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Abstract
The critical relations are the building blocks of the relational clone of a relational structure
with respect to the relational operations intersection and direct product. In this paper we
describe the critical relations of crowns. As a consequence, we obtain that the subpower
membership problem for any crown is polynomial-time solvable.

Keywords Poset · Crown · Clone · Finitely generated · Obstruction · Critical relation ·
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1 Introduction

The relational structures in this note are assumed to be always finite. A crown is a height 1
poset whose comparabilty graph is a cycle, see Fig. 1.

Let m denote m-element antichain and + the linear sum of posets. Let

P = 1+2+P+2+1

where P is a poset, and let T = 2. In his seminal paper [10] Tardos proved that the clone
of the eight element poset T is not finitely generated. Following the terminology in [8], we
call the posets of the form C where C is a crown locked crowns, see Fig. 2.
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Fig. 1 Some crowns of small cardinality

It is an open question related to Tardos’s result whether the clone of every locked crown
is non-finitely generated. The positive answer to this question would be somewhat surpris-
ing at the first sight, since Demetrovics and Rónyai have proved in [3] that the clone of
monotone operations of any crown is finitely generated. However, from results of the third
author in [13] it follows that the clone of C is non-finitely generated if C is the four ele-
ment crown. The proof of this fact in [13] is reduced to Tardos’s original proof for the poset
T . Unfortunately, we are not able to use Tardos’s method to decide whether the clone of C
is finitely generated or not if C has at least six elements. One of the reasons why Tardos’s
proof works is that the extendibility of a partial map from a finite power of T to T can
be easily decided by checking some minimal non-extendible configurations called obstruc-
tions. The obstructions have a very simple structure for T , but they are unwieldy for C
where C is a crown. A possible cause for the latter is that the decision problem Ext(C ) intro-
duced in the next paragraph is NP-complete for any crown C . To circumvent this problem
we plan to use the critical relations of C instead of its obstructions to verify the extendibil-
ity of a partial map from a finite power of C to C . The obstructions of C are easily obtained
from the obstructions of C , the latter ones have no tangible description, though, as we have
mentioned. At present, we do not know an easy way to get the critical relations of C from
the critical relations of C , but in this note we at least give a simple description of the critical
relations of any crown C . We hope that this leads to a description of the critical relations of
C and, eventually, to a decision whether the clone of C is finitely generated.

In [7], Larose and the third author introduced a decision problem called the extendibility
problem Ext(P) for a finite poset P : given a finite poset Q and a partial map f from Q to
P , decide whether f extends to a monotone total map from Q to P . We define the graph
of f to be the set {(h, f (h)) : h ∈ Dom(f )}. So an input of Ext(P) is the pair formed
by a poset Q and the graph of f . It is easy to see that Ext(P) is in the complexity class
NP. Moreover, Pratt and Tiuryn proved in [9] that Sat(C ), a polynomial-time equivalent of
Ext(C ), is NP-complete if C is a crown. Thus Ext(C ) is NP-complete if C is a crown. In
[7], this result was extended for other posets characterized by an algebraic condition.

Fig. 2 Poset T and some locked crowns of small cardinality
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When studying finite generability for the clone of a finite poset P , often an other kind of
extendibility question occurs: given a power Pn of P and a partial map f from Pn to P ,
decide whether f extends to a monotone total map from Pn to P . We call this problem
the restricted extendibility problem for P and denote it by RExt(P). Thus, an input of
this problem is the pair formed by the poset Pn and the graph of f . Clearly, RExt(P) is a
polynomial-time reducible to Ext(P), so it is in NP.

An order-primal algebra related to a poset P is an algebra whose base set equals that
of P and whose term operations coincide with the monotone operations of P .

We consider another problem, a variant of the restricted extendibility problem. The new
problem is called the subpower membership problem SMP(P): given a partial map f from
Pn to P , decide whether f extends to a monotone total map from Pn to P . Thus, an
input of this problem is just the graph of f . Notice that the subpower membership problem
is thriftier with the sizes of the inputs than the restricted extendibility problem. It is evident
that RExt(P) is polynomial-time reducible to SMP(P).

