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INTEGRAL OPERATORS ON LATTICES

AIPING GAN, LI GUO, AND SHOUFENG WANG

Abstract. As an abstraction and generalization of the integral operator in analysis, integral oper-

ators (known as Rota-Baxter operators of weight zero) on associative algebras and Lie algebras

have played an important role in mathematics and physics. This paper initiates the study of

integral operators on lattices and the resulting Rota-Baxter lattices (of weight zero). We show

that properties of lattices can be characterized in terms of their integral operators. We also display

a large number of integral operators on any given lattice and classify the isomorphism classes

of integral operators on some common classes of lattices. We further investigate structures on

semirings derived from differential and integral operators on lattices.
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1. Introduction

This paper introduces the notion of integral operators on lattices and studies their role in

understanding lattices, their classification and their derived structures.

As is well known, the derivation, or differential operator, and integral operator are fundamental

in analysis and its broad applications. As an abstraction of the derivation, the notion of a differ-

ential algebra was introduced in the 1930’s by Ritt [27], to be a field A carrying a linear operator

d satisfying an abstraction of the Leibniz rule for the derivation:

d(uv) = d(u)v + ud(v) for all u, v ∈ A.

Thus d is still called a differential operator. The theory of differential algebra for fields and more

generally for commutative algebras has since been developed into a mature area of mathematical

research including differential Galois theory, differential algebraic geometry and differential al-

gebraic groups [9, 23, 31]. Furthermore, differential algebra has found profound applications in

arithmetic geometry, logic and computational algebra.
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The notion of derivations on lattices was first introduced by Szasz [33]. There, a derivation on

a lattice (L,∨,∧) is a map d : L→ L satisfying

(1) d(x ∨ y) = d(x) ∨ d(y), d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)) for all x, y ∈ L.

More recently, a less restricted notion of derivations was studied with motivation from informa-

tion science [36, 35], without requiring the first condition. This study was continued in [13],

where the notion of a differential lattice was formally introduced and then studied from the

viewpoint of universal algebra.

Originated from a probability study of G. Baxter [6] and promoted by G.-C. Rota in its early

stage, a Rota-Baxter algebra is an associative algebra together with a linear operator satisfying

a variation of the integration by parts formula for the integral operator. More precisely, a Rota-

Baxter algebra with a preassigned scalar λ, called the weight, is an associative algebra A with a

linear endomorphism P of A satisfying the Rota-Baxter equation:

(2) P(u)P(v) = P(uP(v)) + P(P(u)v) + λP(uv) for all u, v ∈ A.

The analytic model of a Rota-Baxter operator of weight zero is the integral operator

(3) I( f )(x) :=

∫ x

0

f (t) dt,

defined for functions f continuous on R. Then the integration by parts formula gives

(4)
(

∫ x

0

f (t)dt
)(

∫ x

0

g(s)ds
)

=

∫ x

0

f (t)
(

∫ t

0

g(s)ds
)

dt +

∫ x

0

g(s)
(

∫ s

0

f (t)dt
)

ds.

This means that the operator I is a Rota-Baxter operator of weight zero. Thus a Rota-Baxter

operator of weight zero in general is also called an integral operator.

While the early developments of Rota-Baxter algebras attracted the attentions of prominent

mathematicians such as Rota, Atkinson and Cartier [2, 8, 29] in the 1960s and 1970s, this

century witnesses a remarkable renascence of Rota-Baxter algebras, thanks to their connections to

several important areas in mathematics and mathematical physics such as the renormalization of

quantum field theory, Yang-Baxter equations, multiple zeta values, combinatorial Hopf algebras

and operads [1, 3, 11, 19, 21, 22, 24, 28, 34, 37]. See [17, 18] for a short survey and a more

detailed exposition. Furthermore, Rota-Baxter operators have been defined for a wide range of

specific algebraic structures and for the general framework of algebraic operads [1, 4, 30]. More

recently Rota-Baxter operators have been defined for Hom-Lie algebras, groups, groupoids and

cocommutative Hopf algebras [15, 21, 26].

Thus it is natural to define Rota-Baxter operators, in particular integral operators, on lattices

and explore their role in the study of lattices. This is the purpose of this article. We find it

fascinating that properties of lattices that at the outset have nothing to do with differential or

integral operators turn out to be characterized by these operators. We also study isomorphic Rota-

Baxter lattices1 and classify isomorphism classes of Rota-Baxter lattices with certain underlying

lattices. We further investigate derived structures from differential lattices or Rota-Baxter lattices,

motivated by their associative algebra or Lie algebra predecessors which had their origins in

hydrodynamics and quantum theory.

1To avoid confusion with the existing notion of integral lattices [32], we will use the term Rota-Baxter lattices

instead. Note however that integral operators only correspond to Rota-Baxter operators of weight zero. Rota-Baxter

lattices from Rota-Baxter operators with nonzero weights will be studied separately.
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By the First Fundamental Theorem of Calculus, the differential operator and the integral oper-

ator in analysis are one sided inverses of each other. An analog of this relation also holds for the

differential operators and integral operators on associative algebras [20]. Thus it is also interesting

to study the relationship between the corresponding operators on lattices. We found that in place

of a formal analogy, the two operators are closely related in another way: an operator d on a

lattice is both an integral operator and a differential operator in the sense of [35] if and only if d

satisfies Eq. (1), that is, d is a derivation in the sense of Szasz [33] (see Proposition 2.12).

The importance of the differential operator and integral operator on associative algebras relies

on their close relationship with other useful algebraic structures such as Novikov algebras and

dendriform algebras. We show that such relations can be extended to the operators on lattices,

see Proposition 4.4 and Proposition 4.7.

These properties show that derivations and integral operators are useful tools to study lattices,

as well as to give rise to new structures of independent interests.

Overall, the paper is organized as follows. In Section 2, the notions of an integral operator

on a lattice and Rota-Baxter lattice are introduced. Each lattice carries several classes of integral

operators, giving a large selection of Rota-Baxter lattices. We find that an operator on a lattice

is both a derivation and an integral operator if and only if it satisfies Eq. (1) (Proposition 2.12).

We also characterize some special lattices, such as distributive lattices, weak modular lattices or

chains, via integral operators (Theorem 2.13, Theorem 2.22 and Theorem 2.23).

Section 3 studies isomorphism classes of Rota-Baxter lattices. We classify isomorphic Rota-

Baxter lattices on two types of underlying lattices: the finite chains and the diamond type lattices

Mn (Proposition 3.6 and Theorem 3.15). Their enumerations are related to the Fibonacci numbers.

As noted above, differential and integral operators on associative algebras gives rise to interest-

ing algebraic structures such as Novikov algebras and dendriform algebras. We show in Section 4,

that similar structures can be derived from differential and integral operators on lattices. Let L be

a distributive lattice, and d be an isotone derivation on L. Define x ⊳ y := d(x) ∧ y for all x, y ∈ L.

Then (L,∨, ⊳) is a left Novikov semiring (Proposition 4.4). For a Rota-Baxter distributive lattice

(L,∨,∧, P), define x ≺P y := x ∧ P(y) and x ≻P y := P(x) ∧ y for all x, y ∈ L. Then (L,∨,≺P,≻P)

is a dendriform semiring (Proposition 4.7).

Notations. Throughout this paper, unless otherwise specified, we let (L,∨,∧) denote a lattice,

and let (L,∨,∧, 0, 1) denote a bounded lattice with bottom element 0 and top element 1. For

elements a, b in a poset (A,6), we write a < b if a 6 b with a , b.

2. Integral operators on lattices

In this section, we introduce integral operators on lattices, and characterize some special

lattices, such as distributive lattices and chains, in terms of integral operators.

Definition 2.1. An operator P : L → L on a lattice L is called an integral operator if P satisfies

the following equations:

(i) P(x ∨ y) = P(x) ∨ P(y), and

(ii) P(x) ∧ P(y) = P(P(x) ∧ y) ∨ P(x ∧ P(y)) for all x, y ∈ L.

A lattice equipped with an integral operator is called an Rota-Baxter lattice (of weight zero).

See the introduction, especially Eqs. (3) and (4), for the motivation for the term integral

operator.

As pointed out by one of the referees, the term integral lattice has been used to mean a discrete

additive subgroup of Rn such that the inner product of lattice vectors are all integral [32]. Thus
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the term Rota-Baxter lattice is used here to avoid confusion. However an integral operator is

only a Rota-Baxter operator of weight zero. So the Rota-Baxter lattice considered here is also for

weight zero. Other Rota-Baxter lattices will be studied separately.

We let IO(L) denote the set of all integral operators on a lattice L. To conform to the notion of

linear operators, we call a map from L to itself an operator even though there is no linear structure

on L.

We give some preliminary examples of integral operators. Many more examples can be found

in Propositions 2.15–2.20.

Example 2.2. (i) It is clear that the identity map IdL on the lattice L is an integral operator.

(ii) Let L be a lattice. For any a ∈ L, define an operator C(a) : L→ L by: C(a)(x) := a for any

x ∈ L. It is easy to see that C(a) is in IO(L). C(a) is called the constant integral operator

with value a. When L is a lattice with bottom element 0, we write 0L for C(0).

(iii) Let (L,∨,∧, 0, 1) be a lattice. Define an operator τ : L→ L by:

τ(x) :=















0, if x = 0;

1, otherwise.

It is routine to verify that τ is in IO(L).

Proposition 2.3. Let L be a lattice and P ∈ IO(L). Then the following statements hold:

(i) P is isotone: P(x) 6 P(y) for any x, y ∈ L with x 6 y..

(ii) P(x) = P(x ∧ P(x)) for any x ∈ L.

(iii) P is idempotent: P2 = P.

(iv) P(x) = P(x ∨ P(x)) for any x ∈ L.

(v) P(P(x) ∧ y) 6 P(x) ∧ P(y) for all x, y ∈ L.

