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AMALGAMATING POSET EXTENSIONS AND GENERATING

FREE LATTICES

ROB EGROT

Abstract. We investigate connections between the free lattice generated by a
poset while preserving certain bounds and the canonical extension of a poset.
Explicitly, we describe how the free lattice generated by a poset while preserv-
ing certain bounds can be constructed as a colimit of ‘intermediate structures’
as they occur in the construction of a canonical extension of a poset.

1. Introduction

A standard technique for constructing the canonical extension of a poset P is
to take the sets of all filters and ideals of P , and then to define an antitone Galois
connection between their powersets using the relation of non-empty intersection.
The canonical extension is then the complete lattice of stable sets of filters. This
constructive method appeared in [6] for lattices, and was explicitly applied to con-
struct canonical extensions for posets in [3], though the technique first appeared in
[14], albeit using different terminology.

As discussed in [3, Remark 2.3], the meanings of the terms ‘filter’ and ‘ideal’ are
important here, as definitions that are equivalent for lattices diverge in the more
general setting. The effect of varying these definitions on the canonical extension
construction is investigated in [12].

Going further, it is not necessary to restrict to the sets of all filters and ideals,
however they are defined, or even to the relation of non-empty intersection. Going
down this path leads [13] to define canonical extensions relative to a choice of a set
of filters and a set of ideals. If we abandon explicit reference to filters, ideals and
non-empty intersection altogether, but keep the essential ingredients of the Galois
connection construction, we arrive at the generality of ∆1-completions [7]. This
class of completions includes both canonical extensions and MacNeille completions
(see e.g. [11, 1]), and is defined to include all completions in which the embedded
image of the base poset is doubly dense (i.e. every element of the completion is
both a join of meets and a meet of joins of subsets from this image).

The basis of the construction of a ∆1-completion of a poset P is a triple (F , I,R),
where F and I are, respectively, sets of ‘filters’ and ‘ideals’ of P (understood very
generally), and R ⊆ F × I is a binary relation. There is a 1-1 correspondence
between ∆1-completions of a poset P and polarities with certain properties (see [7,
Theorem 3.4] for the details, or [4, Section 7] for a more general result).

If d : P → C is the ∆1-completion resulting from polarity (F , I,R), there are
natural embeddings of F and I into C. This induces a natural order on F ∪ I,
producing what is often referred to as the intermediate structure. It turns out that
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2 ROB EGROT

the inclusion and reverse-inclusion orders on I and F respectively agree with the
orders induced by C on F ∪ I. Thus the intermediate structure is an amalgam of
F and I, understood as posets, into a common extension of P , using the relation
R as a kind of glue for the two pieces. See [15, Section 1.3] for a discussion of this
for a quite general definition of ‘canonical extension’, and [7], particularly Section
3, for the details in the general setting of ∆1-completions.

This intermediate structure can, for the relation of non-empty intersection, be
thought of as the ‘free’ way to amalgamate the posets F and I, and comes with
a universal property (see [15, 1.4.2] and [4, 7.30]). So a canonical extension, for
example, is obtained by ‘freely’ combining the chosen F and I, and then completing
via the MacNeille completion.

Continuing with the theme of ‘freeness’, given a set X , Whitman investigated
the free lattice generated by X , and defined an algorithm for solving the associated
word problem [16, 17]. Given a poset P we can define the free lattice generated by
P while preserving certain bounds (see Definition 2.6). The original construction
is due to Dean [2], and significantly cleaner approach is given by Lakser [9]. Both
techniques involve first constructing the ‘term algebra’ of words over P , defining a
quasiorder over it, and then taking the induced poset to obtain the appropriate free
lattice. The advantage of Lakser’s approach lies in the definition of the quasiorder.
In particular, Lakser replaces Dean’s somewhat involved recursive definition with
what he calls the covering condition [9, Definition 2]. In this covering condition we
see what amounts to the familiar relation of non-empty intersection between filters
and ideals.

This raises questions about the relationship between the intermediate structure
that appears in the canonical extension construction and the free lattice generated
by a poset while preserving certain bounds. Intuitively, we can imagine building
this free lattice step by step. First we would add new elements corresponding to
joins and meets of subsets of P , taking care not to interfere with any of the bounds
we wanted to preserve. This would almost certainly not be a lattice, as there would
likely be finite subsets of the newly constructed poset without defined joins and
meets. Thus we would add more elements corresponding to joins and meets of
finite subsets of the poset we constructed in the first stage. This time we would be
careful not to interfere with the joins and meets we added the first time. Again, the
result of this would likely not be a lattice, but we could keep repeating the process
of adding joins and meets indefinitely. The free lattice would be obtained ‘in the
limit’ so to speak.

It turns out that this can actually be done. Explicitly, given a poset P we can
define a set of ‘filters’ corresponding to the meet structure we want to add, and a set
of ‘ideals’ corresponding to the join structure we want to add, and the intermediate
structure from the canonical extension construction corresponds to the poset plus
added joins and meets. By repeating this process with appropriate further choices,
we produce a chain of posets embedding into each other. The desired free lattice
can then be constructed by taking the colimit. The details of this are given in
Section 3, building on some background results provided in Section 2.

