boolean lattice Bn of all subsets of [n] := {1, 2, . . . , n}, where F
is flat, meaning that it contains sets of at most two consecutive sizes, say F = A∪B,
where A contains only k-subsets, while B contains only (k − 1)-subsets. Moreover,
we assume A consists of the first m k-subsets in squashed (colexicographic) order,
while B consists of all (k − 1)-subsets not contained in the subsets in A. Given
reals α, β > 0, we say the weight of F is α · |A| + β · |B|. We characterize the
minimum weight antichains F for any given n, k, α, β, and we do the same when in
addition F is a maximal antichain. We can then derive asymptotic results on both
the minimum size and the minimum Lubell function.
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1 Introduction

In the Boolean lattice Bn of all subsets of [n] := {1, 2, . . . , n} an antichain is a family
of subsets such that no one contains any other one. A classical theorem of Sperner [17]
gives the maximum size of an antichain,

(

n
⌊n

2
⌋

)

. Let us denote by
(

[n]
k

)

the collection of

all k-subsets of [n]. Sperner’s Theorem also says that the only maximum-sized antichains
are

(

[n]
⌊n

2
⌋

)

and
(

[n]
⌈n

2
⌉

)

(which are the same for even n). Trivially, by taking a subsets of size

⌊n
2
⌋, we obtain antichains A of every size a up to

(

n
⌊n

2
⌋

)

, and thus these are all possible

antichain sizes in Bn.
What if we also require that A be maximal, which means that A is no longer an

antichain when any other subset is added to it? What are the possible sizes of maximal
antichains in Bn? For collections of a single size k, we must take all of them to get a
maximal antichain, and this gives us sizes

(

n
k

)

. What other sizes are possible? Can all
possible sizes be achieved by antichains with subsets of at most two different consecutive
sizes? An antichain in Bn such that all sets it contains have size k − 1 or k, for some k,
is said to be flat. It appears that most possible sizes of maximal antichains can indeed
be achieved by flat maximal antichains, but this is a large problem that we expect to say
more about in a future series of papers.

Another classical result, known as the Kruskal-Katona Theorem [12, 10], answers the
following question: Given numbers n, k,m, how can one select a family F of m k-subsets
of [n] in order to minimize the size of the family ∆(F) of (k − 1)-subsets that are each
contained in some set in F? The family ∆(F) is called the shadow of F . We observe
that the (k − 1)-subsets not in ∆(F) form an antichain with F , that is for any family
F ⊆

(

[n]
k

)

, we get a flat antichain F ∪ (
(

[n]
k−1

)

−∆(F)). Note that such an antichain need
not be maximal, as there could be additional k-subsets of [n] that contain none of the sets
in
(

[n]
k−1

)

−∆(F). In any case, selecting F with minimum shadow, we obtain an antichain
of this type that has maximum size for given n, k,m. The study of flat antichains can be
viewed as a generalization of the Kruskal-Katona Theorem.

Another interesting measure of a family of subsets F ⊆ 2[n] is called the volume, given
by V (F) :=

∑

F∈F |F |. We say that two antichains are equivalent if they have the same
size and the same volume. This notion induces an equivalence relation on the class of all
antichains in Bn. It is remarkable that every antichain in Bn is equivalent to some flat
antichain! The results of Kisvölcsey [11] and Lieby [13, 14] perfectly complement each
other to give the following theorem:

Theorem 1.1 (Flat Antichain Theorem) Let F ⊆ Bn be an antichain. Then there is a
flat antichain F ′ ⊆ Bn with |F ′| = |F| and V (F ′) = V (F).

This easily-stated result is surprisingly hard to prove. It says that each equivalence
class of antichains contains a flat one.

In Section 2 we shall observe that the flat antichains are the extremal representatives
of their equivalence classes in a more general context where we apply a weight function
w : Bn → [0,∞) to the subsets. Moreover, we assume that there are real numbers wi ≥ 0,
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0 ≤ i ≤ n, such that the weight of every subset F ∈ Bn is w|F |, so depends only on its size.
For a family F ⊆ 2[n], its weight w(F) :=

∑

F∈F w(F ). In Section 2 we shall compare the
weight of a flat antichain to others in its class when there are conditions on the convexity
of w.