Let us suppose now that an input of SMP(P) is given by the list of pairs (hi, f (hi)), 1 ≤
i ≤ k, where hi runs through the domain of f in P n. Alternatively, we may conceive this list
as an (n + 1)-element set of k-tuples where the j -th k-tuple, j ≤ n, is the tuple determined
by the j -th coordinates of the hi and the (n + 1)-st k-tuple is (f (h1), . . . , f (hk)), and then
the question of SMP(P) becomes whether the subalgebra generated by the first n tuples in
the k-th power of an order-primal algebra related to P contains the (n + 1)-st k-tuple. The
study of these types of problems was first suggested by Willard, see [11], in an algebraic and
more general setting. Since then, the research in this area has become a burgeoning branch
of mathematics, see [2] for further details and references on the subpower membership
problem.

In the proof of the characterization of critical relations of crowns, one of the main tools
is a result of Demetrovics and Rónyai in [3] that states that every monotone surjective
operation of a crown is essentially unary. As a consequence of our result, we also prove
that SMP(C ), and hence RExt(C ), is solvable in polynomial time if C is a crown. This
gives sharp contrast between the complexities of the two decision problems Ext(P) and
RExt(P). We do not know the answer to the question if there is a finite poset P for which
RExt(P) is NP-complete.

2 Critical Relations and Obstructions of Relational Structures

In this section we introduce some basic definitions and prove some general claims on critical
relations and obstructions of finite structures. These statements will be applied in the later
sections when studying the critical relations of crowns.

Let R be a relational structure. We denote the n-th power of R by Rn. The relational
structure Rn has the same type as R. Its base set is Rn where R is the base set of R. Each
of its k-ary relations ρRn is obtained from a k-ary relation ρR of R by

(r1, . . . , rk) ∈ ρRn

if and only if all of the k-tuples defined coordinatewise from the n-tuples r1, . . . , rk are in
ρR.

Let S be a relational structure of the same type as R. We say that a map f : S → R is
a homomorphism from S to R if f preserves the relations, that is, for any k-ary relation
ρS of S and any k-tuple (s1, . . . , sk) ∈ ρS , we also have (f (s1), . . . , f (sk)) ∈ ρR.
An isomorphism is a bijective homomorphism whose inverse is also a homomorphism. A
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homomorphism from Rn to R is called a polymorphism of R. The set of polymorphisms
of R is called the clone of R and is denoted by Clo(R). The set of n-ary polymorphisms
in Clo(R) is denoted by Clon(R). A unary polymorphism of a relational structure is called
an endomorphism. An automorphism is a bijective endomorphism.

Let F be a set of operations on a set R. A k-ary relation ρ is called an invariant relation
with respect to F if all the operations of F are polymorphisms of the relational structure
(R; ρ). In this case, we say that the operations in F preserve ρ. The set of all invariant
relations with respect to F is denoted by Inv(F ). The set of k-ary relations in Inv(F ) is
denoted by Invk(F ). We remark that Invk(F ) is a lattice with respect to containment. For a
relational structure R, Inv(Clo(R)) is called the relational clone of R.

In this paper, a direct product of a k-ary relation α and an l-ary relation β is a relation
obtained by permutation of coordinates from the relation

{(a1, . . . , ak, b1, . . . , bl)| (a1, . . . , ak) ∈ α, (b1, . . . , bl) ∈ β}.
We use the notation α × β to denote any of the direct products of α and β, from the context
it will always be clear which of the direct products we think of.

A relation ρ ∈ Invk(F ) is meet-irreducible if it is not a proper meet of any two invariant
relations of Invk(F ). Following the terminology in [6], we call a relation ρ ∈ Invk(F ) a
critical relation with respect to F if it is meet-irreducible in the lattice Invk(F ) and is not a
direct product of two relations with smaller arities. Let Crit(R) denote the set of the critical
relations with respect to Clo(R). We call the elements of Crit(R) the critical relations of
R. The definition of Critk(R) is analogous.

Lemma 1 Let R be a finite relational structure and ρ ∈ Invk(Clo(R)) a meet-irreducible
relation. Then ρ is a critical relation or a direct product of a critical relation and a finite
power of the base set of R.