Finally, in Section 4 we connect the intermediate stages of this construction
with a notion of complexity and prove that each stage is, in a sense, a kind of ‘free’
construction (see Theorem 4.7). To conclude the paper we give an example showing
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that the ‘canonical form’ theorem for free lattices over sets does not generalize to
free lattices over posets preserving certain bounds (Example 4.8).

2. Preliminaries

First a little notation. Given a poset P and an element p ∈ P , we define
p↑ = {p′ ∈ P : p′ ≥ p}, and we define p↓ dually. Given a function f : X → Y

between sets and Y ′ ⊆ Y , we define f−1(Y ′) = {x ∈ X : f(x) ∈ Y ′}. Given
X ′ ⊆ X we define f [X ′] = {f(x) : x ∈ X ′}.

2.1. Free lattices. To discuss free lattices preserving bounds we first need a way
to specify the bounds we wish to preserve. This is done via the following definition.

Definition 2.1. Let P be a poset. Let U be a subset of ℘(P ). Then U is a
join-specification (of P ) if it satisfies the following conditions:

(1)
∨

S exists in P for all S ∈ U , and
(2) {p} ∈ U for all p ∈ P .

A meet-specification is a subset D of ℘(P ) satisfying (2) and the dual of (1).
Given a join-specification U we define the radius of U to be the smallest cardinal
σ such that σ > |S| for all S ∈ U . The radius of a meet-specification is defined
dually.

Definition 2.2 ((U ,D)-morphism). Let f : P → Q be an order-preserving map
between posets. Let U and D be join- and meet-specifications of P respectively.
Then f is a U-morphism if whenever S ∈ U we have f(

∨

S) =
∨

f [S]. Similarly,
f is a D-morphism if whenever T ∈ D we have f(

∧

T ) =
∧

f [T ]. If f is both
a U-morphism and a D-morphism then we say it is a (U ,D)-morphism. If f is a
U-morphism that is also an order-embedding then we say it is a U-embedding, and
we make similar definitions for D- and (U ,D)-embeddings.

Definition 2.3 (U-ideal, D-filter). Let P be a poset, and let U and D be join-
and meet-specifications of P respectively. Then a U-ideal of P is a downset that is
closed under joins from U , and a D-filter of P is an upset that is closed under meets
from D. Given a cardinal α, we say a U-ideal or D-filter of P is α-generated if
it is the smallest U-ideal/D-filter containing S for some S ⊆ P with |S| < α. For
α = ω we just say finitely generated.

The next lemma proves that inverse images of (U ,D)-morphisms produce U-
ideals and D-filters.

Lemma 2.4. If h : P → Q is a (U ,D)-morphism, then, for all q ∈ Q, h−1(q↓) is
a U-ideal and h−1(q↑) is a D-filter.

Proof. Let S ∈ U and suppose S ⊆ h−1(q↓). Then q is an upper bound for h[S],
and as h is a (U ,D)-morphism it follows that h(

∨

S) ≤ q. Since h−1(q↓) is clearly
a downset, it is thus a U-ideal. The rest follows by duality. �

The next lemma will be important later. The idea is that when h is a (U ,D)-
morphism and I is a U-ideal, we find e.g.

∨

h[I] by calculating
∨

h[S] for a subset
S of I that generates I. The value of this is that S may be finite, proving that the
infinite join

∨

h[I] must exist in e.g. a lattice.
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Lemma 2.5. Let h : P → Q be a (U ,D)-morphism, let I be the smallest U-
ideal of P containing S, and suppose

∨

h[S] exists in Q. Then
∨

h[S] =
∨

h[I].
Similarly, if F is the smallest D-filter containing S and

∧

h[S] exists in Q, then
∧

h[S] =
∧

h[F ].

Proof. Let x ∈ L and suppose that x is an upper bound for h[S]. By Lemma 2.4,
h−1(x↓) is a U-ideal of P . As h−1(x↓) contains S, it follows that I ⊆ h−1(x↓), and
thus that x is an upper bound for h[I]. In particular, h(

∨

S) is an upper bound for
h[I]. As

∨

h[S] = h(
∨

S) and S ⊆ I, we obtain
∨

h[S] =
∨

h[I] as required. The
rest is dual. �

Definition 2.6 (F(U ,D)). Let P be a poset, and let U and D be join- and meet-
specifications of P respectively, both with radius at most ω. The lattice freely
generated by P while preserving joins from U and meets from D is a lattice F(U ,D)
such that there is a (U ,D)-embedding e : P → F(U ,D) and such that, whenever
L is a lattice and f : P → L is a (U ,D)-morphism, there is a unique lattice
homomorphism u : F(U ,D) → L such that the diagram in Figure 1 commutes.

P
e //

f

��

F(U ,D)

u

{{✇✇
✇✇
✇✇
✇✇
✇

L

Figure 1. The universal property of F(U ,D)

F(U ,D) always exists, and is unique up to isomorphism fixing P as, demonstrated
by the explicit constructions of [2] and [9].