Proof. Assume that L is a lattice and P ∈ IO(L). Let x, y ∈ L.

(i) If x 6 y, then P(y) = P(x ∨ y) = P(x) ∨ P(y), and so P(x) 6 P(y). Hence P is isotone.

(ii) By Definition 2.1, we have

P(x) = P(x) ∧ P(x) = P(P(x) ∧ x) ∨ P(x ∧ P(x)) = P(x ∧ P(x)),

that is, (ii) holds.

(iii) Since P is isotone, we have P(x) = P(P(x) ∧ x) 6 P(P(x)) = P2(x) by (ii). Also, since

P(x)∧P2(x) = P(P(x)∧P(x))∨P(x∧P2(x)) = P2(x)∨P(x∧P2(x)), we get P2(x) 6 P(x)∧P2(x) 6

P(x), and so P2(x) = P(x). Hence P2 = P.

(iv) Since P2(x) = P(x) by (iii), we have P(x ∨ P(x)) = P(x) ∨ P2(x) = P(x).

(v) follows immediately from Definition 2.1. �

Let L be a lattice and P be an operator on L. Denote the set of all fix points of P by FixP(L):

FixP(L) := {x ∈ L | P(x) = x} ⊆ L.

The following simple fact about idempotent operators can be found in [13, Lemma 2.4].

Lemma 2.4. Let L be a lattice and P be an operator on L. Then P is idempotent if and only if

FixP(L) equals to the image P(L) of P.

We also have the following easy consequences.

Corollary 2.5. Let L be a lattice and P ∈ IO(L). Then the following statements hold.
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(i) FixP(L)= P(L) for the image P(L) of P.

(ii) FixP(L) is a sublattice of L.

Proof. (i) follows by Proposition 2.3 and Lemma 2.4.

(ii) For any P(x), P(y) ∈ FixP(L), we have P(x) ∨ P(y) = P(x ∨ y) ∈ P(L) = FixP(L), and

P(x) ∧ P(y) = P(P(x) ∧ y) ∨ P(x ∧ P(y)) = P((P(x) ∧ y) ∨ (x ∧ P(y))) ∈ P(L) = FixP(L).

This shows that FixP(L) is closed under the operations ∨ and ∧. Thus FixP(L) is a sublattice of

L. �

Applying to integral operators, we see that an integral operators on a lattice is almost never

injective or surjective.

Proposition 2.6. Let L be a lattice and P ∈IO(L). Then the following statements are equivalent.

(i) P = IdL.

(ii) P is injective.

(iii) P is surjective.

Proof. It is clear that (i)⇒(ii) and (i)⇒(iii).

(ii)⇒(i) Assume that P is an injective integral operator. For any x ∈ L, we have P(P(x)) = P(x)

by Proposition 2.3 (iii), and so P(x) = x. Thus P = IdL.

(iii)⇒(i) Assume that P is a surjective integral operator. Then FixP(L) = P(L) = L by Corollary

2.5, and so P = IdL. �

The classical derivation and integration in analysis are related by the First Fundamental The-

orem of Calculus (FFTC), which implies that the integration is injective. Since Proposition 2.6

shows that an integral operator on a lattice is injective only for the identity map, an analogy

of the FFT for lattices is not meaningful. However, as we establish below (Proposition 2.12

and Theorem 2.13), there are other close relations between integral operators and differential

operators on a lattice.

We first give some notions and properties of differential lattices. An operator d on a lattice L is

called a derivation or a differential operator [35, 13] if it satisfies the equation

d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)) for all x, y ∈ L.

Denote the set of all derivations on L by DO(L). We recall the following results for later applica-

tions.

Lemma 2.7. [35] Let L be a lattice, d ∈DO(L) and x, y ∈ L. Then the following statements hold.

(i) d(x) 6 x. In particular, d(0) = 0 if L has bottom element 0.

(ii) d(x) ∧ d(y) 6 x ∧ d(y) 6 d(x ∧ y).

(iii) If x 6 d(u) for some u ∈ L, then d(x) = x.

(iv) If L has top element 1 and d(1) = 1, then d = IdL.

(v) d is idempotent.

Denote the set of all isotone derivations on L by IDO(L). Also recalled [33] that a map d : L→

L is called a meet-translation if d(x ∧ y) = x ∧ d(y) for all x, y ∈ L.

Lemma 2.8. Let L be a lattice. If d ∈ IDO(L), then d(x ∧ y) = d(x) ∧ d(y) for all x, y ∈ L.
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Proof. Assume that L is a lattice, d ∈ IDO(L) and x, y ∈ L. Since x ∧ y 6 x and x ∧ y 6 y, we

have d(x ∧ y) 6 d(x) ∧ d(y), and so d(x ∧ y) = d(x) ∧ d(y) by Lemma 2.7 (ii). �

Remark 2.9. The converse of Lemma 2.8 does not hold. For example, let L be a lattice with a

bottom element 0. For a given u ∈ L\{0}, the constant integral operator C(u) satisfies the condition

C(u)(x ∧ y) = C(u)(x) ∧ C(u)(y) for any x, y ∈ L. But C(u) is not a derivation since C(u)(0) = u , 0.

Proposition 2.10 and Proposition 2.11 improve [36, Theorem 3.10] and [35, Theorem 3.18] by

not requiring that d is a derivation in the hypotheses.

Proposition 2.10. Let L be a lattice and d be an operator on L. Then d ∈ IDO(L) if and only if d

is a meet-translation: d(x ∧ y) = x ∧ d(y) for all x, y ∈ L.

Proof. If d ∈ IDO(L), then by Lemma 2.8, d(x ∧ y) = d(x) ∧ d(y) for all x, y ∈ L, and so

d(x ∧ y) = x ∧ d(y) by Lemma 2.7 (ii).

Convesely, if d(x ∧ y) = x ∧ d(y) for all x, y ∈ L, then d(x ∧ y) = y ∧ d(x), and so d(x ∧

y) = (d(x) ∧ y) ∨ (x ∧ d(y)). Hence d ∈ DO(L). Also, d is isotone. In fact, if x 6 y, then

d(x) = d(x ∧ y) = x ∧ d(y) 6 d(y). Thus we get d ∈ IDO(L). �

A natural class of derivations, called inner derivations, are defined by taking, for any given

u ∈ L, the map

du(x) := x ∧ u, for all x ∈ L.

Proposition 2.11. Let L be a lattice with top element 1 and d be an operator on L. Then the

following statements are equivalent:

(i) d is an isotone derivation.

(ii) d is a meet-translation: d(x ∧ y) = x ∧ d(y) for all x, y ∈ L.

(iii) d(x) = x ∧ d(1) for any x ∈ L.

(iv) d is an inner derivation.

Furthermore, these statements are implied by the linearity of a derivation:

(v) d is a derivation with the linearity d(x ∨ y) = d(x) ∨ d(y) for all x, y ∈ L.

If L is distributive, then all the five statements are equivalent.

Proof. (i)⇔(ii) follows by Proposition 2.10.

(ii)⇒(iii) Assume that (ii) holds. Then d(x) = d(x ∧ 1) = x ∧ d(1) for any x ∈ L, giving (iii).

(iii)⇒(iv) is clear.

(iv)⇒(i) follows from [35, Example 3.8].

By [12], a derivation d with the linearity implies that d is a meet-translation and hence d

satisfies all the conditions (i) – (iv).

For the last statement, assume that L is a distributive lattice with top element 1. Let d ∈ IDO(L),

and x, y ∈ L. Then by the equivalence of (iii) and (iv), we obtain

d(x ∨ y) = (x ∨ y) ∧ d(1) = (x ∧ d(1)) ∨ (y ∧ d(1)) = d(x) ∨ d(y).

Hence condition (iv) implies condition (v) and thus all the five conditions are equivalent. �

Proposition 2.12. Let d be an operator on a lattice L. Then d is both a differential operator and

an integral operator if and only if d satisfies Eq. (1), that is, d is a derivation in the sense of Szasz

[33].
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Proof. If d is both a differential operator and an integral operator, then clearly d satisfies Eq. (1).

Conversely, assume that d satisfies Eq. (1). Then d ∈ IDO(L). By Proposition 2.10, we get

d(x ∧ y) = x ∧ d(y) = d(x) ∧ y for all x, y ∈ L. It follows from Lemma 2.8 and Lemma 2.7 that

d(x) ∧ d(y) = d(x ∧ y) = d2(x ∧ y) ∨ d2(x ∧ y) = d(d(x) ∧ y) ∨ d(x ∧ d(y)),

and so d ∈ DO(L) ∩ IO(L). �

Proposition 2.12 tells us that the intersection DO(L) ∩ IO(L) of derivations and integral opera-

tors on L is contained in IDO(L), while the next Theorem 2.13 says that DO(L)∩ IO(L) , IDO(L)

if L is not distributive. This result and its corollaries show that basic properties of a lattice, such

as the distributivity, can be characterized by the differential and integral operators on the lattice.

Theorem 2.13. Let L be a lattice. Then L is distributive if and only if every inner derivation is

an integral operator.

Proof. Assume that L is a distributive lattice. Let d be an inner derivation and d = du, where

u ∈ L. Then for any x, y ∈ L, we have d(x∨ y) = (x∨ y)∧ u = (x∧ u)∨ (y∧ u) = d(x)∨ d(y), and

so d ∈ IO(L) by Proposition 2.12.

Conversely, assume that L is not distributive. Then there exist u, v,w ∈ L such that (u∨v)∧w ,

(u ∧ w) ∨ (v ∧ w). Consider the inner derivation dw, that is, dw(x) = x ∧ w for any x ∈ L. Since

dw(u ∨ v) = (u ∨ v) ∧ w , (u ∧ w) ∨ (v ∧ w) = dw(u) ∨ dw(v), we have dw < IO(L). �

Proposition 2.11 and Theorem 2.13 directly give

Corollary 2.14. Let L be a lattice with top element 1. Then L is distributive if and only if

IDO(L) ⊆ IO(L).