Proof Suppose that ρ is a meet-irreducible but not a critical relation. Then ρ is of the form
α × β for suitable relations α, β ∈ Inv(Clo(R)). Let α be an l-ary and β an m-ary relation
where l +m = k. Then ρ = (Rl ×β)∩ (α ×Rm). By meet irreducibility, either ρ = Rl ×β

or ρ = α × Rm. Without loss of generality, we assume that ρ = α × Rm. Now, α must
be meet-irreducible, for otherwise ρ would not be meet-irreducible. Thus, α is a meet-
irreducible relation with a smaller arity than ρ. Hence, an induction on the arity of ρ yields
the claim.

Let 0R denote the equality relation of a set R. We say that ρ ∈ Invk(Clo(R)) has a
repetition of coordinates if there exist two different coordinates such that by projecting ρ to
these coordinates, the resulting binary relation is contained by 0R .

Lemma 2 Let R be a finite relational structure and ρ ∈ Invk(Clo(R)) a meet-irreducible
relation. Then ρ has no repetition of coordinates or it is of the form Rk−2 × 0R . So every
critical relation of arity at least three has no repetition of coordinates.

Proof If |R| = 1, then the claim is trivial. Suppose that |R| ≥ 2 and the last two coordinates
of the tuples in ρ are the same. Let α be the projection of ρ to the first k − 1 coordinates.
Then ρ = (α × R) ∩ (Rk−2 × 0R). Since ρ is meet irreducible and ρ �= α × R, we have
that ρ = Rk−2 × 0R .

Later, we shall work in the class of posets. It is clear that this class is closed under
finite power. Now, we are going to prove two theorems for classes K of general relational
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structures such that K is closed under finite power. These theorems play a fundamental role
in the next section. First, we require a relativized version of a basic representation theorem
for the invariant relations of a relational structure, cf. [4].

Theorem 3 Let K be a class of models in a fixed language of relational structures such
that K is closed under finite power. Let R be a finite relational structure in K and ρ a
non-empty k-ary relation on R. Then ρ ∈ Invk(Clo(R)) if and only if

ρ = {(h(s1), . . . , h(sk)) | h : S → R is a homomorphism} (1)

for some finite relational structure S ∈ K and elements s1, . . . , sk ∈ S.

Proof The sufficiency part is clear as a composition of homomorphisms is a homomor-
phism itself. We prove the necessity part of the theorem. So let ρ ∈ Invk(Clo(R)) and let
n = |ρ|. The elements of ρ as columns constitute a k × n matrix, let s1, . . . , sk ∈ Rn be
the rows of this matrix in the natural order and let S = Rn. We note that S ∈ K , since
K is closed under finite power. To see that Eq. 1 holds observe that each homomorphism
from S to R is an n-ary operation in Clo(R) that preserves ρ, hence ρ contains the right
hand side of Eq. 1. By restricting the n-ary projections—that are homomorphisms from S
to R— onto s1, . . . , sk , one sees that the converse containment also holds.

If ρ, S and s1, . . . sk ∈ S are as the ones in the statement of the preceding theorem, we
say that S defines ρ on s1, . . . , sk .

For sets H and P , the partial maps f : H ⇀ P are called the colorings of H with P .
By a coloring of a relational structure, we naturally mean a coloring of its base set. We call
the pair (S , f ) an R-colored structure if f is a partial map from S to R. An R-colored
structure (S , f ) is called extendible if there exists a homomorphism g : S → R which
extends f . Let R and S be relational structures of the same type with base sets R and
S, respectively. We say that R contains S if R ⊇ S and each relation of R contains the
corresponding relation of S .

Let K be a class of models in a fixed language of relational structures such that K is
closed under finite power and R a finite relational structure in K . An R-colored structure
(S , f ) is called an R-obstruction if S is a finite relational structure in K , (S , f ) is not
extendible, but for all S ′ ∈ K properly contained in S , (S ′, f

∣
∣
S′) is extendible.