Besides the two examples of weight functions we have seen, which are the size and the
volume of a family of subsets F , there is a third measure of some interest. Following [7] we
define the Lubell function of F by h̄(F) :=

∑

F∈F
1

( n

|F |)
. The notation is motivated by the

fact that h̄(F) equals the average number of times a random maximal chain meets F , as
compared to the height of F , which is the maximum number of times over all full chains.
The name refers to Lubell [15], who gave a very short proof of Sperner’s Theorem by
showing in this notation that h̄(F) ≤ 1 for an antichain F . This is sometimes called the
BLYM inequality, which also gives credit to others who discovered a version of it [2, 19, 16].
In recent years the Lubell function has played a role in the study of families of subsets F
that do not contain a given subposet [7] (see survey [8]). In Section 2 we observe that
flat antichains have minimum Lubell values in their equivalence classes.

We require some additional notions in the paper. First suppose we have a family
F ⊆

(

[n]
k

)

for some n, k. We have already defined the shadow ∆(F). We also require the
dual notion: The shade ∇(F) is the collection of (k+ 1)-subsets of [n] that contain some
set in F . Now consider a flat antichain F = A ∪ B, where A ⊆

(

[n]
k

)

and B ⊆
(

[n]
k−1

)

for

some k, 1 ≤ k ≤ n. We say that F is full flat provided that B =
(

[n]
k−1

)

−∆(A). It means
that given A, we put all sets we could into B to still have an antichain. Moreover, if a full
flat antichain F satisfies A =

(

[n]
k

)

−∇(B), we say it is maximal flat. It is easily checked
that a flat antichain is maximal flat if and only if it is a maximal antichain.

For example, F =
{

{1, 2}, {1, 3}, {4}
}

is a full flat antichain in B4 as all singletons
other than {4} are covered by the 2-sets in F . On the other hand, F is not maximal flat,
since we would still have an antichain if we added in {2, 3}.

It is easy to see that for a flat antichain F , its complement F := {[n]−F : F ∈ F} is
also a flat antichain. Further, a flat antichain F is maximal if and only if F is maximal.
Moreover, if a flat antichain F is full, then F is also full, only if F is maximal.

The paper [6] investigates the minimum size of a maximal flat antichain for given n, k.
This is a daunting problem in general, so the authors focus on the case of k = 3. They
show that the minimum size of a maximal flat antichain consisting of 2-sets and 3-sets
is
(

n
2

)

− ⌊(n + 1)2/8⌋, and all such antichains of minimum size are determined. Note

that such antichains are smaller than the smaller of the two rank sets,
(

[n]
2

)

. The authors
actually solve the more general problem of minimising the total weight of a maximal flat
antichain with k = 3, when there is a weight function w. Results are given in [9] for the
general setting of maximal antichains of subsets, where set sizes belong to some given set
K. The flat case corresponds to K = {k, k − 1}.

In Section 3 we present our main result, which concerns finding full flat antichains of
minimum weight when the k-sets are chosen in a particular way. The Kruskal-Katona
Theorem [10, 12], mentioned earlier, says that there is an ordering of the sets in

(

[n]
k

)

such
that for any m the first m k-sets have a shadow of smallest size among all m-element
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subsets of
(

[n]
k

)

. Following Anderson [1], we say that for distinct sets F,G ∈
(

[n]
k

)

, F
precedes G in squashed order (also known as colexicographic order), written F <S G,
whenever max

(

(F ∪ G) − (F ∩ G)
)

∈ G. The first m sets in squashed order have a
minimum shadow.

Let F be a flat antichain of the form F = A ∪ B, where A ⊆
(

[n]
k

)

and B ⊆
(

[n]
k−1

)

for

some 1 ≤ k ≤ n. We say F is squashed provided A consists of the first m elements of
(

[n]
k

)

in squashed order for some m. Moreover, if B is the complement of the shadow of A, then
F is a full squashed flat antichain in Bn. Clearly such an F is completely determined by
n, k,m.

A full squashed flat antichain that is maximal flat is said to be a maximal squashed
flat antichain. It is known that every full squashed flat antichain A∪B is contained in a
unique maximal squashed flat antichain A′ ∪ B (see Proposition 3.3 below).

It is a remarkable fact that for any positive s ≤
(

n
⌊n/2⌋

)

there is a full squashed flat
antichain of size s in Bn. Full squashed flat antichains F are also important in connection
with ideals (also called down-sets), which are families of subsets that are closed under
taking subsets. Assume we have a weight function w on Bn, where each i-set has the
same weight wi, and suppose further that 0 ≤ w0 ≤ w1 ≤ · · · ≤ wn. Among all antichains
of given size s in Bn there is a unique full squashed flat antichain that generates an ideal
of minimum weight (see Engel [4], Theorem 8.3.5).