In what follows, we present several classes of integral operators on a lattice L. They are given

by step-type operators.

Proposition 2.15. Let L be a lattice with top element 1 and a, b ∈ L with b 6 a. Define an

operator b(a) : L→ L by

b(a)(x) :=















b, if x 6 a;

1, otherwise.

Then b(a) is in IO(L). In particular, if (L,∨,∧, 0, 1) is a bounded lattice, then 0(a) ∈IO(L) and

0(0) = τ for the map τ defined in Example 2.2 (iii).

Proof. Let L be a lattice with top element 1 and a, b ∈ L with b 6 a. It is obvious that b(a) is

isotone. Also, since b(a)(L) = {b, 1} = Fixb(a)(L), we have (b(a))2 = b(a) by Lemma 2.4. To prove

b(a) ∈ IO(L), let x, y ∈ L.

If x 
 a or y 
 a, without loss of generality, take x 
 a. Then b(a)(x) = 1 and x ∨ y � a. So

b(a)(x∨ y) = 1 = b(a)(x)∨ b(a)(y). Since b(a) is isotone and (b(a))2 = b(a), we have b(a)(x∧ b(a)(y)) 6

b(a)(b(a)(y)) = b(a)(y), which together with b(a)(x) = 1, implies that

b(a)(x) ∧ b(a)(y) = b(a)(y) = b(a)(y) ∨ b(a)(x ∧ b(a)(y)) = b(a)(b(a)(x) ∧ y) ∨ b(a)(x ∧ b(a)(y)).

If x 6 a and y 6 a, then b(a)(x) = b(a)(y) = b and x∨ y 6 a. So b(a)(x∨ y) = b = b(a)(x)∨ b(a)(y).

Also, since b(a)(x)∧y 6 b(a)(x) = b 6 a and x∧b(a)(y) 6 b(a)(y) = b 6 a, we have b(a)(b(a)(x)∧y) =

b(a)(x ∧ b(a)(y)) = b. Thus b(a)(x) ∧ b(a)(y) = b = b(a)(b(a)(x) ∧ y) ∨ b(a)(x ∧ b(a)(y)).

Therefore we obtain that b(a) is in IO(L). �
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Proposition 2.16. Let L be a lattice with top element 1 and let a ∈ L. Define an operator

τ(a) : L→ L by

τ(a)(x) :=















x, if x 6 a;

1, otherwise.

Then τ(a) is in IO(L).

Proof. Let L be a lattice with top element 1 and a ∈ L. It is obvious that τ(a) is isotone. Also,

since τ(a)(L) = {x ∈ L | x 6 a} ∪ {1} = Fixτ(a)(L), we have (τ(a))2 = τ(a) by Lemma 2.4. To prove

that τ(a) is in IO(L), let x, y ∈ L.

If x 
 a or y 
 a, say x 
 a, then τ(a)(x) = 1 and x∨ y � a. So τ(a)(x∨ y) = 1 = τ(a)(x)∨ τ(a)(y).

Since τ(a) is isotone and (τ(a))2 = τ(a), we have τ(a)(x ∧ τ(a)(y)) 6 τ(a)(τ(a)(y)) = τ(a)(y), which,

together with τ(a)(x) = 1, implies that

τ(a)(x) ∧ τ(a)(y) = τ(a)(y) = τ(a)(y) ∨ τ(a)(x ∧ τ(a)(y)) = τ(a)(τ(a)(x) ∧ y) ∨ τ(a)(x ∧ τ(a)(y)).

If x 6 a and y 6 a, then τ(a)(x) = x, τ(a)(y) = y and x ∨ y 6 a. So

τ(a)(x ∨ y) = x ∨ y = τ(a)(x) ∨ τ(a)(y).

Also, since τ(a)(x) ∧ y = x ∧ τ(a)(y) = x ∧ y 6 a, we have

τ(a)(x) ∧ τ(a)(y) = x ∧ y = τ(a)(τ(a)(x) ∧ y) ∨ τ(a)(x ∧ τ(a)(y)).

In summary, we conclude that τ(a) is in IO(L). �

Proposition 2.16 readily gives

Corollary 2.17. Let (L,∨,∧, 0, 1) be a bounded lattice and a be an atom of L. Define an operator

P(a) : L→ L by

P(a)(x) :=























0, if x = 0;

a, if x = a;

1, otherwise.

Then P(a) is in IO(L).

Proposition 2.18. Let L be a lattice with top element 1 and a, b ∈ L with b < a < 1. Define an

operator φ
(a)

(b)
: L→ L by

φ
(a)

(b)
(x) :=



















b, if x 6 b,

x, if b < x 6 a,

1, otherwise.

Then φ
(a)

(b)
is in IO(L) if and only if L satisfies Condition

z and b are comparable for any z ∈ L with z 6 a.(5)

Proof. Let L be a lattice with top element 1 and a, b ∈ L with b < a < 1.

Assume that φ
(a)

(b)
∈ IO(L). Then φ

(a)

(b)
is isotone by Proposition 2.3. If there exists z ∈ L such

that z 6 a, and z and b are incomparable, then φ
(a)

(b)
(z) = 1 > a = φ

(a)

(b)
(a), contradicting to the fact

that φ
(a)

(b)
is isotone. Thus L satisfies Condition (5).

Conversely, assume that L satisfies Condition (5). It is easy to verify that φ
(a)

(b)
is isotone. Also,

since φ
(a)

(b)
(L) = {x ∈ L | b 6 x 6 a} ∪ {1} = Fix

φ
(a)

(b)
(L), we have (φ

(a)

(b)
)2 = φ

(a)

(b)
by Lemma 2.4. To

verify that φ
(a)

(b)
is in IO(L), consider x, y ∈ L.
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If x 
 a or y 
 a, say x 
 a, then φ
(a)

(b)
(x) = 1 and x∨y � a. Thus φ

(a)

(b)
(x∨y) = 1 = φ

(a)

(b)
(x)∨φ

(a)

(b)
(y).

Since φ
(a)

(b)
is isotone and (φ

(a)

(b)
)2 = φ

(a)

(b)
, we have φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)) 6 φ

(a)

(b)
(φ

(a)

(b)
(y)) = φ

(a)

(b)
(y), which

together with φ
(a)

(b)
(x) = 1, implies that

φ
(a)

(b)
(x) ∧ φ

(a)

(b)
(y) = φ

(a)

(b)
(y) = φ

(a)

(b)
(y) ∨ φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)) = φ

(a)

(b)
(φ

(a)

(b)
(x) ∧ y) ∨ φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)).

If x 6 a and y 6 a, then by Condition (5), we only need to consider the following four cases:

(i) Suppose b < x 6 a and b < y 6 a. Then φ
(a)

(b)
(x) = x, φ

(a)

(b)
(y) = y and b < x ∨ y 6 a. It

follows that φ
(a)

(b)
(x ∨ y) = x ∨ y = φ

(a)

(b)
(x) ∨ φ

(a)

(b)
(y). Also, since b 6 x ∧ y = τ

(a)

(b)
(x) ∧ y 6 a

and b 6 x ∧ y = x ∧ φ
(a)

(b)
(y) 6 a, we have φ

(a)

(b)
(φ

(a)

(b)
(x) ∧ y) = φ

(a)

(b)
(x) ∧ y = x ∧ y and

φ
(a)

(b)
(x ∧ φ

(a)

(b)
(y)) = x ∧ φ

(a)

(b)
(y) = x ∧ y. Thus

φ
(a)

(b)
(x) ∧ φ

(a)

(b)
(y) = x ∧ y = φ

(a)

(b)
(φ

(a)

(b)
(x) ∧ y) ∨ φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)).

(ii) Suppose b < x 6 a and y 6 b. Then φ
(a)

(b)
(x) = x, φ

(a)

(b)
(y) = b and b < x ∨ y 6 a. It follows

that φ
(a)

(b)
(x∨ y) = x∨ y = x = x∨ b = φ

(a)

(b)
(x)∨ φ

(a)

(b)
(y). Also, since φ

(a)

(b)
(x)∧ y 6 y 6 b and

x ∧ φ
(a)

(b)
(y) 6 φ

(a)

(b)
(y) = b, we have φ

(a)

(b)
(φ

(a)

(b)
(x) ∧ y) = b = φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)). Then

φ
(a)

(b)
(x) ∧ φ

(a)

(b)
(y) = x ∧ b = b = φ

(a)

(b)
(φ

(a)

(b)
(x) ∧ y) ∨ φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)).

(iii) Suppose x 6 b and b < y 6 a. Then similarly, we have

φ
(a)

(b)
(x) ∧ φ

(a)

(b)
(y) = φ

(a)

(b)
(φ

(a)

(b)
(x) ∧ y) ∨ φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)).

(iv) Suppose x 6 b and y 6 b. Then φ
(a)

(b)
(x) = φ

(a)

(b)
(y) = b and x ∨ y 6 b. It follows that

φ
(a)

(b)
(x ∨ y) = b = φ

(a)

(b)
(x) ∨ φ

(a)

(b)
(y). Also, since φ

(a)

(b)
(x) ∧ y 6 y 6 b and x ∧ φ

(a)

(b)
(y) 6 x 6 b,

we have φ
(a)

(b)
(φ

(a)

(b)
(x) ∧ y) = b = φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)). Then

φ
(a)

(b)
(x) ∧ φ

(a)

(b)
(y) = b = φ

(a)

(b)
(φ

(a)

(b)
(x) ∧ y) ∨ φ

(a)

(b)
(x ∧ φ

(a)

(b)
(y)).