The following theorem roughly says that to every critical relation we can assign an
obstruction whose base relational structure defines it on the colored elements. A loose
interpretation of this is that there are more obstructions than critical relations.

Theorem 4 Let K be a class of models in a fixed finite language of relational structures
such that K is closed under finite power and R a finite relational structure in K . If
ρ ∈ Critk(R) and ρ �= ∅, 0R , then there exist a finite relational structure S ∈ K and an
R-obstruction (S , f ) with Dom(f ) = {s1, . . . , sk} such that S defines ρ on s1, . . . , sk .

Proof We apply Theorem 3 as follows. We choose a finite S ∈ K such that S defines ρ

on s1, . . . , sk ∈ S and S is minimal with respect to containment among the finite structures
in K that define ρ. For every S ′ ∈ K where S ′ ⊂ S , let S ′′ denote the structure
we get from S ′ by changing S′ to S′ ∪ {s1, . . . , sk} and retaining the relations of S ′ on
S′ ∪ {s1, . . . , sk}.

Let
ρS ′ = {(h(s1), . . . , h(sk)) | h : S ′′ → R is a homomorphism}.
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It is obvious that ρS′ is an invariant relation of R and that

ρ ⊆ ρS ′ . (2)

We claim that this inclusion is proper. If {s1, . . . , sk} ⊆ S′, then the minimality of S
implies the proper inclusion. If {s1, . . . , sk} �⊆ S′, then ρS ′ is obviously a direct product, so
ρ �= ρS ′ , which together with Eq. 2 yields that ρ ⊂ ρS ′ indeed.

Let ρ′ be the unique cover of ρ. Then, by using the proper inclusions we have just proved,
we obtain that

ρ ⊂ ρ′ ⊆
⋂

S ′⊂S , S ′∈K

ρS ′ .

Let r = (r1, . . . , rk) ∈ ρ′ \ ρ. We define the partial map f on S by f : si �→ ri , 1 ≤ i ≤ k.
We have to argue that f indeed is a map from its domain. By Lemma 2, it suffices to consider
the case when k = 2 and s1 = s2. Since ρ �= 0R and S defines ρ on s1 = s2, ρ is a proper
subset of 0R . Let (r, r) /∈ ρ. Then the invariant relation generated by ρ ∪{(r, r)} contains ρ′
and, on the other hand, is a subset of the equality, hence r1 = r2. Thus, f is a partial map.

We claim that (S , f ) is an R-obstruction. From r /∈ ρ, we see that (S , f ) is not
extendible. Moreover, for any S ′ ⊂ S , S ′ ∈ K , we have r ∈ ρS ′ and hence (S ′, f

∣
∣
S′)

is extendible.

The next theorem highlights the significance of critical relations. Let (Rn, f ) be a finite
R-colored structure and ρ a k-ary invariant relation of R. We say that f preserves ρ if

for all r1, . . . , rk ∈ Dom(f ), (f (r1), . . . , f (rk)) ∈ ρ whenever (r1, . . . , rk) ∈ ρ. (3)

Theorem 5 Let (Rn, f ) be a finite R-colored structure. Then f is extendible if and only
if for all ρ ∈ Critk(R), f preserves ρ.

Proof The “only if” direction is obvious as critical relations are invariant. For the “if”
part, first, let us observe that property (3) is inherited for direct product and intersection of
relations. Moreover, all invariant relations are obtained from critical relations with direct
product and intersection. So f preserves all invariant relations instead of critical relations.
This implies that if Dom(f ) = {a1, . . . , am} and (a1, . . . , am) is in an invariant relation
α ⊆ Rm, then (f (a1), . . . , f (am)) ∈ α as well. For the specific

α = {

(h(a1), . . . h(am))
∣
∣ h : Rn → R is a homomorphism

}

, (4)

it is clear (taking the projections) that (a1, . . . , am) is in α, hence from our previous
observation (f (a1), . . . , f (am)) ∈ α as well. Then, by the definition in Eq. 4, there is a
homomorphism extending f .