2.2. Canonical extensions. In [3], the canonical extension of a poset P was de-
fined in terms of the sets of its up-directed downsets (called ideals in that paper),
and down-directed upsets (called filters). As noted in [3, Remark 2.3], this choice of
definition for ideal and filter is somewhat arbitrary, and there are others that also
agree with the lattice version as used in [6]. For example, [13] defines filters to be
upsets closed under existing finite meets, and defines ideals dually. This paper also
generalizes the definition of canonical extension by defining it relative to a set F
of filters and a set I of ideals, provided the pair (F , I) satisfies certain conditions.
Thus we can speak of ‘the canonical extension of P with respect to (F , I)’.

Generalizing further, we can relax the conditions on F and I to allow the former
to be any standard collection of upsets, and the latter to be any standard collection
of downsets. Here a standard collection of upsets of P is one that contains all the
principal upsets, and the definition for downsets is dual.

Definition 2.7. A canonical extension of P with respect to (F , I) is a
completion e : P → C such that the following all hold:

(1) e is (F , I)-dense, by which we mean that given z ∈ C, we have

z =
∨

{
∧

e[F ] : F ∈ F and
∧

e[F ] ≤ z}

=
∧

{
∨

e[I] : I ∈ I and
∨

e[I] ≥ z}.
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(2) e is (F , I)-compact, by which we mean that whenever F ∈ F and I ∈ I,
if
∧

e[F ] ≤
∨

e[I] we must have F ∩ I 6= ∅.

Definition 2.7 corresponds to that of an (F , I)-completion from [7, Definition
5.9], and specializes, after a little fiddling, to the definitions of the canonical exten-
sion from [13, Section 4] and [3, Definition 2.2] by restricting the possible choices
of F and I.

Given a poset P and standard sets of upsets and downsets F and I, the canonical
extension of P with respect to (F , I) is unique up to isomorphism, and can be con-
structed by first amalgamating F and I (see Definition 2.8 below), and then taking
the MacNeille completion of the resulting poset. See [7], in particular Theorems
5.10 and 3.4 for proofs applicable to the general setting we are using here.

Definition 2.8 (AF ,I , π, τ , i, f , γ). Let P be a poset and let I and F be standard
sets of downsets and upsets of P , respectively. Define AF ,I by taking the union
F∪I and adding the partial order structure induced by the following quasiordering:

(1) For F1, F2 ∈ F , F1 ≤ F2 ⇐⇒ F1 ⊇ F2.
(2) For I1, I2 ∈ I, I1 ≤ I2 ⇐⇒ I1 ⊆ I2.
(3) For I ∈ I and F ∈ F :

(a) F ≤ I ⇐⇒ F ∩ I 6= ∅.
(b) I ≤ F ⇐⇒ for all p, q ∈ P , if p ∈ I and q ∈ F , then p ≤ q.

There are maps π : I → AF ,I and τ : F → AF ,I induced by the respective
inclusions of I and F into F ∪ I. Define i : P → I and f : P → F by p 7→ p↓ and
p 7→ p↑ respectively. Define γ : P → AF ,I by γ = π ◦ i = π ◦ f .

The following lemma collects together some useful properties of the maps from
the previous definition.

Lemma 2.9. Let i, f , π, τ and γ be as in Definition 2.8 for some choice of (F , I).
Then:

(1) π is a completely join-preserving order-embedding.
(2) τ is a completely meet-preserving order-embedding.
(3) γ is an order-embedding.
(4) If S ⊆ P and

∨

S exists in P , then

γ(
∨

S) =
∨

γ[S] ⇐⇒ i(
∨

S) =
∨

i[S].

(5) If T ⊆ P and
∧

T exists in P , then

γ(
∧

T ) =
∧

γ[T ] ⇐⇒ f(
∧

T ) =
∧

f [T ].

Proof. π is obviously an order embedding, as by definition I1 ≤ I2 ⇐⇒ I1 ⊆ I2.
Now, let X ⊆ I, and suppose

∨

X exists in I. Then
∨

X is the smallest element
of I containing

⋃

X . Let F ∈ F with I ≤ F for all I ∈ X , and let q ∈ F . Then
for all p ∈

⋃

X we have p ≤ q, and so p↓ ⊆ q↓. So q↓ is an upper bound for X in
I, and so

∨

X ⊆ q↓. This is true for all q ∈ F , so
∨

X ≤ F , by definition of the
order on AF ,I . This proves (1), and (2) is dual.

For (3), that γ is an order-embedding is immediate as it is the composition of two
order-embeddings. For (4), note that γ = π ◦ i and π is completely join-preserving.
The argument for (5) is dual. �



6 ROB EGROT

Composing γ with the MacNeille completion d of AF ,I produces d ◦ γ, which is
the canonical extension of P with respect to (F , I).

When I and F are standard sets of U-ideals and D-filters, respectively, the maps
i, f and γ preserve the specified joins and meets, as made precise in the following
lemma.

Lemma 2.10. Let U be a join-specification, and let S ∈ U . Then i(
∨

S) =
∨

i[S]
and γ(

∨

S) =
∨

γ[S]. Similarly, if D is a meet-specification and T ∈ D, then
f(
∧

T ) =
∧

f [T ] and γ(
∧

T ) =
∧

γ[T ].