In summary, we conclude that φ
(a)

(b)
∈ IO(L). �

Proposition 2.19. Let L be a lattice with top element 1 and a, b ∈ L with b < a. Define an

operator τ
(a)

(b)
: L→ L by:

τ
(a)

(b)
(x) :=



















x, if x 6 b,

b, if b < x 6 a,

1, otherwise.

Then τ
(a)

(b)
is in IO(L) if and only if L satisfies Condition (5).

Proof. Let L be a lattice with top element 1 and a, b ∈ L with b < a.

Assume that τ
(a)

(b)
∈ IO(L). Then τ

(a)

(b)
is isotone by Proposition 2.3. If there exists z ∈ L such that

z 6 a, and z and b are incomparable, then τ
(a)

(b)
(z) = 1 > b = τ

(a)

(b)
(a), contradicting with the fact that

τ
(a)

(b)
is isotone. Thus L satisfies Condition (5).

Conversely, assume that L satisfies Condition (5). It is easy to verify that τ
(a)

(b)
is isotone. Also,

since τ
(a)

(b)
(L) = {x ∈ L | x 6 b} ∪ {1} = Fix

τ
(a)

(b)
(L), we have (τ

(a)

(b)
)2 = τ

(a)

(b)
by Lemma 2.4. To prove

that τ
(a)

(b)
∈ IO(L), let x, y ∈ L.
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If x 
 a or y 
 a, say x 
 a, then τ
(a)

(b)
(x) = 1 and x∨y � a. Thus τ

(a)

(b)
(x∨y) = 1 = τ

(a)

(b)
(x)∨τ

(a)

(b)
(y).

Since τ
(a)

(b)
is isotone and (τ

(a)

(b)
)2 = τ

(a)

(b)
, we have τ

(a)

(b)
(x ∧ τ

(a)

(b)
(y)) 6 τ

(a)

(b)
(τ

(a)

(b)
(y)) = τ

(a)

(b)
(y), which

together with τ
(a)

(b)
(x) = 1, implies that

τ
(a)

(b)
(x) ∧ τ

(a)

(b)
(y) = τ

(a)

(b)
(y) = τ

(a)

(b)
(y) ∨ τ

(a)

(b)
(x ∧ τ

(a)

(b)
(y)) = τ

(a)

(b)
(τ

(a)

(b)
(x) ∧ y) ∨ τ

(a)

(b)
(x ∧ τ

(a)

(b)
(y)).

If x 6 a and y 6 a, then by Condition (5), we only need to consider the following four cases:

(i) Suppose b < x 6 a and b < y 6 a. Then τ
(a)

(b)
(x) = τ

(a)

(b)
(y) = b and b < x ∨ y 6 a.

It follows that τ
(a)

(b)
(x ∨ y) = b = τ

(a)

(b)
(x) ∨ τ

(a)

(b)
(y). Also, since τ

(a)

(b)
(x) ∧ y 6 τ

(a)

(b)
(x) = b

and x ∧ τ
(a)

(b)
(y) 6 τ

(a)

(b)
(y) = b, we have τ

(a)

(b)
(τ

(a)

(b)
(x) ∧ y) = τ

(a)

(b)
(x) ∧ y = b ∧ y = b and

τ
(a)

(b)
(x ∧ τ

(a)

(b)
(y)) = x ∧ τ

(a)

(b)
(y) = x ∧ b = b. Thus

τ
(a)

(b)
(x) ∧ τ

(a)

(b)
(y) = b = τ

(a)

(b)
(τ

(a)

(b)
(x) ∧ y) ∨ τ

(a)

(b)
(x ∧ τ

(a)

(b)
(y)).

(ii) Suppose b < x 6 a and y 6 b. Then τ
(a)

(b)
(x) = b, τ

(a)

(b)
(y) = y and b < x ∨ y 6 a. It

follows that τ
(a)

(b)
(x ∨ y) = b = τ

(a)

(b)
(x) ∨ τ

(a)

(b)
(y). Also, since τ

(a)

(b)
(x) ∧ y 6 τ

(a)

(b)
(x) = b and

x ∧ τ
(a)

(b)
(y) 6 τ

(a)

(b)
(y) = y 6 b, we have τ

(a)

(b)
(τ

(a)

(b)
(x) ∧ y) = τ

(a)

(b)
(x) ∧ y = b ∧ y = y and

τ
(a)

(b)
(x ∧ τ

(a)

(b)
(y)) = x ∧ τ

(a)

(b)
(y) = x ∧ y = y. Therefore,

τ
(a)

(b)
(x) ∧ τ

(a)

(b)
(y) = b ∧ y = y = τ

(a)

(b)
(τ

(a)

(b)
(x) ∧ y) ∨ τ

(a)

(b)
(x ∧ τ

(a)

(b)
(y)).

(iii) Suppose x 6 b and b < y 6 a. Then similarly, we have

τ
(a)

(b)
(x) ∧ τ

(a)

(b)
(y) = τ

(a)

(b)
(τ

(a)

(b)
(x) ∧ y) ∨ τ

(a)

(b)
(x ∧ τ

(a)

(b)
(y)).

(iv) Suppose x 6 b and y 6 b. Then τ
(a)

(b)
(x) = x, τ

(a)

(b)
(y) = y and x ∨ y 6 b. It follows that

τ
(a)

(b)
(x∨y) = x∨y = τ

(a)

(b)
(x)∨τ

(a)

(b)
(y). Also, since τ

(a)

(b)
(x)∧y 6 y 6 b and x∧τ

(a)

(b)
(y) 6 x 6 b,

we have τ
(a)

(b)
(τ

(a)

(b)
(x) ∧ y) = τ

(a)

(b)
(x) ∧ y = x ∧ y and τ

(a)

(b)
(x ∧ τ

(a)

(b)
(y)) = x ∧ τ

(a)

(b)
(y) = x ∧ y.

Thus

τ
(a)

(b)
(x) ∧ τ

(a)

(b)
(y) = x ∧ y = τ

(a)

(b)
(τ

(a)

(b)
(x) ∧ y) ∨ τ

(a)

(b)
(x ∧ τ

(a)

(b)
(y)).

Therefore we conclude that τ
(a)

(b)
is in IO(L). �

We next turn our attention to a modular lattice L, that is,

x 6 y⇒ x ∨ (y ∧ z) = y ∧ (x ∨ z) ∀x, y, z ∈ L.

Proposition 2.20. Let L be a modular lattice. For a ∈ L, define

ψ(a) : L→ L, ψ(a)(x) := x ∨ a, ∀x ∈ L.

Then ψ(a) is in IO(L).

Proof. Assume that L is a modular lattice and a ∈ L. For any x, y ∈ L, we have ψ(a)(x) = x ∨ a

and so ψ(a)(x∨ y) = x∨ y∨ a = ψ(a)(x)∨ψ(a)(y). Also, we have ψ(a)(x)∧ψ(a)(y) = (x∨ a)∧ (y∨ a)

and

ψ(a)(ψ(a)(x) ∧ y) ∨ ψ(a)(x ∧ ψ(a)(y)) = [((x ∨ a) ∧ y) ∨ a] ∨ [(x ∧ (y ∨ a)) ∨ a].

Since L is a modular lattice, a 6 x∨ a and a 6 y ∨ a, we have ((x ∨ a)∧ y) ∨ a = (x ∨ a)∧ (y∨ a)

and (x∧ (y∨a))∨a = (x∨a)∧ (y∨a). Thus ψ(a)(x)∧ψ(a)(y) = ψ(a)(ψ(a)(x)∧ y)∨ψ(a)(x∧ψ(a)(y)),

and therefore ψ(a) ∈ IO(L). �

Example 2.21 shows that the modularity condition in Proposition 2.20 cannot be removed.
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Example 2.21. Let N8 = {0, a, b, c, u, v,w, 1} be the lattice with its Hasse diagram given by

❅
❅❅

�
��

❅
❅❅

�
��

�
��

❅
❅

0

a b c

u

v

w

1

•

• • •

•

•

•

•

It is clear that L is a nonmodular lattice and ψ(b) < IO(L), since ψ(b)(a) ∧ ψ(b)(c) = v, while

ψ(b)(ψ(b)(a) ∧ c) ∨ ψ(b)(a ∧ ψ(b)(c)) = b.

It is remarkable that the counterexample in Example 2.21 turns out to be the smallest one for

the conclusion of Proposition 2.20, as we show in the next result. Compare this result with the

characterizations of distributive lattices (resp. modular lattices) by not containing the smallest

counterexamples M5 or N5 (resp. N5), see [16, Theorems 101 and 102] or [7, Theorems 3.5 and

3.6]. It further shows that a weak form of the modularity of a lattice L is charactorized by the

integral operators on L

Theorem 2.22. Let L be a lattice. Then the following statements are equivalent:

(i) (x ∨ a) ∧ (y ∨ a) = ((x ∨ a) ∧ y) ∨ (x ∧ (y ∨ a)) ∨ a for all x, y, a ∈ L.

(ii) ψ(a) ∈IO(L) for any a ∈ L.

(iii) N8 can not be embedded into L.

Proof. ((i)⇐⇒ (ii)) Let a ∈ L. For any x, y ∈ L, we have ψ(a)(x∨y) = x∨y∨a = (x∨a)∨(y∨a) =

ψ(a)(x) ∨ ψ(a)(y). So

ψ(a) ∈ IO(L) ⇔ ψ(a)(x) ∧ ψ(a)(y) = ψ(a)(ψ(a)(x) ∧ y) ∨ ψ(a)(x ∧ ψ(a)(y))

⇔ (x ∨ a) ∧ (y ∨ a) =
(

((x ∨ a) ∧ y) ∨ a
)

∨
(

(x ∧ (y ∨ a)) ∨ a
)

⇔ (x ∨ a) ∧ (y ∨ a) = ((x ∨ a) ∧ y) ∨ (x ∧ (y ∨ a)) ∨ a.