Given n, k we are interested here in minimizing the size of a full squashed flat antichain
F = A∪B, which means we seek m to minimize this size. However, the size of the shadow
of the m sets in A is known to be a complicated function of m, which makes it challenging
to solve this problem [5].

Our main result, Theorem 3.4, is the solution to this problem. More generally, we
determine the minimum weight of a full squashed flat antichain when there is a weight
function w. Moreover, we solve the same problem for maximal squashed flat antichains.

In Section 4 we derive the results for squashed flat antichains for the specific weights
of interest to us, which are size, volume, and Lubell function value. The paper concludes
with open problems that extend the work here.

2 Antichains with Convex Weight Functions

We consider a weight function w : Bn → [0,∞) as above, where each i-set has the same
weight wi ≥ 0. Recall that the sequence {wi}

n
i=0 is convex if {wi − wi−1}

n
i=1 is weakly

increasing and concave if {wi − wi−1}
n
i=1 is weakly decreasing.

Proposition 2.1 Let w : Bn → [0,∞) be a weight function as above. Furthermore, let
A and F be antichains in Bn, such that F is flat, |F| = |A| and V (F) = V (A).

(i) If the sequence {wi}
n
i=0 is convex, then w(F) ≤ w(A).

(ii) If the sequence {wi}
n
i=0 is concave, then w(F) ≥ w(A).

4



Proof. We only prove part (i) here. The proof of (ii) is analogous.
Assume that {wi}

n
i=0 is convex. Let a = (a0, a1, . . . , an) be the profile vector of A, i.e.,

ai = |{A ∈ A : |A| = i}|. Furthermore, let ℓ = min{i : ai 6= 0} and u = max{i : ai 6= 0}.
The weight of A is determined by a, and one has w(A) =

∑u
i=ℓ aiwi for which we also

write w(a). If u − ℓ ≤ 1, then A is flat. As A and F have the same size and the same
volume, their profile vectors must then be equal, and it follows that w(A) = w(F). Hence,
without loss of generality we can assume that u− ℓ ≥ 2.

Consider the vector a′ obtained from a replacing aℓ by aℓ − 1, aℓ+1 by aℓ+1 + 1, au by
au − 1, and au−1 by au−1 +1. (That is, if u− ℓ = 2, then aℓ+1 = au−1 will be increased by
2.) Note that

∑

a′i =
∑

ai,
∑

a′ii =
∑

aii, and

w(a)− w(a′) = (wu − wu−1)− (wℓ+1 − wℓ).

As {wi} is convex, it follows that w(a′) ≤ w(a). (It should be pointed out that we do
not claim nor need that a′ is the profile vector of some antichain in Bn.) Iterating this
process, we transform a into the profile vector f of F , since A and F agree in size and
volume. This implies w(F) = w(f) ≤ w(a) = w(A). �

Recall the Lubell function h̄(F) we mentioned in the introduction. Proposition 2.1
implies an interesting observation about flat antichains.

Corollary 2.2 Flat antichains minimize the Lubell function within their equivalence classes.

Proof. The claim follows from Proposition 2.1 and the straightforward fact that the
sequence

{

1/
(

n
i

)}n

i=0
is convex. �

3 Full and Maximal Squashed Flat Antichains of Min-

imum Weight

We first review facts about the squashed (colexicographic) order and full squashed flat
antichains. For 1 ≤ k ≤ n and 0 ≤ m ≤

(

n
k

)

, the k-cascade representation of m is a
representation of m in the form

m =

k
∑

i=1

(

ai
i

)

with ak > ak−1 > · · · > at ≥ t > 0 = at−1 = · · · = a1. (1)

The terms
(

ai
i

)

with ai = 0 could clearly be removed from the above representation of
m. Their only purpose here is that they will allow us a more compact formulation of the
main result (Theorem 3.4). It is easy to see (cf. [10]) that for given k and m there is a
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unique k-cascade representation of m. Moreover, if A is the family of the first m k-sets
in squashed order and (1) is the k-cascade representation of m, then

|∆A| =
k
∑

i=t

(

ai
i− 1

)

. (2)

As noted in the introduction, the family A of the first m k-sets in squashed order has a
shadow of smallest size among all m-element subsets of

(

[n]
k

)

[10, 12].