Proof. First, i(
∨

S) = (
∨

S)↓ is a U-ideal containing S. Moreover, any U-ideal
containing S must contain

∨

S, by virtue of being a U-ideal. Thus i(
∨

S) is the
smallest U-ideal containing S, and so is

∨

i[S]. The argument for f is dual. The
claims for γ then follow by Lemma 2.9(4). �

2.3. Directed colimits in the category of posets. Define Pos to be the category
of posets with order-preserving maps. Define Pose to be the category of posets and
order-embeddings. We present the following definition, primarily to fix a notation.
Details and background can be found in e.g. [10].

Definition 2.11. If I and C are categories, and if F : I → C is a functor, then a
colimit for F is a pair (L, {fi : i ∈ I}) such that L is an object of C , and fi is a
map from Fi to L for all objects i ∈ I such that:

(1) If g : i → j is a map in I then fi = fj ◦ Fg.
(2) If C ∈ C and for each i ∈ I there is hi : Fi → C such that hi = hj ◦Fg for

all i, j ∈ I and all maps g : i → j, then there is a unique map u : L → C

such that the diagram in Figure 2 commutes, for all i, j, g.

Definition 2.12. A poset is directed if every pair of elements has an upper bound.

Fi

Fg

��

fi

  ❆
❆❆

❆❆
❆❆

❆ hi

��
L

u // C

Fj

fj

>>⑦⑦⑦⑦⑦⑦⑦⑦
hj

CC

Figure 2. Commuting diagram for a colimit

Proposition 2.13. Let I be a directed poset considered as a category. If i ≤ j in
I we denote the map from i to j in I by gij. Then Pos and Pose have all colimits
of shape I, i.e. colimits exist for every functor F : I → Pos and F : I → Pose.
Moreover, if F : I → Pos and (L, {fi : i ∈ I}) is a colimit for F , then:

(1) If F can be considered as a functor from I to Pose, i.e. if F (gij) is an
order-embedding for all i ≤ j ∈ I, then a colimit of F : I → Pose is also a
colimit for F : I → Pos.

(2) For all p ∈ L there is i ∈ I, and x ∈ Fi, with p = fi(x).
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(3) Let p, q ∈ L, let i, j ∈ I, and suppose p = fi(x) and q = fj(y) for some
x ∈ Fi and y ∈ Fj. Then, of the following statements the implications
(a) =⇒ (b) =⇒ (c) hold. Moreover, if F can be considered as a functor
from I to Pose then the statements are all equivalent.
(a) For all k ≥ {i, j} in I we have Fgik(x) ≤ Fgjk(y) in Fk.
(b) There is k ≥ {i, j} in I with Fgik(x) ≤ Fgjk(y) in Fk.
(c) p ≤ q.

(4) L is a lattice if, for all i, j ∈ I, and for all x ∈ Fi and y ∈ Fj, the following
conditions both hold:
(a) There is k ≥ {i, j} in I and z ∈ Fk with gin(x) ∨ gjn(y) = fkn(z) in

Fn for all n ≥ k.
(b) There is k ≥ {i, j} in I and z ∈ Fk with gin(x) ∧ gjn(y) = fkn(z) in

Fn for all n ≥ k.
If F can be considered as a functor from I to Pose then the converse (only
if) is also true.

Proof. This follows from general model theoretic considerations (see e.g. [8, The-
orems 2.4.5 and 2.4.6]). Direct proof by construction is also straightforward. L is
constructed by first taking the union

⋃

I Fi, and then taking the quotient of this
with respect to the quasiordering given by x � y if and only if there is i such that
x, y ∈ Fi and x ≤ y. The fi maps are induced by the inclusions into

⋃

I Fi. �

3. Building free lattices

Let P be a poset, and, recalling Definition 2.1, let U and D be join- and meet-
specifications of P respectively, both with radius ω. We make definitions as follows:

• Define A0 = P .
• Define U0 and D0 by U0 = U and D0 = D.
• Define I0 and F0 to be, respectively, the sets of all non-empty finitely
generated U0-ideals and D0-filters of P (recall Definition 2.3). Treat these
as posets by ordering by inclusion and reverse inclusion respectively.

• Define i0 : P → I0 and f0 : P → F0 by i0 : p 7→ p↓, and f0 : p 7→ p↑.
• Define A1 to be the amalgam of F0 and I0 as in Definition 2.8.
• Define π0 : I0 → A1 and τ0 : F0 → A1 to be the maps induced by the
inclusion functions.

• Define γ0 : P → A1 by γ0 = π0 ◦ i0 = τ0 ◦ f0.

For n ≥ 1 we make definitions as follows:

• Define Un = Dn to be the set of non-empty finite subsets of γn−1[An−1].
• Define In and Fn to be, respectively, the sets of all non-empty finitely
generated Un-ideals and Dn-filters of An.

• Define in : An → In and fn : An → Fn by in : x 7→ x↓ and fn : x 7→ x↑.
• Define An to be the amalgam of Fn−1 and In−1.
• Define πn−1 : In−1 7→ An and τn−1 : Fn−1 → An to be the maps induced
by the inclusion functions.