((ii) =⇒ (iii)) If N8 can be embedded into L, then ψ(b) < IO(L) according to Example 2.21.

((iii) =⇒(ii)) Assume that ψ(b) < IO(L) for some b ∈ L. Then there exists a, c ∈ L such that

ψ(b)(a) ∧ ψ(b)(c) , ψ(b)(ψ(b)(a) ∧ c) ∨ ψ(b)(a ∧ ψ(b)(c)), that is,

(6) (a ∨ b) ∧ (c ∨ b) , ((a ∨ b) ∧ c) ∨ (a ∧ (c ∨ b)) ∨ b.

Before continuing with the proof, we next establish some preliminary results.

Claim (i): b < (a ∨ b) ∧ (c ∨ b). In fact, it is clear that b 6 (a ∨ b) ∧ (c ∨ b), and

b 6 ((a ∨ b) ∧ c) ∨ (a ∧ (c ∨ b)) ∨ b 6 (a ∨ b) ∧ (c ∨ b).

If b = (a ∨ b) ∧ (c ∨ b), then (a ∨ b) ∧ (c ∨ b) = ((a ∨ b) ∧ c) ∨ (a ∧ (c ∨ b)) ∨ b, contradicting

Eq. (6). Thus b < (a ∨ b) ∧ (c ∨ b).

Claim (ii): a∨b and c∨b are incomparable. In fact, if a∨b 6 c∨b, then (a∨b)∧(c∨b) = a∨b

and a 6 c ∨ b, which implies that

((a ∨ b) ∧ c) ∨ (a ∧ (c ∨ b)) ∨ b = ((a ∨ b) ∧ c) ∨ (a ∨ b) = a ∨ b = (a ∨ b) ∧ (c ∨ b),

contradicting Eq. (6). Thus a ∨ b � c ∨ b. Similarly, we can prove that c ∨ b � a ∨ b.
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Claim (iii): a, b and c are mutually incomparable. In fact, if a 6 b, then b ∨ a = b 6 b ∨ c,

which contradicts Claim (ii). If b 6 a, then (a ∧ c) ∨ b 6 a ∧ (c ∨ b), and so

(a ∨ b) ∧ (c ∨ b) = a ∧ (c ∨ b) = ((a ∧ c) ∨ b) ∨ (a ∧ (c ∨ b)) =
(

((a ∨ b) ∧ c) ∨ b
)

∨ (a ∧ (c ∨ b)),

contradicting Eq. (6). Thus b and a are incomparable.

If a 6 c or c 6 a, then a ∨ b 6 c ∨ b or c ∨ b 6 a ∨ b, contradicting Claim (ii).

If c 6 b, then (a ∨ b) ∧ (c ∨ b) = (a ∨ b) ∧ b = b, contradicting Claim (i).

If b 6 c, then (a ∧ c) ∨ b 6 (a ∨ b) ∧ c. Thus

(a ∨ b) ∧ (c ∨ b) = (a ∨ b) ∧ c = ((a ∨ b) ∧ c) ∨ ((a ∧ c) ∨ b) = ((a ∨ b) ∧ c) ∨ (a ∧ (c ∨ b)) ∨ b,

contradicting Eq. (6).

Thus a, b and c are mutually incomparable.

With these results established, let u = b ∨ a, w = b ∨ c and v = u ∧ w = (a ∨ b) ∧ (c ∨ b).

Summarizing the above arguments, we obtain a∧b∧c < a < u < u∨w, a∧b∧c < b < v = u∧w and

a∧b∧c < c < w < u∨w. Also, since b < v < u and b < v < w, we have u = a∨b 6 a∨v 6 a∨u = u

and w = c ∨ b 6 c ∨ v 6 c ∨ w = w, which implies that a ∨ v = a ∨ b = u and v ∨ c = b ∨ c = w.

It is straightforward to verify that the next Hasse diagram gives the desired copy of N8 in L.

❅
❅❅

�
��

❅
❅❅

�
��

�
��

❅
❅

a ∧ b ∧ c

a b c

u

v

w

u ∨ w

•

• • •

•

•

•

•

�

To finish this section, we characterize chains in terms of integral operators. Let IEO(L) denote

the set of all isotone and idempotent operators on a lattice L.

Theorem 2.23. Let L be a lattice. Then the following statements are equivalent:

(i) L is a chain.

(ii) IO(L) = IEO(L), that is, the integral operators are precisely the operators that are

isotone and idempotent.

Proof. By Proposition 2.3 we have IO(L) ⊆ IEO(L).

((i) =⇒ (ii)) Assume that L is a chain. To prove that IEO(L) ⊆ IO(L), let P ∈ IEO(L), that is, P is

isotone and P2 = P. For any x, y ∈ L, without loss of generality, we can assume that x 6 y. Then

P(x) 6 P(y) since P is isotone and so P(x ∨ y) = P(y) = P(x) ∨ P(y).

Also, we have by Proposition 2.3 (ii) that

(7) P(P(x) ∧ x) = P(x)

Next, we will show that P(x) ∧ P(y) = P(P(x) ∧ y) ∨ P(x ∧ P(y)). In fact, if P(x) = P(y), then

by Eq. (7), we have

P(x) ∧ P(y) = P(y) ∧ P(x) = P(P(y) ∧ y) ∨ P(x ∧ P(x)) = P(P(x) ∧ y) ∨ P(x ∧ P(y)).

If P(x) , P(y), then P(x) < P(y) since x < y and P is isotone, which implies that P(P(x)) =

P(x) < P(y) and P(x) < P(y) = P(P(y)) since P2 = P. Noticing that

P(a) < P(b)⇒ a < b for all a, b ∈ L,
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we get P(x) < y and x < P(y), so P(x)∧P(y) = P(x) = P(P(x))∨P(x) = P(P(x)∧y)∨P(x∧P(y)).

Summarizing the above arguments, we obtain that P ∈ IO(L). Then IEO(L) ⊆ IO(L). Therefore

IO(L) = IEO(L).

((ii) =⇒ (i)) Assume that L is not a chain. Then there exist a, b ∈ L such that a 
 b and b 
 a.

Define an operator P : L→ L by

P(x) =















a ∧ b, if x 6 a or x 6 b;

a ∨ b, otherwise.

It is easy to see that P is isotone and P(L) = {a∧b, a∨b} = FixP(L). Thus P ∈ IEO(L) by Lemma

2.4. But P < IO(L), since P(a ∨ b) = a ∨ b , a ∧ b = P(a) ∨ P(b). �

Let n be a positive integer, and let [n] denote the set {1, 2, · · · , n} with the standard ordering.

Let Tn denote the full transformation semigroup on [n], and let On denote the submonoid of

Tn consisting of all order-preserving map on [n]. Denote by E(S ) the set of idempotents of a

semigroup S , and denote by |A| the cardinality of a set A.

Lemma 2.24. [10, Lemma 2.9] Let Fn be the n-th Fibonacci number, defined by the recursion

F1 = F2 = 1, Fm = Fm−1 + Fm−2, m > 3. Then |E(On)| = F2n for all n > 1.

Corollary 2.25. Let L be an n-element chain. Then |IO(L)| = F2n, where F2n is the 2n-th

Fibonacci number.

Proof. It follows directly from Theorem 2.23 and Lemma 2.24. �

3. Isomorphic classes of Rota-Baxter lattices

Recall from Definition 2.1 that a Rota-Baxter lattice (of weight zero) is a lattice equipped

with an integral operator. In this section we study isomorphic Rota-Baxter lattices and classify

isomorphic Rota-Baxter lattices with some common underlying lattices.

3.1. Isomorphic Rota-Baxter lattices. Noting that all axioms of Rota-Baxter lattices are equa-

tions between terms, the class of all Rota-Baxter lattices forms a variety. So the notions of iso-

morphism, subalgebra, congruence and direct product are directly defined from the corresponding

notions in universal algebra [7].

We now study isomorphisms of Rota-Baxter lattices before applying it to the classification of

some Rota-Baxter lattices.

Definition 3.1. Two Rota-Baxter lattices (L,∨,∧, P) and (L′,∨′,∧′, P′) are called isomorphic if

there is an isomorphism of lattices f : L → L′ such that f P = P′ f . When the lattice L′ is the

same as L, we also say that P is isomorphic to P′. We write P � P′ if P is isomorphic to P′.

It is easy to see that the relation � is an equivalence relation on IO(L). The corresponding

equivalent classes are called the isomorphism classes of integral operators on L. They are the

isomorphism classes of Rota-Baxter lattices whose underlying lattice is L.

Observe that the classification of all isomorphism classes of Rota-Baxter lattices is the same

as the classification of all isomorphism classes of Rota-Baxter lattices or integral operators on a

given underlying lattice, as the underlying lattice runs through isomorphism classes of lattices.

Lemma 3.2 tells us that the isomorphism class of the identity operator IdL only has one element.

Lemma 3.2. Let L be a lattice and P ∈ IO(L). Then P � IdL if and only if P = IdL.
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Proof. Assume that P � IdL. Then there exists a lattice automorphism f : L → L such that

P f = f IdL = f = IdL f , which implies that P = IdL, since f is bijective. �

Lemma 3.3 says that the isomorphism classes of 0L, τ and C(1) only have one element when L

is a bounded lattice.

Lemma 3.3. Let (L,∨,∧, 0, 1) be a bounded lattice and P, P′ ∈ IO(L). Then the following

statements hold.

(i) If P � P′, then for z ∈ {0, 1}, P(1) = z if and only if P′(1) = z.

(ii) P � 0L if and only if P = 0L.

(iii) P � τ if and only if P = τ, where τ is defined in Example 2.2 (iii).

(iv) P � C(1) if and only if P = C(1), where C(1) is the constant integral operator at value 1

(see Example 2.2 (ii)).