Let K be a class of models in a fixed finite language of relational structures such that K
is closed under finite power and R a finite relational structure in K . Notice that the set of
R-obstructions depends on the class K , while the set of critical relations only depends on
R. By Theorem 5, it suffices to know the critical relations of R for deciding the extendibil-
ity of an R-colored structure (Rk, f ). On the other hand, the extendibility of (Rk, f ) can
be checked by the use of obstructions as well: (Rk, f ) is extendible if and only if it contains
no R-obstructions. By Theorem 4, in a way, there are less critical relations than obstruc-
tions, and sometimes it is much easier to describe the critical relations in Crit(R) than the
R-obstructions. So the extendibility of (Rk, f ) might turn out to be easier to decide by the
use of critical relations.
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Fig. 3 Fences of small cardinality

In the next two sections, we supply a description of the critical relations of the crowns.
This is of significance since no tangible description is known for the obstructions of crowns
within the class of posets. This is how we proceed: first we describe the binary critical
relations of crowns and then we settle the general case. As an application, we prove that
there is a polynomial-time algorithm that solves the subpower membership problem for any
crown. A fence is a one element poset or a length 1 poset whose comparability graph is a
path, see Fig. 3. Let Fk denote the (k+1)-element fence (when k is even there are two such
posets dual to each other, then Fk denotes any of them), and let Ck denote the 2k-element
crown.

3 The Binary Critical Relations of Ck

From now on, we work in the class of posets. All of the definitions and statements intro-
duced in the preceding section are valid for posets as they constitute a class closed under
finite power. In this section, we use Theorem 4 to describe the binary critical relations of
Ck . We remark that the description of the binary critical relations of Ck can also be obtained
without Theorem 4, by using elementary facts about unary monotone operations of Ck and
determining the smallest invariant relation containing a pair (a, b) ∈ C 2

k .
Our starting point to obtain such a description is an earlier result in [12]. A ternary operation
m is a majority operation if it satisfies the identities

m(x, y, y) = m(y, x, y) = m(y, y, x) = y.

Fig. 4 The lattice of binary
invariant relations of Ck
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It is a well known fact that the fences admit a majority operation, so by Proposition 3.1 in
[12] we have the following.

Lemma 6 The Fk-obstructions are the non-extendible Fk-colored fences that are colored
at the two endpoints.

Theorem 7 The Ck-obstructions with two colored elements are the non-extendible Ck-
colored fences that are colored at the two endpoints.

Proof Let (H , f ) be a Ck-obstruction with two colored elements colored by a and b.
Clearly, a and b are different. Let F be a shortest path connecting a and b in Ck . Then F
is a fence and (H , f ) is a nonextendible F -colored poset. So it contains an F -obstruction
(H ′, f ) such that H ′ is a fence whose endpoints are colored by a and b. By the preceding
lemma, H ′ has length shorter than F , or H ′ is the dual of F . In both cases (H ′, f ) is a
non-extendible Ck-colored poset, since F is a shortest path connecting a and b in Ck . By
the minimality of (H , f ), (H , f ) = (H ′, f ) and we are done.

In a connected poset Q, for any two elements a and b we define the updistance of a

from b to be the least positive integer n such that there exists a sequence of elements a =
a0 ≤ a1 ≥ a2 ≤ . . . an = b in Q. The downdistance of a from b is defined dually. We let
↑ (a, b) and ↓ (a, b) denote the up and downdistance from a to b, respectively. We define
some binary relations in the relational clone of Ck: let

Ul = {(a, b) : ↑ (a, b) ≤ l} and Dl = {(a, b) : ↓ (a, b) ≤ l}
where l ≤ k.

Notice that the unary invariant relations of a finite poset P are ∅ and P , hence the only
unary critical relation is ∅. Therefore, the only direct product relations in Inv2(Clo(P)) are
∅ and P2.

Theorem 8 The binary critical relations of Ck are Ul and Dl where l ≤ k.

Proof Notice that if a poset is not an antichain, then its equality relation is not critical since
it is the intersection of ≤ and ≤−1. So by Theorem 4 and Theorem 7, every binary critical
relation of Ck is of the form Ul or Dl for some l ≤ k. By the remark preceding the theorem,
the only nonempty direct product relation in Inv2(Clo(Ck)) is C2

k and all of the Ul and Dl

are smaller than C2
k .