• Define γn−1 : An−1 → An by γn−1 = πn−1 ◦ in−1 = τn−1 ◦ fn−1.
• For each m < n define γmn = γn−1 ◦ . . .◦γm (in particular, γm(m+1) = γm).
• Define γnn to be the identity map on An.

The situation is presented as Figure 3. A is the object part of the colimit of
the chain A0,A1, . . . as made precise in Theorem 3.4 later. For this we will need
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P
i0 //

f0

��

γ0

  ❇
❇❇

❇❇
❇❇

❇ I0

π0

��
F0 τ0

// A1
i1 //

f1

��

γ1

!!❇
❇❇

❇❇
❇❇

❇ I1

π1

��
F1 τ1

// A2
i2 //

f2

��

γ2

!!❇
❇❇

❇❇
❇❇

❇ I2

π2

��
F2 τ2

// A3

  
A

Figure 3. Building a free lattice

some technical results. The next lemma simply phrases the construction given at
the start of this section in terms of a diagram, in the categorical sense, and says
that the maps in the resulting colimit are (Un,Dn)-embeddings for all n ∈ ω.

Lemma 3.1. Consider the ordinal ω as a category whose maps are induced by the
order relation, and for each m ≤ n denote the map from m to n by gmn. With
An etc. as defined at the start of this section, define a functor F : ω → Pose by
F (n) = An and F (gnn) = idAn

, for all n ∈ ω, and, for m < n, F (gmn) = γm(n−1).
Let (A, {µn : n ∈ ω}) be a colimit for F . Then µn is a (Un,Dn)-embedding for all
n ∈ ω.

Proof. That µn is an order-embedding for all n ∈ ω follows from the fact that
γk is an order-embedding for all k ∈ ω (by Lemma 2.9). Now, given k ∈ ω and
T ∈ Uk, it follows from Lemma 2.10 that γkn(

∨

T ) =
∨

γkn[T ] for all n ≥ k.
Thus µk(

∨

T ) =
∨

µk[T ], by Proposition 2.13(3). In combination with the dual
argument this gives us the result. �

The next lemma describes (Un,Dn)-morphisms from the An posets into lattices
in terms of meet- and join-preservation properties on the images of the πn−1 and
τn−1 maps, for n > 0. This will be used to show that the map induced by the
universal property of colimits is a lattice homomorphism, and is thus the right kind
of map for the universal property of free lattices.

Lemma 3.2. Let n ∈ ω \ {0}, let L be a lattice, and let h : An → L. Then h

is a (Un,Dn)-morphism if and only if h is ω-meet-preserving on τn−1[Fn−1], and
ω-join-preserving on πn−1[In−1].

Proof. Suppose h is a (Un,Dn)-morphism. Then, by definition of Un, we have
h(
∨

S) =
∨

h[S] for all finite S ⊆ γn−1[An−1]. Let Z ⊆ In−1 with |Z| < ω,
and suppose

∨

Z is defined in In−1. By definition of In−1, each y ∈ In−1 is a
finitely generated Un−1-ideal. So, for each y ∈ Z there is a finite Ty ⊆ An−1

with y =
∨

in−1[Ty] (in other words, y is the smallest Un−1-ideal containing Ty).
Moreover,

⋃

y∈Z Ty is also finite, and
∨

in−1[
⋃

y∈Z Ty] exists and is
∨

Z. Now, πn−1
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is completely join-preserving, by Lemma 2.9, so

h(
∨

πn−1[Z]) = h ◦ πn−1(
∨

Z)

= h ◦ πn−1(
∨

in−1[
⋃

Z

Ty])

= h(
∨

πn−1 ◦ in−1[
⋃

Z

Ty])

= h(
∨

γn−1[
⋃

Z

Ty])

=
∨

h ◦ γn−1[
⋃

Z

Ty]

=
∨

h ◦ πn−1 ◦ in−1[
⋃

Z

Ty]

=
∨

h ◦ πn−1[Z].

Given finite Z ⊆ Fn−1 we also have h(
∧

τn−1[Z]) =
∧

h ◦ τn−1[Z] by a dual
argument.

Conversely, suppose h is ω-join-preserving on πn−1[Yn−1]. Let Z ⊆ γn−1[An−1]
be finite. Then Z = πn−1 ◦ in−1[S] for some finite S ⊆ An−1, by definition of γn−1.
Moreover,

∨

in−1[S] exists in In−1 (it’s the smallest Un−1-ideal containing S), and
∨

Z =
∨

πn−1 ◦ in−1[S] = πn−1(
∨

in−1[S]),

as πn−1 is completely join-preserving. Thus Z ⊆ πn−1[In−1] and also
∨

Z ∈
πn−1[In−1], and so, by the assumption that h is ω-join-preserving on πn−1[In−1],
we have h(

∨

Z) =
∨

h[Z]. Thus h is a Un-morphism. That h is a Dn-morphism
whenever it is ω-meet-preserving follows from a dual argument. �

The next result says that (U0,D0)-morphisms from P into lattices induce se-
quences of maps corresponding to a cocone. Thus the universal property of colimits
produces a map that we shall show gives us what we want for the universal property
of free lattices.