Proof. (i) Assume that P, P′ ∈ IO(L) with P � P′. Then there exists a lattice automorphism

f : L → L such that f (P(x)) = P′( f (x)) for any x ∈ L. If P(1) = z ∈ {0, 1}, then P′(1) =

P′( f (1)) = f (P(1)) = f (z) = z, since f (1) = 1 and f (0) = 0. By the symmetry of P and P′,

P′(1) = z ∈ {0, 1} implies that P(1) = z.

(ii) Assume that P � 0L. Then there exists a lattice automorphism f : L→ L such that P f = f 0L.

Since f is bijective and f (0) = 0, we have f 0L = 0L = 0L f , and so P f = 0L f . Thus P = 0L, since

f is bijective.

(iii) Assume that P � τ. Then there exists a lattice automorphism f : L → L such that P f = f τ.

Since

f (τ(x)) =















f (0) = 0, if x = 0;

f (1) = 1, otherwise
= τ(x)

and

τ( f (x)) =















τ(0) = 0, if x = 0;

1, otherwise
= τ(x)

for any x ∈ L, we obtain f τ = τ = τ f . Then P f = τ f . Thus P = τ, since f is bijective.

(iv) Assume that P � C(1). Then there exists a lattice automorphism f : L → L such that

P f = f C(1). Since f is bijective and f (1) = 1, we have f C(1) = C(1), and so P f = C(1) = C(1) f .

Thus P = C(1), since f is bijective. �

3.2. Classification of integral operators on finite chains. The following lemma says that two

integral operators on a finite chain are isomorphic only when they are equal.

Lemma 3.4. Let L be a finite chain. Then an integral operator on L can only be isomorphic to

itself.

Proof. Assume that L is a finite chain and P, P′ ∈ IO(L). It is clear that P = P′ implies P � P′.

Conversely, suppose that P � P′. Then there exists a lattice automorphism f : L → L such

that P f = f P′. Since f is a bijection and both f and f −1 are order-preserving (see Theorem 2.3

in [7]), we have f = IdL, and so P = P f = f P′ = P′. �

Remark 3.5. On the other hand, if L is an infinite chain and P, P′ ∈ IO(L), then P � P′ does not

necessarily imply P = P′.

For example, equip the real unit interval [0, 1] with the usual order 6. Then ([0, 1],6) is a

chain. Consider the constant operators C( 1
2

) and C( 1
4

) on [0, 1], we have C( 1
2

),C( 1
4

) ∈ IO([0, 1]) by
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Example 2.2, and C( 1
2

) , C( 1
4

), since C( 1
2

)(1) = 1
2
,

1
4
= C( 1

4
)(1). However C( 1

2
) � C( 1

4
). In fact,

define an operator f : [0, 1] → [0, 1] by f (x) = x2 for any x ∈ [0, 1]. Then it is easy to see that

f is a bijection and both f and f −1 are order-preserving. So f is a lattice isomorphism by [7,

Theorem 2.3]. Also, we have f (C( 1
2

)(x)) = f (1
2
) = (1

2
)2 = 1

4
= C( 1

4
)( f (x)) for any x ∈ [0, 1]. Thus

C( 1
2

) � C( 1
4

).

Proposition 3.6. Let L be an n-element chain. Then there are exactly F2n isomorphism classes of

integral operators on L, where F2n is the 2n-th Fibonacci number.

Proof. It readily follows from Corollary 2.25 and Lemma 3.4. �

3.3. Classification of integral operators on diamond type lattices. Let Mn = {0, b1, b2, · · · , bn−2, 1}

be the diamond type lattice with Hasse diagram as follows:

❍❍❍❍❍

❅
❅❅

�
��

✟✟✟✟✟

✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟

�
��

❅
❅❅

❍❍❍❍❍

❳❳❳❳❳❳❳❳❳❳

0

b1 b2 b3 b4 · · · · · · bn−2

1

•

• • • • • •

Diamond type lattice Mn

We will determine isomorphism classes of integral operators on Mn.

Lemma 3.7. Let n > 4 and P be an operator on the lattice Mn. If FixP(Mn) = {0, 1}, then

P ∈ IO(Mn) if and only if P = 0(a) for some a ∈ Mn\{1}, where 0(a) is the integral operator defined

in Proposition 2.15.

Proof. Assume that P is an operator on Mn, and FixP(Mn) = {0, 1}. Then P(0) = 0 and P(1) = 1.

If P ∈ IO(Mn), then for any i ∈ {1, 2, · · · , n − 2}, we have P(bi) ∈ P(L) = FixP(Mn) = {0, 1} by

Corollary 2.5. If there exist k, ℓ ∈ {1, 2, · · · , n − 2} with k , ℓ such that P(bk) = P(bℓ) = 0, then

1 = P(1) = P(bk ∨ bℓ) = P(bk) ∨ P(bℓ) = 0 ∨ 0 = 0, a contradiction. Thus there is at most one

k ∈ {1, 2, · · · , n − 2} such that P(bk) = 0, yielding that P = 0(a) for some a ∈ Mn\{1}.

Conversely, if P = 0(a) for some a ∈ Mn\{1}, then P ∈ IO(Mn) by Proposition 2.15. �

Lemma 3.8. Let n > 4 and P be an operator on the lattice Mn. If FixP(Mn) = {bi, 1} for some

i ∈ {1, 2, · · · , n − 2}, then P ∈ IO(Mn) if and only if P = ψ(bi), where ψ(bi)(x) = x ∨ bi for any

x ∈ Mn.

Proof. Assume that n > 4, P is an operator on the lattice Mn and FixP(Mn) = {bi, 1} for some

i ∈ {1, 2, · · · , n − 2}. Then P(bi) = bi and P(1) = 1.

If P ∈ IO(Mn), then P(L) = FixP(Mn) by Corollary 2.5, and so P(0), P(b j) ∈ {bi, 1} for any

j ∈ {1, 2, · · · , n − 2}\{i}. It follows from Proposition 2.3 that P(b j) = P(b j ∨ P(b j)) = P(1) = 1 =

b j ∨ bi. Also, since P is isotone and P(0) ∈ {bi, 1}, we obtain that bi 6 P(0) 6 P(bi) = bi, and so

P(0) = bi. Thus we have shown that P(x) = x ∨ bi for any x ∈ Mn, that is, P = ψ(bi).

Conversely, if P = ψ(bi), then P ∈ IO(Mn) by Proposition 2.20, since Mn is a modular lattice. �

Lemma 3.9. Let n > 4 and P be an operator on the lattice Mn. If FixP(Mn) = {0, bi, 1} for some

i ∈ {1, 2, · · · , n − 2}, then P ∈ IO(Mn) if and only if P = P(bi), where P(bi) is defined in Corollary

2.17, that is,

P(bi)(x) =























0, if x = 0;

bi, if x = bi;

1, otherwise.
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Proof. Assume that n > 4, P is an operator on the lattice Mn, and FixP(Mn) = {0, bi, 1} for some

i ∈ {1, 2, · · · , n − 2}. Then P(0) = 0, P(bi) = bi and P(1) = 1.

If P ∈ IO(Mn), then P(L) = FixP(Mn) by Corollary 2.5, and so P(b j) ∈ {0, bi, 1} for any

j ∈ {1, 2, · · · , n − 2}\{i}. Since

1 = p(1) = P(bi ∨ b j) = P(bi) ∨ P(b j) = bi ∨ P(b j),

we have P(b j) = 1. Thus P = P(bi).

Conversely, if P = P(bi), then since bi is an atom of Mn, we have P = P(bi) ∈ IO(Mn) by

Corollary 2.17. �

Lemma 3.10. Let n > 4 and k, ℓ ∈ {1, 2, · · · , n − 2}. Then 0(bk)
� 0(bℓ), ψ(bk) � ψ(bℓ), P(bk)

� P(bℓ)

and C(bk) � C(bℓ) in Mn.

Proof. Assume that n > 4 and k, ℓ ∈ {1, 2, · · · , n − 2}. Define f : Mn → Mn by

f (x) =























bℓ, if x = bk;

bk, if x = bℓ;

x, otherwise.

It is easy to verify that f is a lattice isomorphism. Since

f (0(bk)(x)) =















f (0) = 0, if x 6 bk;

f (1) = 1, otherwise
= 0(bk)(x)

and

0(bℓ)( f (x)) =























0(bℓ)(0) = 0, if x = 0;

0(bℓ)(bℓ) = 0, if x = bk;

1, otherwise

= 0(bk)(x)

we have f 0(bk) = 0(bk) = 0(bℓ) f . Thus 0(bk)
� 0(bℓ).

Since

f (P(bk)(x)) =























f (0) = 0, if x = 0;

f (bk) = bℓ, if x = bk;

f (1) = 1, otherwise

and

P(bℓ)( f (x)) =























P(bℓ)(0) = 0, if x = 0;

P(bℓ)(bℓ) = bℓ, if x = bk;

1, otherwise

we have f P(bk) = P(bℓ) f , and thus P(bk)
� P(bℓ).

Also, for any x ∈ Mn, we have

( fψ(bk))(x) = f (ψ(bk)(x)) = f (x ∨ bk) = f (x) ∨ f (bk) = f (x) ∨ bℓ = ψ(bℓ)( f (x)) = (ψ(bℓ f ))(x),

and so fψ(bk) = ψ(bℓ) f . Thus ψ(bk) � ψ(bℓ).

Finally, it is easy to verify that f C(bk) = C(bℓ) = C(bℓ) f . Hence C(bk) � C(bℓ). �

Lemma 3.11. Let n > 4 and let P be an operator on the lattice Mn for which FixP(Mn)\{0, 1}

contains at least two elements. Then P is an integral operator if and only if {0, 1} ⊆ FixP(Mn)

and P(b) = 1 for each b ∈ Mn\FixP(Mn).
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Proof. Suppose {bk, bℓ} ⊆ FixP(Mn) for some {bk, bℓ} ⊆ Mn\{0, 1} with bk , bℓ.