To conclude the proof, it suffices to verify that the Ul and Dl are meet-irreducible.
Observe that

Ul, Dl ≤ Ul+1, Dl+1

for all l ≤ k − 1, and Ul and Dl are incomparable for all l ≤ k. Moreover

Ul+1 ∩ Dl+1 = Ul ∪ Dl .

Notice that we have just described the lattice of binary invariant relations of Ck , see Fig. 4.
Thus, Ul and Dl are meet-irreducible indeed for all l ≤ k.

4 The n-ary Critical Relations of Ck for n ≥ 3

In this section we complete the characterization of the critical relations of crowns. Clearly,
the automorphism group of Ck is isomorphic to the 2k-element dihedral group if k ≥ 3,

236 Order (2022) 39:229–241



and is isomorphic to the square of the two element group if k = 2. Observe that the range
of any non-onto polymorphism of Ck is an at most (k + 1)-element fence due to the fact
that the largest down (up) distance is k in Ck , and this property and connectedness are
inherited for the powers of Ck and their monotone images. We call an endomorphism f of
a poset a retraction if f 2 = f . A retract of a poset P is a poset that is isomorphic to the
image of a retraction of P . By coincidence, every at most (k + 1)-element fence is a retract
of Ck .

The Słupecki relation Sk on a k-element set where k ≥ 3 is the set of all k-tuples that have
at most k − 1 pairwise different components. It is well known that a surjective operation f

preserves Sk if and only if f is essentially unary. So the clone of operations that preserve
Sk consists of the unary operations and the non-surjective operations of the k-element set
when k ≥ 3. This clone is called the Słupecki clone.

We require a result of Demetrovics and Rónyai which states that the clone of every crown
is contained in the Słupecki clone, see Theorem 3.3 in [3]. An equivalent formulation of their
theorem asserts that the surjective monotone operations of crowns are essentially unary. In
the proof of Theorem 3.3 in [3], Demetrovics and Rónyai exhibited a poset that defines the
Słupecki relation on suitable sequence of elements, proving in this way that the relational
clone of Ck contains the Słupecki relation. For completeness, here we give another proof of
their theorem by the use of Jablonskiy’s lemma in [5].

Lemma 9 (Jablonskiy, [5]) For k ≥ 3, let A be an k-element set and f : An → A an onto
operation that depends on at least two of its variables. Then there exist (k − 1)-element
subsets A1, . . . , An of A such that f (A1 × · · · × An) = A.

Theorem 10 (Demetrovics and Rónyai, [3]) In the clone of Ck , the only n-ary surjective
operations are the ones of the form α(πi), where α is an automorphism of Ck and πi is the
projection to the i-th coordinate where 1 ≤ i ≤ n.

Proof Suppose that f is an n-ary monotone onto operation of Ck that depends on at
least two of its variables. We set A = Ck and apply Jablonskiy’s lemma. By leav-
ing out an element from Ck we obtain a (2k − 1)-element fence. So the subposets
A1, . . . ,An induced by A1, . . . , An in Ck are (2k − 1)-element fences. Notice that there
is an element (the middle element) in these fences such that both the updistance and the
downdistance from this special element to each element is at most k. This property is
inherited for the product A1 × · · · × An and, since f is monotone and f (A1 × · · · ×
An) = Ck , it inherits for Ck . On the other hand, notice that in Ck there exists no
element from which each element has updistance and downdistance at most k, a contra-
diction. So the monotone onto operations of Ck are essentially unary, which concludes the
proof.

Let AutCk denote the automorphism group of Ck . We call a tuple

a = (a1, . . . , an) ∈ Cn
k

a large range tuple if none of the (k + 1)-element subfences of Ck contain {a1, . . . , an}.
The tuples that are not of large range are called small range tuples. For a large range tuple
a ∈ Cn

k , we define the following relations:

Ra = Cn
k \ {(σ (a1), . . . , σ (an)) : σ ∈ AutCk}.