Proposition 3.3. Let L be a lattice, and let h : P → L be a (U0,D0)-morphism.
Then there exists a sequence of maps (h0, h1, . . .), where hk : Ak → L for each k,
such that:

(1) hk is a (Uk,Dk)-morphism for each k.
(2) The appropriate part of the diagram in Figure 4 commutes (ignoring the

maps µ0 and h∗ for now).

Moreover, the sequence (h0, h1, . . .) is unique with these properties.

Proof. To show existence of such a sequence we prove by induction on n that
suitable subsequences (h0, . . . , hn) exist for all n. The base case n = 0 is trivial, as
we just set h0 = h, so given that h = h0, h1, . . . , hn have been defined, we define
hn+1 : An+1 → L by

hn+1(z) =

{

∨

hn[I] when z = I ∈ In
∧

hn[F ] when z = F ∈ Fn
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P
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h

��
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��☞☞
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☞

γ1 // A2

h2

yy

γ2 // A3

h3

ss

// A

h∗

ooL

Figure 4. A sequence of (Un,Dn)-morphisms

We must first check that hn+1 is well defined. Note that In and Fn contain finitely
generated Un-ideals and Dn-filters, respectively. So, given I ∈ I, by definition there
is a finite S ⊆ An such that I is the smallest Un-ideal containing S. By Lemma
2.5 we have

∨

hn[I] =
∨

hn[S], with the latter join existing in L as S is finite. By
this and a dual argument we see that the required joins and meets exist for the
definition of hn+1.

In addition, we must check that hn+1(z) is well defined in the case where I =
z = F for some I ∈ In and F ∈ Fn. For this, note first that, by definition,
I ≤ F if and only if for all p ∈ I and for all q ∈ F we have p ≤ q. From this it
follows immediately that

∨

hn[I] ≤
∧

hn[F ]. Similarly, F ≤ I if and only if there
is p ∈ F ∩ I, in which case

∧

hn[F ] ≤
∨

hn[I]. Thus hn+1 is well defined, and is
also order preserving.

Now, given p ∈ An, we have hn+1(p) =
∨

hn[p
↓] = hn(p), so the triangle involv-

ing hn, γn and hn+1 commutes (recall that γn(p) = p↓).
Moreover, by Lemma 3.2, to show that hn+1 is a (Un+1,Dn+1)-morphism it is

sufficient to show it is ω-meet-preserving on τn[Fn], and ω-join-preserving on πn[In].
So let Z ⊆ πn[In], and suppose

∨

Z = I ′ in πn[In], so I ′ is the smallest Un-ideal
containing

⋃

Z. As πn is completely join-preserving, by Lemma 2.9, we must have
∨

Z = I ′ in An+1 too. Now, for all I ∈ Z we clearly have hn+1(I) ≤ hn+1(I
′).

So, suppose x ∈ L and that hn+1(I) ≤ x for all I ∈ Z. Then, by Lemma 2.4 and
the inductive assumption that hn is a (Un,Dn)-morphism, h−1

n (x↓) is a Un-ideal,
and also I ⊆ h−1

n (x↓) for all I ∈ Z, by definition of hn+1. So I ′ ⊆ h−1
n (x↓), and

thus hn+1(I
′) ≤ x. So hn+1 is actually completely join-preserving on πn[In], and

by a dual argument it is also completely meet-preserving on τn[Fn]. Thus hn+1 is
a (Un+1,Dn+1)-morphism as claimed.

Finally, hn+1 is unique with these properties, because given I ∈ In generated by
finite S ⊆ An, we have I =

∨

in[S] in In, and so I =
∨

πn◦in[S] =
∨

γn[S] in An+1,
as πn is completely join-preserving. If hn+1 is to be a (Un+1,Dn+1)-morphism then
we must have hn+1(I) =

∨

hn+1 ◦γn[S], since γn[S] is a finite subset of γn[An], and
if the diagram is to commute we must have hn+1 ◦ γn[S] = hn[S]. So, appealing
to Lemma 2.5, hn+1(I) =

∨

hn[S] =
∨

hn[I]. By a dual argument we obtain that
hn+1(F ) can only be

∧

hn[F ], for F ∈ Fn, which completes the proof.
�

Theorem 3.4. Consider the ordinal ω as a category, and for each m ≤ n ∈ ω

denote the map from m to n by gmn. Define a functor F : ω → Pose so that
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Fn = An for all n ∈ ω. Define F (gmm) to be the identity map for all m ∈ ω, and
define F (gmn) = γm(n−1) for all m < n ∈ ω. Let (A, {µn : n ∈ ω}) be a colimit for
F . Then µ0 : P → A ∼= µ : P → F(U ,D). In other words, there is an isomorphism
φ : A → F(U ,D) such that φ ◦ µ0 = µ.

Proof. Let L be a lattice and let h : P → L be a (U ,D)-morphism. By Proposition
3.3 we obtain maps h1, h2, . . . such that the relevant parts of the diagram in Figure
4 commutes. Thus, from the universal property of colimits we obtain a unique
map h∗ : A → L making the whole diagram commute. We must check that A is a
lattice, and that h∗ is the unique lattice homomorphism such that h = h∗ ◦ µ0.