If P ∈ IO(Mn), then {0, 1} ⊆ FixP(Mn), since FixP(L) is a sublattice of L by Corollary 2.5. Also,

for each b ∈ Mn\FixP(Mn), we have P(b) ∈ P(L) = FixP(Mn) by Corollary 2.5. If P(b) = 0, then

1 = P(1) = P(b ∨ bk) = P(b) ∨ P(bk) = P(bk) = bk, a contradiction. Thus P(b) ∈ FixP(Mn)\{0},

and so b ∨ P(b) = 1. It follows from Proposition 2.3 that P(b) = P(b ∨ P(b)) = P(1) = 1.

Conversely, suppose that {0, bk, bℓ, 1} ⊆ FixP(Mn) for some {bk, bℓ} ⊆ Mn\{0, 1} with bk , bℓ,

and P(b) = 1 for each b ∈ Mn\FixP(Mn). It is easy to see that P is isotone, and P(x ∨ y) =

P(x) ∨ P(y) for all x, y ∈ Mn. Also, since FixP(L) = P(L), we have P2 = P by Lemma 2.4.

Next, we show that P(x) ∧ P(y) = P(P(x) ∧ y) ∨ P(x ∧ P(y)) for all x, y ∈ Mn. Noticing that

x 6 P(x), we have P(x)∧P(x) = P(x) = P(P(x)∧ x)∨P(x∧P(x)). So we may assume that x , y.

If x = 1 or y = 1, say x = 1, then P(x)∧P(y) = P(y) = P(y)∨P2(y) = P(P(x)∧y)∨P(x∧P(y)),

since P(1) = 1 and P2 = P.

If x, y ∈ FixP(Mn)\{1}, then x ∧ y = 0, P(x) = x and P(y) = y. It follows that P(x) ∧ P(y) =

x ∧ y = 0 = 0 ∨ 0 = P(P(x) ∧ y) ∨ P(x ∧ P(y)), since P(0) = 0.

If x ∈ FixP(Mn)\{1} and y ∈ Mn\FixP(Mn), then x ∧ y = 0, P(x) = x and P(y) = 1, which

implies that P(x) ∧ P(y) = x ∧ 1 = x = 0 ∨ x = P(P(x) ∧ y) ∨ P(x ∧ P(y)), since P(0) = 0.

If y ∈ FixP(Mn)\{1} and x ∈ Mn\FixP(Mn), then we similarly have P(x) ∧ P(y) = P(P(x) ∧ y)∨

P(x ∧ P(y)).

If x, y ∈ Mn\FixP(Mn), then P(x) = P(y) = 1, and so P(x) ∧ P(y) = 1 = P(y) ∨ P(x) =

P(P(x) ∧ y) ∨ P(x ∧ P(y)).

To summarize, we conclude that P ∈ IO(Mn). �

Immediately from Lemma 3.11, we obtain

Corollary 3.12. Let n > 4 and P ∈ IO(Mn). If {b1, b2, · · · , bn−2} ⊆ FixP(Mn), then P = IdMn
.

Lemma 3.13. Let n > 4 and P, P′ ∈ IO(Mn). If |FixP(Mn)| = |FixP′(Mn)| > 3, then P � P′.

Proof. Assume that n > 4 and P, P′ ∈ IO(Mn). If |FixP(Mn)| = |FixP′(Mn)| = 3, then by Lemma

3.11, FixP(Mn) = {0, bi, 1} and FixP′(Mn) = {0, bℓ, 1} for some i, ℓ ∈ {1, 2, · · · , n − 2}. It follows

from Lemma 3.9 and Lemma 3.10 that P � P′.

If |FixP(Mn)| = |FixP′(Mn)| = k + 2 > 4, then by Lemma 3.11, we have

FixP(Mn) = {0, bi1 , bi2 , · · · , bik , 1} and FixP′(Mn) = {0, b j1, b j2 , · · · , b jk , 1},

where 1 6 i1 < i2 < · · · < ik 6 n − 2 and 1 6 j1 < j2 < · · · < jk 6 n − 2.

Let f : Mn → Mn be a bijection such that f (0) = 0, f (1) = 1 and f (biℓ) = b jℓ for each

biℓ ∈ {bi1 , bi2 , · · · , bik}. It is clear that f is an automorphism of Mn. Also, by Lemma 3.11, we have

f P = P′ f . Thus P � P′. �

Lemma 3.14. Let n > 4, P an operator on the lattice Mn and FixP(Mn) = {0, bi} for some

i ∈ {1, 2, · · · , n − 2}.

(i) If n = 4, then P ∈ IO(Mn) if and only if P = dbi
, where dbi

is the inner derivation defined

by dbi
(x) = x ∧ bi for any x ∈ Mn.

(ii) If n > 5, then P < IO(Mn).

Proof. Suppose that the assumption in the lemma is fulfilled. Then P(0) = 0 and P(bi) = bi.

If P ∈ IO(Mn), then P(L) = FixP(Mn) by Corollary 2.5, and so P(1), P(b j) ∈ {0, bi} for any

j ∈ {1, 2, · · · , n − 2}\{i}. Thus P(1) = bi since P is isotone. Also, we have by Proposition 2.3 that

P(b j) = P(b j ∧ P(b j)) = P(0) = 0. This shows that P(x) = x ∧ bi for any x ∈ Mn, that is, P = dbi
.
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Conversely, if n = 4 and P = dbi
, then P ∈ IDO(L) ⊆ IO(L) by Proposition 2.11 and Corollary

2.14, since M4 is a distributive lattice. Thus (i) holds.

If n > 5 and P = dbi
, then for any bk, bℓ ∈ Mn\{0, bi, 1} with bk , bℓ, we have P(bk ∨ bℓ) =

P(1) = bi , 0 = P(bk) ∨ P(bℓ), and so P < IO(Mn). Thus (ii) holds. �

Here is our classification of isomorphism classes of integral operators on Mn.

Theorem 3.15. (i) |IO(M3)| = 8 and there are exactly 8 isomorphism classes of integral

operators on M3.

(ii) |IO(M4)| = 14 and there are exactly 9 isomorphism classes of integral operators on M4.

(iii) Let n > 5. Then |IO(Mn)| = 2n−2+3n−4 and there are exactly n+4 isomorphism classes

of integral operators on Mn.

Proof. It follows from Corollary 2.25 and Proposition 3.6 that (i) holds.

Let n > 4 and P ∈ IO(Mn). Consider the following cases.

Case (1): |FixP(Mn)| = 1. In this case, P is equal to one of the following constant operators:

0Mn
, C(1) and C(b1), i ∈ {1, 2, · · · , n− 2}. Also, for any i, j ∈ {1, 2, · · · , n− 2}, we have C(b1) � C(b j)

by Lemma 3.10. Thus, in this case, P has n choices, and by Lemma 3.3, P has 3 isomorphism

classes: 0Mn
, C(1),C(b1).

Case (2): |FixP(Mn)| = 2. In this case, by Lemmas 3.7, 3.8, 3.11 and 3.14, we have FixP(Mn) =

{0, 1} or {bi, 1} for some i ∈ {1, 2, · · · , n − 2} if n > 5; and FixP(Mn) = {0, 1}, {0, bi} or {bi, 1} for

some i ∈ {1, 2, · · · , n − 2} if n = 4.

If FixP(Mn) = {0, 1}, then by Lema 3.7, P = 0(a) for some a ∈ Mn\{1}. Also, we have by

Lemma 3.10 that 0(bk)
� 0(bℓ) for any k, ℓ ∈ {1, 2, · · · , n − 2}.

If FixP(Mn) = {bi, 1} for some i ∈ {1, 2, · · · , n − 2}, then P = ψ(bi) by Lemma 3.8 , where

ψ(bi)(x) = x ∨ bi for any x ∈ Mn. Also, we have by Lemma 3.10 that ψ(bi) � ψ(b j) for any

i, j ∈ {1, 2, · · · , n − 2}.

Thus, when n > 5, P has (n − 1) + (n − 2) = 2n − 3 choices, and P has 3 isomorphism classes:

0(0)(= τ), 0(b1) and ψ(b1), by Lemma 3.3.

When n = 4, if FixP(M4) = {0, bi}, where i = 1 or 2, then by Lemma 3.14, P is equal to dbi
.

Also, we have db1
� db2

, since f =

(

0 b1 b2 1

0 b2 b1 1

)

is an isomorphism from (M4,∨,∧, db1
, 0, 1)

to (M4,∨,∧, db2
, 0, 1). Thus, P has (4 − 1) + (4 − 2) + 2 = 7 choices, and P has 4 isomorphism

classes: 0(0)(= τ), 0(b1), ψ(b1) and db1
by Lemma 3.3.

Case (3): |FixP(Mn)| = 3.

In this case, we have by Lemma 3.11 that FixP(Mn) = {0, bi, 1} for some i ∈ {1, 2, · · · , n − 2},

and so by Lemma 3.9, P = P(bi). Thus P has n − 2 choices, and P has only 1 isomorphism class

by Lemma 3.10.

Case (4): 4 6 |FixP(Mn)| = t 6 n − 1.

In this case, by Lemma 3.11, there exist 1 6 j1 < j2 < · · · < jk 6 n−2 (where k = t−2) such that

FixP(Mn) = {0, b j1, b j2 , · · · , b jk , 1} and P(bi) = 1 for each bi ∈ {b1, b2, · · · , bn−2}\{b j1 , b j2 , · · · , b jk}.

Thus in this case, P has C2
n−2
+C3

n−2
+ · · ·+Cn−3

n−2
= 2n−2−n choices, and P has n−4 isomorphism

classes by Lemma 3.13.

Case (5): |FixP(Mn)| = n. Then P = IdMn
.