Proposition 3.1 Let k ≥ 2. Let F = A ∪ B be a full squashed flat antichain with
A ⊆

(

[n]
k

)

and B ⊆
(

[n]
k−1

)

. Let m := |A| be represented as in (1). Then F is maximal flat
if and only if a1 = 0.

Our proof of Proposition 3.1 makes use of the following lemma.

Lemma 3.2 Let F , A, B, and m be as in Proposition 3.1. Furthermore, assume that
A = {A1, . . . , Am}, where the sets are listed in squashed order. Let Am = {x1, x2, . . . , xk}
with x1 < x2 < · · · < xk. Then F is maximal flat if and only if x2 = x1 + 1.

Proof. Put B = {B1, . . . , Bℓ}, where the sets are listed in squashed order. Then B1 is the
successor of {x2, . . . , xk} in

(

[n]
k−1

)

with respect to squashed order.
Let i be the largest index with xi = x1 + i− 1, i.e., x2 = x1 + 1 if and only if i ≥ 2. If

xi = n, then A =
(

[n]
k

)

and we are done. So assume that xi < n.
If i ≥ 2, then B1 = {1, 2, . . . , i− 2, xi + 1, xi+1, xi+2 . . . , xk}, and ∇B contains

{1, 2, . . . , i− 2, i− 1, xi + 1, xi+1, xi+2 . . . , xk},

which is the successor of Am in squashed order.
If i = 1, then the successor of Am in squashed order on

(

[n]
k

)

is {x1 + 1, x2, . . . , xk},
which is not contained in ∇B, because B1 comes after {x2, . . . , xk}. Hence, every element
of ∇B comes after {x2 − 1, x2, x3, . . . , xk}. �

Proof (Proposition 3.1): The k-cascade representation of m yields that

A =

(

[ak]

k

)

∪

{

A ∪ {ak + 1} : A ∈

(

[ak−1]

k − 1

)}

∪

{

A ∪ {ak−1 + 1, ak + 1} : A ∈

(

[ak−2]

k − 2

)}

∪ · · · ∪

{

A ∪ {a2 + 1, a3 + 1, · · · , ak + 1} : A ∈

(

[a1]

1

)}

.

Let i be the smallest index with ai > 0. The last element of A with respect to squashed
order is Am = {ai − i + 1, . . . , ai − 1, ai, ai+1 + 1, . . . , ak + 1}. If i = 1, then Am starts
with a1, a2 +1, . . ., and if i > 1, then Am starts with ai − i+1, ai − i+2. Now the claim
follows by Lemma 3.2. �
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Proposition 3.3 Let F = A ∪ B be a full squashed flat antichain with A ⊆
(

[n]
k

)

and

B ⊆
(

[n]
k−1

)

, where k ≥ 2. Then F is contained in a unique maximal squashed flat antichain

F ′ ⊆
(

n
k

)

∪
(

[n]
k−1

)

, and F ′ is of the form A′ ∪ B with A ⊆ A′ ⊆
(

[n]
k

)

.

Proof. Let A′ be the largest initial segment of
(

[n]
k

)

with respect to squashed order such
that ∆A′ = ∆A. Clearly, F ′ = A′ ∪B is a maximal squashed flat antichain, and A ⊆ A′.

By the choice of A′, any initial segment of
(

[n]
k

)

larger than A′ has its shadow intersect
B, so its union with B is not an antichain. �

Our main result is the following characterization of all full squashed flat antichains of
minimum weight. To avoid certain technicalities, the trivial cases k = 1 and k = n are
excluded.

Theorem 3.4 Let 1 < k < n be integers. Let F = A∪B with A ⊆
(

[n]
k

)

and B ⊆
(

[n]
k−1

)

be
a full squashed flat antichain, and let (1) be the k-cascade representation of m := |A|. Let
w be a weight function on Bn, where each k-set ((k− 1)-set, resp.) has real weight α > 0
(β > 0, resp.). Define λ := β/α. Then F has minimum weight w(F) = α · |A|+ β · |B|
among all full squashed flat antichains in

(

[n]
k

)

∪
(

[n]
k−1

)

if and only if

ai =



























n− k − 1 + i if i > 1 + (n− k)/λ,

⌈(i− 1)(λ+ 1)− 1⌉ or ⌊(i− 1)(λ+ 1)⌋ if 1 + (n− k)/λ ≥ i ≥ 1 + 2/λ,

i if 1 + 2/λ > i > 1/λ,

0 or i if 1/λ = i,

0 if 1/λ > i.