So, let x, y ∈ A. Then there is n such that x, y ∈ An with x∨y and x∧y defined
in An, and with {x, y} ∈ Uk = Dk for all k ≥ n. As γnk(x ∨ y) = γnk(x) ∨ γnk(y)
for all k ≥ n, by Lemma 2.10, and similar for ∧, it follows from Proposition 2.13(4)
that A is a lattice.

Moreover, since x∨ y ∈ Un and hn is a (Un,Dn)-morphism (by Proposition 3.3),
it follows from the commutativity of the diagram that h∗(x ∨ y) = h∗(x) ∨ h∗(y).
Similar holds for x ∧ y, and thus h∗ is a lattice homomorphism.

Finally, if g : A → L is a lattice homomorphism with h = g ◦ µ0, then, for all n,
the restriction of g to An is a (Un,Dn)-morphism making the relevant part of the
diagram in Figure 4 commute, and so must be hn, by Proposition 3.3. It follows
from the universal property of colimits that g must be h∗. Thus µ0 : P → A is the
required free lattice (up to isomorphism), and we have the result. �

4. Approximate lattice extensions

The step by step construction of F(U ,D) from Section 3 can be thought of as a
sequence of increasingly good approximations. If P is finite, then the free lattice
F(U ,D) may not be. For example, the free lattice generated by a three element
set is known to be infinite (see e.g. [5, Theorem 1.28]). However, if P is finite
then An will also be finite for each n ∈ ω. Moreover, the map µn : An → A is
an order-embedding, and also preserves the meets and joins of all finite subsets
of γn−1[An−1]. Thus, while each An contains only a finite portion of the (U ,D)-
free lattice structure generated by P , there is a guarantee that much of what is
contained in An is correct.

It follows that reasoning involving only terms of ‘bounded complexity’, in a sense
to be made precise in this section, can be done in An for large enough n. For a
simple example, it is obvious from this that the word problem for free lattices is
solvable; Given terms s and t we can check whether s ≤ t ‘merely’ by constructing
A1,A2, . . . till we get to An containing both s and t, then checking whether s ≤ t in
An. This is of course not a practical approach (see [5, Chapter 9.8] for a discussion
of algorithms for this problem).

We can modify the result of Section 3 to show that each stage An also satisfies
a kind of universal property. In this sense, these finite approximations to the free
lattice are free objects themselves, albeit for a rather restrictive class. We need
some technical definitions to make this precise.

Definition 4.1. For each 2 ≤ n < ω define n-ary operation symbols
∨

n and
∧

n.

Definition 4.2. Let T be a set. Define T -terms recursively as follows:

• If t ∈ T then t is a T -term.
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• If 2 ≤ n < ω and φ1, . . . , φn are T -terms, then
∨

n(φ1, . . . , φn) and
∧

n(φ1, . . . , φn)
are T -terms.

We define the complexity of T -terms recursively as follows:

• If t ∈ T then the complexity of t is 0.
• If φ1, . . . , φn are T -terms with complexities c1, . . . , cn then

∨

n(φ1, . . . , φn)
and

∧

n(φ1, . . . , φn) have complexity max(c1, . . . , cn) + 1.

Definition 4.3. Let Q be a poset, let T ⊆ Q, and let φ be a T -term. We define
what it means for q ∈ Q to correspond to φ (or, equivalently, for q to be a
correspondent for φ) as follows:

• If φ = t for some t ∈ T , then q corresponds to φ if and only if q = t.
• Suppose that φ =

∨

n(φ1, . . . , φn), and that φi is a T -term with correspon-
dent qi for each i ∈ {1, . . . , n}. Then q corresponds to φ if and only if
q =

∨

{q1, . . . , qn}.
• Suppose that φ =

∧

n(φ1, . . . , φn), and that φi is a T -term with correspon-
dent qi for each i ∈ {1, . . . , n}. Then q corresponds to φ if and only if
q =

∧

{q1, . . . , qn}.

Note that an easy inductive argument shows that a T -term has a unique corre-
spondent, if it has one at all. However, an element q ∈ Q may correspond to more
than one T -term.

Definition 4.4. Let Q be a poset, let k ∈ ω ∪ {ω}, and let T ⊆ Q. Then Q is
k-complete relative to T if, for all k′ < k, every T -term of complexity k′ has a
correspondent in Q.

Note that every poset is trivially 1-complete relative to every subset, as the terms
with complexity 0 are just the elements of the subset.

Definition 4.5. Let Q be a poset, and let T ⊆ Q. Given q ∈ Q, define rankT (q) to
be the least n ∈ ω such that q corresponds to a T -term φ of complexity n, if such
a φ exists, otherwise leave it undefined.

Proposition 4.6. Let P be a poset, let 1 ≤ n < ω, let γ0n : P → An be as defined
in Section 3, and let µ0 : P → A be defined as in Theorem 3.4. Then:

(1) If q ∈ An then rankγ0n[P ](q) ≤ n.
(2) An is (n+ 1)-complete relative to γ0n[P ].
(3) If q ∈ A then rankµ0[P ](q) is finite.
(4) A is ω-complete relative to µ0[P ].
(5) Let q ∈ A and let n ∈ ω. Then rankµ0[P ](q) = n if and only if n is the

smallest number such that there is q′ ∈ An with µn(q
′) = q.