Summarizing the above arguments, when n = 4, we obtain that there are exactly 4+7+2+1 = 14

integral operators on M4, and there are exactly 3 + 4 + 1 + 1 = 9 isomorphism classes of integral

operators on M4, that is, (ii) holds.
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When n > 5, we obtain that |IO(Mn)| = n + (2n − 3) + (n − 2) + (2n−2 − n) + 1 = 2n−2 + 3n − 4,

and there are exactly 3 + 3 + 1 + (n − 4) + 1 = n + 4 isomorphism classes of integral operators on

Mn, that is, (iii) holds. �

4. Derived structures from differential lattices and Rota-Baxter lattices

The following concepts and results were motivated from studies in hydrodynamics and Lie

algebras.

Definition 4.1 (Balinsky-Novikov [5], I. Gelfand-Dorfman [14]). An algebra (A, ⊳), that is, a

vector space A with a bilinear binary operation ⊳, is called a (left) Novikov algebra if

(a, b, c) = (b, a, c), (a ⊳ b) ⊳ c = (a ⊳ c) ⊳ b for all a, b, c ∈ A.

Here (a, b, c) is the associator:

(a, b, c) := (a ⊳ b) ⊳ c − a ⊳ (b ⊳ c).

Lemma 4.2 (S. Gelfand [14]). Let A be a commutative associative algebra with a derivation d.

Define a new operation ⊳ on A by

a ⊳ b := ad(b) for all a, b ∈ A.(8)

Then (A, ⊳) is a left Novikov algebra.

We generalize the notion of Novikov algebras to be defined for semirings.

Definition 4.3. A triple (L,∨, ⊳) is called a (left) Novikov semiring if the binary operation ∨ is

commutative and associative, the binary operation ⊳ distributes over ∨ and

(9) ((x ⊳ y) ⊳ z) ∨ ((y ⊳ x) ⊳ z) = (x ⊳ (y ⊳ z)) ∨ (y ⊳ (x ⊳ z)),

(10) (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ y.

It is directly checked that every distributive lattice (L,∨,∧) is a Novikov semiring. So there are

plenty of examples of Novikov semirings.

Proposition 4.4. Let L be a distributive lattice, and d ∈ IDO(L). Define

x ⊳ y := d(x) ∧ y for all x, y ∈ L.(11)

Then (L,∨, ⊳) is a left Novikov semiring. Moreover, if L has top element 1, then d is a homomor-

phism of Novikov semirings from (L,∨,∧) to (L,∨, ⊳).

Proof. Assume that L is a distributive, and d ∈ IDO(L). Let x, y, z ∈ L. By Proposition 2.10, we

have x ⊳ y = d(x) ∧ y = x ∧ d(y) = y ⊳ x, and so ⊳ distributes over ∨.

Abbreviate xy = x∧ y for now. Since d(x)y 6 d(x), we have by Lemma 2.7 (iii) that d(d(x)y) =

d(x)y, and so

d(d(x)y)z = d(x)yz, d(d(x)z)y = (d(x)z)y = d(x)yz.

Hence Eq. (10) holds. Further, since L is distributive, we have

((x ⊳ y) ⊳ z) ∨ ((y ⊳ x) ⊳ z) = d(d(x)y)z ∨ d(d(y)x)z = d(x)yz ∨ d(y)xz = d(xy)z

and

(x ⊳ (y ⊳ z)) ∨ (y ⊳ (x ⊳ z)) = d(x)d(y)z.

Since d is isotone, it follows from Lemma 2.8 that Eq. (9) holds. Therefore, (L,∨, ⊳) is a Novikov

semiring.
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Finally, if L has top element 1, then for any x, y ∈ L, we have d(x ∨ y) = d(x) ∨ d(y) by

Proposition 2.11, and

d(x ∧ y) = d(x) ∧ d(y) = d2(x) ∧ d(y) = d(x) ⊳ d(y)

by Lemma 2.8. Consequently, d is a homomorphism from (L,∨,∧) to (L,∨, ⊳). �

Recall that an associative semiring is a triple (A,+, ·) in which (A,+) is an associative commu-

tative semigroup, (A, ·) is an associative semigroup and · is distributive over + from both sides.

Proposition 4.5. Let L be a distributive lattice, and P ∈ IO(L). Define

x ∗P y := (x ∧ P(y)) ∨ (P(x) ∧ y) for all x, y ∈ L.(12)

Then the following statements hold.

(i) P(x ∗P y) = P(x) ∧ P(y) for all x, y ∈ L.

(ii) (L,∨, ∗P) is an associative semiring.

(iii) P is a homomorphism of associative semirings from (L,∨, ∗P) to (L,∨,∧).

Proof. Assume that L is a distributive lattice, and P ∈ IO(L). Let x, y, z ∈ L.

(i) We have P(x ∗P y) = P((x ∧ P(y)) ∨ (P(x) ∧ y)) = P(x) ∧ P(y) by Definition 2.1.

(ii) Since L is distributive, we have by (i) that

(x ∗P y) ∗P z = (P(x ∗P y) ∧ z) ∨ ((x ∗P y) ∧ P(z))

= (P(x) ∧ P(y) ∧ z) ∨
(

((x ∧ P(y)) ∨ (P(x) ∧ y)) ∧ P(z)
)

= (P(x) ∧ P(y) ∧ z) ∨ (x ∧ P(y) ∧ P(z)) ∨ (P(x) ∧ y ∧ P(z))

=
(

P(x) ∧ ((P(y) ∧ z) ∨ (y ∧ P(z)))
)

∨ (x ∧ P(y) ∧ P(z))

= (P(x) ∧ (y ∗P z)) ∨ (x ∧ P(y ∗P z))

= x ∗P (y ∗P z).

Also, we have x ∗P y = y ∗P x and

x ∗P (y ∨ z) = (P(x) ∧ (y ∨ z)) ∨ (x ∧ P(y ∨ z))

= (P(x) ∧ y) ∨ (P(x) ∧ z) ∨ (x ∧ P(y)) ∨ (x ∧ P(z))

=
(

(P(x) ∧ y) ∨ (x ∧ P(y))
)

∨
(

(P(x) ∧ z) ∨ (x ∧ P(z))
)

= (x ∗P y) ∨ (x ∗P z).

Thus (L,∨, ∗P) is an associative semiring.

(iii) Since P ∈ IO(L), we have P(x ∨ y) = P(x) ∨ P(y) and P(x ∗P y) = P(x) ∧ P(y) by (i). So P is

a homomorphism from (L,∨, ∗P) to (L,∨,∧). �

The notion of a dendriform algebra orginated from the work of Loday on algebraic K-theory [25].

It is known that a Rota-Baxter operator (of weight 0), that is, an integral operator, on an associative

algebra gives rise to a dendriform algebra [1]. As their lattice theoretic analogy, we define

Definition 4.6. A quadruple (A,+,≺,≻) is called a dendriform semiring if (A,+) is a semigroup,

the binary operations ≺ and ≻ are distribute over +, and A satisfies the following equations.

(x ≺ y) ≺ z = x ≺ (y ≺ z + y ≻ z),(13)

(x ≻ y) ≺ z = x ≻ (y ≺ z),(14)

x ≻ (y ≻ z) = (x ≺ y + x ≻ y) ≻ z for all x, y, z ∈ A.(15)
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Proposition 4.7. Let L be a distributive lattice, and P ∈ IO(L). Define

x ≺P y := x ∧ P(y), x ≻P y := P(x) ∧ y for all x, y ∈ L.

Then (L,∨,≺P,≻P) is a dendriform semiring.

Proof. Assume that L is a distributive lattice, and P ∈ IO(L). Let x, y, z ∈ L.

Claim (i): ≺P distributes over ∨. In fact, we have

x ≺p (y ∨ z) = x ∧ P(y ∨ z) = x ∧ (P(y) ∨ P(z)) = (x ∧ P(y)) ∨ (x ∧ P(z)) = (x ≺P y) ∨ (x ≺P z),

(y ∨ z) ≺p x = (y ∨ z) ∧ P(x) = (y ∧ P(x)) ∨ (z ∧ P(x)) = (y ≺P x) ∨ (z ≺P x).

Therefore ≺P distributes over ∨.

Claim (ii): ≻P distributes over ∨. In fact, we have

x ≻p (y ∨ z) = P(x) ∧ (y ∨ z) = (P(x) ∧ y) ∨ (P(x) ∧ z) = (x ≻P y) ∨ (x ≻P z)

(y ∨ z) ≻p x = P(y ∨ z) ∧ x = (P(y) ∨ P(z)) ∧ x = (P(y) ∧ x) ∨ (P(z) ∧ x) = (y ≻P x) ∨ (z ≻P x).

Therefore ≻P distributes over ∨.

Claim (iii): (x ≺P y) ≺P z = x ≺P

(

(y ≺P z) ∨ (y ≻P z)
)

. In fact, we have

x ≺P

(

(y ≺P z) ∨ (y ≻P z)
)

= x ∧ P((y ∧ P(z)) ∨ (P(y) ∧ z)) = x ∧ (P(y) ∧ P(z)) = (x ≺P y) ≺P z.

Claim (iv): (x ≻P y) ≺P z = x ≻P (y ≺P z). Indeed, we have

(x ≻P y) ≺P z = (P(x) ∧ y) ∧ P(z) = P(x) ∧ (y ∧ P(z)) = x ≻P (y ≺P z).

Claim (v): x ≻P (y ≻P z) = ((x ≺P y) ∨ (x ≻P y)) ≻P z. Indeed, we have

x ≻P (y ≻P z) = P(x) ∧ (P(y) ∧ z) = (P(x) ∧ P(y)) ∧ z

= P((x ∧ P(y)) ∨ (P(x) ∧ y)) ∧ z = ((x ≺P y) ∨ (x ≻P y)) ≻P z.

Summarizing the above calculations, we obtain that (L,∨,≺P,≻P) is a dendriform semiring. �
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