Proof. First, observe that with g(m) := m− λ|∆A| we have

w(F) = α · g(m) + β

(

n

k − 1

)

.

Hence, our problem of minimizing w(F) is equivalent to minimizing g(m) over all m ∈
{

0, 1, . . . ,
(

n
k

)}

.

If m ∈
{(

n
k

)

− 1,
(

n
k

)}

, then ∆A =
(

[n]
k−1

)

holds. Consequently, m =
(

n
k

)

does not

minimize g(m), and we can assume that m <
(

n
k

)

, i.e. that ak ≤ n − 1. As ak > ak−1 >
· · · > at, this implies

ai = 0 or i ≤ ai ≤ n− 1− k + i for i ∈ [k]. (3)

By (2), we have

g(m) =
k
∑

i=t

hi(ai), (4)

7



where, for i ∈ [k], the polynomial hi : R 7→ R is defined by

hi(x) :=

(

x

i

)

− λ

(

x

i− 1

)

=











x− λ if i = 1,

x+ 1− i(λ+ 1)

i!

i−2
∏

j=0

(x− j) if i ≥ 2.

Our strategy is as follows: For each i ∈ [k], we determine those x ∈ [i, n−1−k+ i]∩Z

for which hi(x) is smallest possible. For such x, we choose ai = x or ai = 0 if hi(x) is
negative or positive, respectively. If hi(x) = 0, we choose ai ∈ {0, x}. Eventually, we will
verify that, with the ai’s chosen as described, we obtain a proper k-cascade representation
(1), i.e., that the following implication is true:

(i ∈ [k − 1]) ∧ (ai > 0) =⇒ (ai < ai+1). (5)

To begin with, note that h1(x) = x − λ attains its global minimum with respect to
the interval [1, n− k] at x = 1, and we have h1(1) = 1− λ.

Let i ∈ [k]−{1}. Then hi is a polynomial of degree i with leading coefficient 1/i! and
zeros 0, 1, . . . , i− 2 and i(λ+1)− 1. That means, hi(x) is positive and strictly increasing
for x > i(λ + 1)− 1, and hi(x) < 0 for i− 2 < x < i(λ + 1)− 1. Moreover, hi is strictly
convex on I :=

(

i− 2, i(λ+ 1)− 1
)

. The numbers u := (i− 1)(λ+ 1) and u− 1 both lie
in I, and one can easily check that hi(u− 1) = hi(u).

Based on the discussion above, we distinguish three cases to find the global minimum
of hi(x) over all x ∈ [i, n− 1− k + i] ∩ Z.

Case 1: Assume that u − 1 < i. Note that this is equivalent to i < 1 + 2/λ. In this
case, hi(x) is a minimum only at x = i, and hi(i) is positive if i < 1/λ, equals 0 if i = 1/λ
and is negative if i > 1/λ.

Case 2: Assume that i ≤ u−1 and that u ≤ n−1−k+ i. Note that this is equivalent
to 1 + 2/λ ≤ i ≤ 1 + (n − k)/λ. In this case, hi(x) attains its minimum exactly for
x ∈ {⌈u− 1⌉, ⌊u⌋}, and this minimum is negative.

Case 3: Assume that n−1−k+i < u. Note that this is equivalent to 1+(n−k)/λ < i.
In this case, hi(x) is a minimum only at x = n− 1− k + i and hi(n− 1− k + i) < 0.

By the results of the case-by-case analysis above and (4), g(m) becomes a minimum
when the ai’s are chosen as in the theorem, where the minimization is over all choices
satisfying (3). Finally, a straightforward calculation shows that (5) holds for the ai’s as
in the theorem. �

Note that, by Proposition 3.1, for λ < 1 the optimal full squashed flat antichain
in Theorem 3.4 is maximal. In general, Theorem 3.4 and its proof yield the following
characterization of minimum weight maximal squashed flat antichains.