Proof. Parts (1) and (2) can be proved by easy inductions on n. Parts (3) and (4)
then follow from the fact that, for all n ∈ ω, the map µn : An → A is a (Un,Dn)-
embedding (by Lemma 3.1), and for every q ∈ A we have q = µn(q

′) for some n ∈ ω

and q′ ∈ An.
Part (5) also follows by an induction argument. The case where n = 0 is trivial,

so suppose n > 0 and that the claim holds for all m < n, and let q ∈ A. Suppose
first that rankµ0[P ](q) = n, and let φ be a µ0[P ]-term of complexity n to which q

corresponds. Suppose without loss of generality that φ =
∨

k(φ1, . . . , φk) for some
µ0[P ]-terms φ1, . . . , φk, each of which has complexity of at most n − 1. For each
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i ∈ {1, . . . , k} let qi ∈ A be the correspondent of φi. Then, for all i ∈ {1, . . . , k} we
have rankµ0[P ](qi) < n.

Now, by the inductive hypothesis, for each i ∈ {1, . . . , k} there is ni < n and
q′i ∈ Ani

, with qi = µni
(q′i). Let n′ = max(n1, . . . , nk). As q corresponds to φ,

there must be q′ ∈ An′+1 such that µn′+1(q
′) = q. Moreover, if there were n′′ < n

and q′′ ∈ An′′ such that µn′′(q′′) = q then, also by the inductive hypothesis, we
would have rankµ0[P ](q) < n, contradicting the assumption that rankµ0[P ](q) = n.
It follows that n′+1 = n, and that n is indeed the smallest number such that there
is q′ ∈ An with µn(q

′) = q.
For the converse, suppose n is the smallest number such that there is q′ ∈

An with µn(q
′) = q. Then there are q′1, . . . , q

′
k ∈ An−1 such that either q′ =

∨

{γn−1(q
′
1), . . . , γn−1(q

′
k)}, or q′ =

∧

{γn−1(q
′
1), . . . , γn−1(q

′
k)}. Now, for each i ∈

{1, . . . , k} let qi = µn−1(q
′
i), and let φi correspond to qi and have minimal complex-

ity. Suppose without loss of generality that q′ =
∨

{γn−1(q
′
1), . . . , γn−1(q

′
k)}. Then

q corresponds to
∨

k(φ1, . . . , φk), and, as rankµ0[P ](qi) < n for all i ∈ {1, . . . , k}, it
follows that rankµ0[P ](q) ≤ n. Moreover, if rankµ0[P ](q) < n then, by the inductive
hypothesis, n could not be minimal as assumed. It follows that, if n is the smallest
number such that there is q′ ∈ An with µn(q

′) = q, then rankµ0[P ](q) = n. �

Theorem 4.7. Let P and Q be posets, let n ∈ ω, and let An be as defined in
Section 3. Let f : P → Q be a (U ,D)-morphism, and suppose Q is (n+1)-complete
relative to f [P ]. Then there is a unique (Un,Dn)-morphism f∗ : An → Q such that
f∗ ◦ γ0n = f .

Proof. First, if n = 0 then An = P and the result is trivial. Suppose then that
n > 0, and that the claim holds for all k < n. The argument now is essentially
that of Proposition 3.3. The only difference is that, as Q is not a lattice, it is not
immediately obvious that Q has the required joins and meets. However, a little
reflection reveals that the satisfaction of these conditions to a degree sufficient to
prove the claimed result follows from the fact that Q is (n + 1)-complete relative
to f [P ]. �

Theorem 4.7 says, in a sense, that An is the free poset generated by P (while pre-
serving certain bounds) that has lattice structure up to a certain level of complexity,
if using elements of P as a base.

In the case where P is an antichain, there is a well known ‘canonical form’ the-
orem, which, in our notation, produces for each q ∈ A a µ0[P ]-term corresponding
to q that is minimal with respect to a certain measure of complexity, and this term
is ‘unique up to commutativity’ (see e.g. [5, Theorem 1.17]). Unfortunately, this
theorem does not hold for posets in general, as we illustrate in Example 4.8.

Example 4.8. Let P be the poset in Figure 5, let U and D contain, respectively, all
joins and meets that are defined in P , and consider the element a ∨ b. This is not
defined in P , but is defined in A1, and is, in the construction of A1 using U-ideals
and D-filters, the smallest U-ideal containing {a, b}. Inspection reveals this is the
whole of P . Now, the smallest U-ideal containing {x, y} is also the whole of P ,
and thus a ∨ b = x ∨ y. But {a, b} and {x, y} are disjoint, and there is no natural
reason to choose one over the other as the basis for a canonical term for the element
corresponding to the join in A1. Since A1 correctly represents the joins of elements
of P in the colimit A, this argument reveals that a canonical form theorem such as
exists for free lattices over sets does not exist in this more general setting.
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Figure 5. The bat signal poset
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