Lemma 11 For every large range tuple a ∈ Cn
k , Ra is a critical relation of Ck .
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Proof First we prove that the relations in the claim are invariant relations of Ck . For a
large range tuple a = (a1, . . . , an) ∈ Cn

k the relation Ra has exactly 2k missing tuples
from Cn

k , each of which can be mapped to the other by an automorphism of Ck . So to get
a contradiction assume, that a = f (b, c, . . . ) for some monotone operation f and tuples
b, c, . . . ∈ Ra . However, f must be surjective and, by the preceding theorem, we know that
each surjective operation of a crown depends only on a single variable, so, say, a = σ(b)

for some automorphism σ of Ck . This contradicts the fact that a �∈ Ra and b ∈ Ra .
Notice that for each large range tuple a = (a1, . . . , an) ∈ Cn

k , Ra is a coatom in the
lattice of the n-ary invariant relations of Ck . Hence it is meet-irreducible. So by Lemma 1,
Ra is a critical relation or a direct product of a critical relation and a power of Ck . We argue
that the latter possibility does not happen. Suppose that it does. Then Ra is of the form
R×Cl

k where R is an (n−l)-ary relation. From the definition of Ra , since a has large range,
it follows that |Ra | = (2k)n − 2k. On the other hand, the projection of (σ (a1), . . . , σ (an))

onto the coordinates of R is outside of R for all σ ∈ AutCk . This yields at least k(2k)l

elements outside of Ra , as every element of Ck is in a k-element orbit of AutCk . So |Ra | ≤
(2k)n − k(2k)l , a contradiction. Thus, for any large range tuple a ∈ Cn

k , Ra is a critical
relation of Ck .

We remark that it is also of interest to describe a poset that defines the relation Ra on
suitable sequence of elements for every large range tuple a ∈ Cn

k . This would yield an
alternate proof of the preceding lemma, not using the Demetrovics-Rónyai result. We also
note that the preceding lemma easily implies that the Słupecki relation S2k is in the relational
clone of Ck , as S2k is the intersection of the 2k-ary relations Ra where a runs through the
2k-tuples with pairwise different coordinates. The latter fact was proved by Demetrovics
and Rónyai in [3], by exhibiting a poset that defines the Słupecki relation.

For n ≥ 2, a pair 1 ≤ i, j ≤ n of distinct indices, and a binary relation S, we define the
n-ary relation

Sij = {(a1, . . . , an) ∈ Cn
k : (ai, aj ) ∈ S }.

In later applications, the arity of the relation Sij will be clear from the context. For n ≥ 2, a
pair 1 ≤ i, j ≤ n of distinct indices, and an n-ary relation T let πij (T ) denote the projection
of T to the coordinates i and j . Finally, let Tij denote the n-ary relation = (πij (T ))ij .

Theorem 12 Let L be the set of large range tuples in Cn
k . For any n-ary relation T in the

relational clone of Ck we have that

T = (∩a∈L\T Ra) ∩ (∩1≤i<j≤nTij ).

Proof Observe that the right-hand side is an intersection, and, clearly, all the meetands
contain the left-hand side. Therefore all we need to prove is that for an arbitrary tuple b /∈ T ,
there is a meetand of the right-hand side not containing b. For a b = a with large range,
Ra suffices. Consequently, we only need to deal with a small range b. For a contradiction,
let us suppose that b /∈ T is contained in all of the meetands of the right-hand side. In this
case, we have tuples bij ∈ T for all 1 ≤ i < j ≤ n such that πij (bij ) = πij (b). For b

has a small range, it is contained in a (k + 1)-element subfence F of Ck . As we mentioned
at the beginning of this section, there is a retraction r such that r(Ck) = F . Applying r

to the bij componentwise, we obtain the tuples cij in T . Since for all 1 ≤ i < j ≤ n,
πij (bij ) = πij (cij ), the cij interpolate b on every two coordinates. Let m be a majority
operation of F . By the Baker-Pixley argument in [1], b is generated from the cij , with the
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help of the operation m(r(x), r(y), r(z)). Thus, cij ∈ T , 1 ≤ i < j ≤ n, yields b ∈ T , a
contradiction.