Corollary 3.5 Let 1 < k < n be integers, α, β positive real numbers and λ := β/α.
Furthermore, let F = A ∪ B with A ⊆

(

[n]
k

)

and B ⊆
(

[n]
k−1

)

be a maximal squashed flat
antichain, and let (1) be the k-cascade representation of m := |A|. Then F has minimum

8



weight w(F) = α · |A|+β · |B| among all maximal squashed flat antichains in
(

[n]
k

)

∪
(

[n]
k−1

)

if and only if

(a) λ ≤ n− k + 1 and

ai =



























n− k − 1 + i if i > 1 + (n− k)/λ,

⌈(i− 1)(λ+ 1)− 1⌉ or ⌊(i− 1)(λ+ 1)⌋ if 1 + (n− k)/λ ≥ i ≥ 1 + 2/λ,

i if 1 + 2/λ > i > max{1/λ, 1},

0 or i if 1/λ = i > 1,

0 otherwise,

or

(b) λ ≥ n− k + 1 and ai = 0 for i = 1, . . . , k − 1, while ak = n.

Proof. In the beginning of the proof of Theorem 3.4 we ruled out the case that F =
(

[n]
k

)

when looking for full squashed flat antichains of minimum weight. For λ < n − k + 1,
the maximal squashed flat antichain

(

[n]
k

)

cannot be one of minimum weight either. This
follows from the simple observation that in this case, the maximal squashed flat antichain

((

[n]

k

)

−∇
{

{n− k + 2, n− k + 3, . . . , n}
}

)

∪
{

{n− k + 2, n− k + 3, . . . , n}
}

has a smaller weight. Now the ai’s are determined as in the proof of Theorem 3.4, with the
exception that a1 must be 0 by Proposition 3.1. This proves the claim for λ < n− k + 1.

If λ > n− k+1, then
(

[n]
k

)

is the unique maximal squashed flat antichain of minimum
weight. To see this, assume that B 6= ∅, and use |∇B| ≤ (n − k + 1)|B|, which implies
that

(

[n]

k

)

= (F − B) ∪ ∇B

has a smaller weight than F .
Finally, if λ = n − k + 1, then choosing a1 = 0 and the other ai’s as in Theorem 3.4

(i.e., ai = n− k− 1 + i for i = 2, . . . , k) gives a maximal squashed flat antichain that has
the same weight as

(

[n]
k

)

. �

Example 3.6 Consider n = 8 and k = 6. We seek all full and all maximal squashed
flat antichains in

(

[8]
6

)

∪
(

[8]
5

)

with minimum Lubell function value. We have weights

α = 1/
(

8
6

)

= 1/28 and β = 1/
(

8
5

)

= 1/56, so that λ = β/α = 1/2.
As 1 + (n− k)/λ = 5 < 6, Theorem 3.4 yields a6 = n− k − 1 + 6 = 7.
By 1 + 2/λ = 5, we obtain that a5 = ⌈4 · 3

2
− 1⌉ = 5 or a5 = ⌊4 · 3

2
⌋ = 6.

Finally, 1/λ = 2 implies a4 = 4, a3 = 3, a2 ∈ {0, 2}, and a1 = 0.
As we have two choices for a5 and a2, respectively, there are four optimal full squashed

flat antichains. By a1 = 0, all of them are also maximal. We verify their Lubell values:
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1. With a5 = 6 and a2 = 2, the number of 6-sets is

|A| =
(

7
6

)

+
(

6
5

)

+
(

4
4

)

+
(

3
3

)

+
(

2
2

)

= 16,

while the number of 5-sets is

|B| =
(

8
5

)

−
[(

7
5

)

+
(

6
4

)

+
(

4
3

)

+
(

3
2

)

+
(

2
1

)]

= 56− 45 = 11.

The corresponding full squashed flat antichain is the union of A, the collection of
the first sixteen 6-sets in squashed order, and B =

(

[8]
5

)

− ∆A. Its Lubell function
value is

h̄(A ∪ B) = 16
28

+ 11
56

= 43
56
.

2. With a5 = 6 and a2 = 0 we obtain

|A| =
(

7
6

)

+
(

6
5

)

+
(

4
4

)

+
(

3
3

)

= 15,

|B| =
(

8
5

)

−
[(

7
5

)

+
(

6
4

)

+
(

4
3

)

+
(

3
2

)]

= 56− 43 = 13,

h̄(A∪ B) = 15
28

+ 13
56

= 43
56
.

3. With a5 = 5 and a2 = 2 we obtain

|A| =
(

7
6

)

+
(

5
5

)

+
(

4
4

)

+
(

3
3

)

+
(

2
2

)

= 11,

|B| =
(

8
5

)

−
[(

7
5

)

+
(

5
4

)

+
(

4
3

)

+
(

3
2

)

+
(

2
1

)]

= 56− 35 = 21,

h̄(A ∪ B) = 11
28

+ 21
56

= 43
56
.