The following is a straightforward consequence of Theorem 8, Lemma 11 and the
preceding theorem.

Corollary 13 The critical relations of Ck are the unary ∅ relation, the binary relations Ul

and Dl for all l ≤ k, and the relations Ra for all large range tuples a ∈ C n
k .

With little effort, we get the meet-irreducible elements in the lattice of the n-ary invariant
relations of Ck .

Corollary 14 The following is a complete list of the meet-irreducible elements in the lattice
Invn(Clo(Ck)):

1. ∅,
2. Sij where S = Ul or S = Dl for any i �= j, i, j ≤ n and l ≤ k,
3. Ra for all large range tuples a ∈ Cn

k .

Proof By Theorem 12, every meet-irreducible element in Invn(Clo(Ck)) is of the form as
claimed. We only have to prove that Sij is meet-irreducible where S = Ul or S = Dl for
l ≤ k, since the other type relations in the claim are critical by the preceding corollary, and
hence they are meet-irreducible. Let C be the intersection of all the relations that are of the
form as in the claim and properly contain Sij . We shall prove that C \ Sij is non-empty.
First, observe that if Sij ⊆ Spq , then {i, j} = {p, q}. By Theorem 8, there is pair (a, b) in
the intersection of the binary invariant relations properly containing S such that (a, b) /∈ S.
Let c be an n-tuple whose i-th coordinate is a and whose other coordinates are b. Then c is
a small range tuple, so it is contained in C \ Sij .

5 The Subpower Membership Problem for Crowns

In this short section, we prove an easy but interesting corollary that immediately yields a
polynomial-time algorithm to decide whether a partial map f : C n

k ⇀ Ck is extendible. So
SMP(Ck) is decidable in polynomial time for any k. This can be proved by a direct use of
Theorem 10, but here, we give a proof based on the description of the critical relations of
Ck .

Let f : C ⇀ Ck be a partial map with Dom(f )= {a1, . . . , al}. Then f is called large
range if the tuple (f (a1), . . . , f (al)) is of large range. We say that f preserves the up
(down) distance if for any a, b ∈ Dom(f )

↑ (f (a), f (b)) ≤↑ (a, b) (↓ (f (a), f (b)) ≤↓ (a, b)).

Corollary 15 Let f : C ⇀ Ck be a partial map. Then f extends to C as a fully defined
monotone map if and only if there is an i such that

{(hi, f (h)) : h = (h1, . . . , hn) ∈ Dom(f )} ⊆ {(c, σ (c)) : c ∈ Ck} (5)

for some σ ∈ AutCk , or f has a small range and preserves the up and down distances.

Proof We know by Theorem 5 that f is extendible if and only if it preserves all critical
relations of Ck . We assume that Dom(f ) is an l-element set.
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First, suppose that f has large range. Let f be the l-tuple determined by the values of
f on a list of the elements of Dom(f ). Clearly, f is a large range tuple. By Lemma 11,
the relation Rf is a critical relation of Ck . Observe that f preserves Rf if and only if f

is extendible. Indeed, if f preserves Rf , then there must be an i such that Eq. 5 holds for
some σ ∈ AutCk , that is, f = σ ◦ πi |Dom(f ), and so σ ◦ πi is a monoton extension of f to
C . Thus, if f has large range, then f is extendible if and only if there is an i such that Eq. 5
holds for some σ ∈ AutCk .

Let us suppose now that f has small range. Then f vacuously preserves all critical
relations of the form Ra for all large range tuples a ∈ C . Then, by Corollary 13, f extends
to C if and only if f preserves the binary critical relations of Ck , which means that f

preserves the up and down distances.

As for any a, b ∈ Cn
k where a = (a1, . . . , an) and b = (b1, . . . , bn)

↑ (a, b) = max1≤i≤n ↑ (ai, bi) and ↓ (a, b) = max1≤i≤n ↓ (ai, bi)

in C , all conditions of the corollary check in polynomial time. Thus SMP(Ck) is decidable
in polynomial time for any k. This implies that RExt(Ck) is also decidable in polynomial
time. On the other hand, as we mentioned in the introduction, Ext(Ck) is NP-complete.
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