4. With a5 = 5 and a2 = 0 we obtain

|A| =
(

7
6

)

+
(

5
5

)

+
(

4
4

)

+
(

3
3

)

= 10,

|B| =
(

8
5

)

−
[(

7
5

)

+
(

5
4

)

+
(

4
3

)

+
(

3
2

)]

= 56− 33 = 23,

h̄(A∪ B) = 10
28

+ 23
56

= 43
56
.

4 Cases of Special Interest

For the smallest weight of a full squashed flat antichain and of a maximal squashed flat
antichain in

(

[n]
k

)

∪
(

[n]
k−1

)

, we apply Theorem 3.4 and Corollary 3.5, together with (2) and

B =
(

[n]
k−1

)

−∆A, to obtain the formula

w(F) = β
(

n
k−1

)

+
∑k

i=1

(

α
(

ai
i

)

− β
(

ai
i−1

)

)

, (6)

where the ai’s are chosen as in the theorem and the corollary, respectively. (Note that
for our formula to be accurate we have to adopt the somewhat unusual convention that
(

0
0

)

is 0.) We now detail what this means for minimum size, volume, and Lubell function
value.
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4.1 Squashed Flat Antichains with Minimum Size

Let s(n, k) denote the minimum size of a full squashed flat antichain in
(

[n]
k

)

∪
(

[n]
k−1

)

. By
Theorem 3.4 with α = β = 1, s(n, k) is equal to the right-hand side of (6) for

ai =



















n− k − 1 + i if i ≥ n− k + 2,

2i− 3 or 2i− 2 if n− k + 1 ≥ i ≥ 3,

2 if i = 2,

0 or 1 if i = 1.

For the particular case of a maximal squashed flat antichain we obtain minimum size by
choosing a1 = 0 and the other ai’s as above by Corollary 3.5. Consequently, the minimum
size of a maximal squashed flat antichain in

(

[n]
k

)

∪
(

[n]
k−1

)

is also given by the right-hand
side of (6).

In the display above we see that, depending on i, the number of possible values of
ai is either 1 or 2. We can then deduce the number of minimum size full squashed flat
antichains: For n ≤ 2k−1 there are 2n−k, while for n ≥ 2k, there are 2k−1. For minimum
size maximal squashed flat antichains, we must have a1 = 0, and so in both cases (n, k),
half of the minimum size full squashed flat antichains are maximal.

Looking at this more closely, let F(m) denote the full squashed flat antichain with m
k-sets. In view of Proposition 3.1, if F(m) is a minimum size full squashed flat antichain
with k-cascade parameters ai, then F(m) is a maximal flat antichain when a1 = 0;
Otherwise, a1 = 1 and F(m) is non-maximal. So, the minimum size full squashed flat
antichains come in pairs, F(m) and F(m+1), such that F(m) is maximal, while F(m+1)
is non-maximal.

Using the above values for the ai’s in (6) gives the following formula for s(n, k).

Corollary 4.1 Let 1 ≤ k ≤ (n+ 1)/2. Then

s(n, k) = s(n, n− k + 1) =

(

n

k − 1

)

−
k−1
∑

i=1

1

i+ 1

(

2i

i

)

.

Corollary 4.1 implies that as n gets larger for fixed k the optimal full squashed flat
antichains look more and more like the (k − 1)-st level of Bn. According to the next
corollary, this remains true if we allow k to depend on n.

Corollary 4.2 For any k = k(n) ≤ n/2 one has s(n, k) =
(

1 + o(1)
)

(

n

k − 1

)

.

Proof. Consider

Sk−1 :=
k−1
∑

i=1

1

i+ 1

(

2i

i

)

,

which is the sum of the first k − 1 Catalan numbers. Topley [18] gives an upper bound
on Sk−1 that is growing like a constant times 4k/k3/2. This is a factor of k slower than

11



(

2k
k

)

, which grows as a constant times 4k/k1/2, by Stirling’s formula. The claimed growth
of s(n, k) follows.

�

4.2 Squashed Flat Antichains with Minimum Volume

Using α = k and β = k − 1 in Theorem 3.4 gives a characterization of all minimum
volume full squashed flat antichains in

(

[n]
k

)

∪
(

[n]
k−1

)

. In fact, working through the details,
one obtains that the volume minimizer is unique: It coincides with the first full squashed
flat antichain of minimum size, and since it has a1 = 0, this antichain is also maximal
flat.

4.3 Squashed Flat Antichains with Minimum Lubell Function

Value

To find the squashed flat antichains in
(

[n]
k

)

∪
(

[n]
k−1

)

that minimize the Lubell function,

we can use (6) with α = 1/
(

n
k

)

and β = 1/
(

n
k−1

)

, which means that λ = (n − k + 1)/k.
Applying Theorem 3.4 and simplifying the resulting expressions leads to the following
results, where the squashed flat antichains are ordered according to the number of k-sets
in them.

n ≥ 2k + 1 All full (maximal, resp.) squashed flat antichains with minimum Lubell value
come after the last full (maximal, resp.) squashed flat antichain with minimum size.
The full squashed flat antichains with minimum Lubell value are not maximal.

n = 2k There is a unique full (maximal, resp.) squashed flat antichain of minimum Lubell
value. It is the last full (maximal, resp.) squashed flat antichain of minimum size.
Note the last maximal one is followed immediately by the last full one.

n = 2k − 1 We have λ = 1, and minimizing the Lubell value is equivalent to minimizing
the size. Then the full (maximal, resp.) squashed flat antichains with minimum
Lubell value are those with minimum size. There are 2k−1 full squashed flat an-
tichains with minimum Lubell value, and half of them are maximal. The first
minimum size and minimum Lubell value full squashed flat antichain is maximal,
and it is as well the unique volume minimizer.

n = 2k − 2 There is a unique full squashed flat antichain with minimum Lubell value,
namely, the full squashed flat antichain with minimum volume, which is also maxi-
mal. It is the first maximal (and full) squashed flat antichain of minimum size.

n ≤ 2k − 3 All full squashed flat antichains with minimum Lubell value are maximal, and
each occurs before the first minimum size full squashed flat antichain.
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Let L(n, k) be the minimum Lubell function value over all maximal squashed flat
antichains in

(

[n]
k

)

∪
(

[n]
k−1

)

. As the optimal full and maximal squashed flat antichains differ
only marginally, it is easy to verify that the following asymptotic result still holds for full
squashed flat antichains. For brevity, we only look at maximal squashed flat antichains
here.

Corollary 4.3 For fixed k ≥ 1 one has lim
n→∞

L(n, k) = 1−
(k − 1)k−1

kk
.

Proof. For the limit to be shown, we can assume that λ = (n−k+1)/k is large. Considering
this, Corollary 3.5 implies that for an optimal maximal squashed flat antichain we can
choose a1 = 0 and ai = ⌊(i− 1)(λ+ 1)⌋ for i = 2, . . . , k.

For 2 ≤ i ≤ k − 1 we have ai = ⌊(i − 1)(λ + 1)⌋ = ⌊ i−1
k
(n + 1)⌋ ≤ i

k
n < n.

Consequently, for i 6= k the summands

α

(

ai
i

)

− β

(

ai
i− 1

)

=

(

ai
i

)

(

n
k

) −

(

ai
i−1

)

(

n
k−1

)

on the right-hand side of (6) all tend to 0 as n → ∞.
The claim follows by β

(

n
k−1

)

= 1 and the by fact that

α

(

ak
k

)

− β

(

ak
k − 1

)

=

(

⌊k−1

k
(n+1)⌋

k

)

(

n
k

) −

(

⌊k−1

k
(n+1)⌋

k−1

)

(

n
k−1

)

=

(

⌊k−1
k
(n+ 1)⌋ − k + 1

n− k + 1
− 1

)

k−2
∏

j=0

⌊k−1
k
(n + 1)⌋ − j

n− j
,

which as n → ∞ tends to
(

k − 1

k
− 1

)(

k − 1

k

)k−1

= −
(k − 1)k−1

kk
.

�

5 Open Problems

Here are a couple of new problems to expand on the results in this paper.

Problem 1. Is there a maximal squashed flat antichain which has an equivalent non-flat
antichain (w.r.t. the equivalence relation in the introduction)? We conjecture the
answer to be negative. In particular, and noting the result in Section 4.2, is there
a pair of values of n, k such that the unique maximal squashed flat antichain with
minimum size and minimum volume has an equivalent non-flat antichain?

Problem 2. Extend the results here for full and maximal squashed flat antichains to
antichains on two levels k and l that are not necessarily consecutive.
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6 Data Sharing

Data sharing not applicable to this article as no datasets were generated or analysed
during the current study.
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