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THE MINOR ORDER OF HOMOMORPHISMS VIA NATURAL

DUALITIES

WOLFGANG POIGER AND BRUNO TEHEUX

Abstract. We study the minor relation for algebra homomorphims in finitely

generated quasivarieties that admit a logarithmic natural duality. We charac-

terize the minor homomorphism posets of finite algebras in terms of disjoint

unions of dual partition lattices and investigate reconstruction problems for

homomorphisms.

1. Introduction

Minors of an n-ary operation f on a set A are those operations g on A that can

be obtained from f by identifying or permuting arguments, or by adding/deleting

inessential arguments. We write g � f if g is a minor of f . Thus defined, the minor

relation � is a preorder on the set of all operations on A, and the minor poset of A is

the corresponding partial order obtained after identifying operations by the minor

equivalence g ≡ f ⇔ (g � f ∧f � g). The minor preorder and its associated partial

order were introduced in the setting of clone theory, where they were used to study

and characterize equational classes of Boolean functions (see [12], for instance).

Since then, they were the topic of several investigations (see [3, 6, 7, 23, 27], to

name a few). The general idea behind these investigations is to determine how much

information about an operation f can be retrieved from its minors. In particular, a

series of recent papers deals with reconstruction properties, asking which operations

f can, up to minor equivalence, be recovered from (a portion of) their minors (see

[19, 20, 21, 22]). We adopt the more general framework of these papers, where

not only operations but arbitrary functions of several arguments f : An → B are

considered.

In this paper, we investigate the minor order in the particular case of algebra

homomorphisms. More precisely, let A be a class of algebras of the same type

and for A,B ∈ A let f : An → B be a homomorphism. Then, any minor of f

is itself a homomorphism and we are naturally led to study the restriction of the

minor poset to the collection of homomorphisms
⋃
{A(An,B) | n ≥ 1} up to minor

equivalence, which we call the minor homomorphism poset. In that perspective,

our main tool is the use of natural dualities to translate various problems about

the minor homomorphism poset into their dual equivalents. If the duality on A is

nice enough (logarithmic, in our case), these dual problems turn out to be easier

than the original ones. In particular, we solve problems about reconstructibility

(Section 4) and about finding structural descriptions of the minor homomorphism

posets over finite algebras (Section 5). One purpose of this paper is to demonstrate
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2 WOLFGANG POIGER AND BRUNO TEHEUX

how to successfully apply the theory of natural dualities and thus contribute to the

popularization of these methods in combinatorics.

The theory of natural dualities emerged in the late 1970s in order to give a

common ground for the development of dual equivalences generalizing Stone duality

for Boolean algebras and Priestley duality for distributive lattices. The general idea

is that, for a finite algebra M, it is sometimes possible to find a discrete structure

M
˜

based on the same set as M (therefore often called an alter-ego of M), such that

the category of algebras A = ISP(M) with homomorphisms is dually equivalent

to the category of structured topological spaces X = IScP(M
˜

) of closed subspaces

of powers of M
˜

with continuous structure preserving maps. Simply put, under

these circumstances every algebra A ∈ A has a dual topological structure A∗ ∈ X

and every homomorphism A → B has a dual morphism B∗ → A∗. We build our

developments on previous approaches of clone theory in the framework of natural

dualities (see [16, 17, 15]).

Products and coproducts are interchanged under a dual equivalence, so the dual

of a homomorphism f : An → B is a morphism f∗ : B∗ →
∐

n A∗. We restrict our

investigation to quasivarities A = ISP(M) for which there is an alter-ego M
˜

that

yields a logarithmic duality, which means that finite coproducts in the dual category

of A are realized by direct unions (disjoint unions with constants amalgamated).

Under these circumstances, a dual morphism f∗ as above is easier to work with

than f .

Let us point out some of our main achievements. Theorem 4.6 states that, up to

minor equivalence, homomorphisms f : An → B without inessential arguments are

determined by their identification minors (which are the homomorphisms obtained

by identifying two arguments of f). Proposition 4.4 states that homomorphisms

f : An → B are totally asymmetric in the sense that they have trivial invariance

group.

Theorem 4.6 and Proposition 4.4 build on Proposition 4.2, which shows that the

principal ideal generated in the minor homomorphism poset by a homomorphism

f : An → B with n essential arguments is anti-isomorphic to the full n-element

partition lattice. Theorem 5.13 and its Corollary 5.15 completely characterize the

minor homomorphism posets of finite members of A in terms of disjoint unions of

such partition lattices, by identifying their maximal elements.

We illustrate our developments with numerous examples. In particular, we show

that even though the minor homomorphism poset of an algebra encodes very little

information about this algebra, it is sometimes enough to characterize some of

the algebra’s properties. For instance, we show that it is possible to recognize

finite complemented lattices among distributive lattices by looking at their minor

homomporphism posets (Proposition 5.21).

The paper is organized as follows. In Section 2 we give a brief introduction to the

theory of natural dualities and we introduce the examples of dualities that accom-

pany us throughout the paper. We then recall the definition of the minor preorder

and the constructions related to it. In Section 3, we introduce the minor homomor-

phism posets and develop the techniques to investigate them through duality. In

particular, we show how and why the setting of logarithmic dualities is especially

well suited for the investigation of these posets. Section 4 is devoted to the descrip-

tion of principal ideals in minor homomorphism posets and to reconstructibility

problems. In the finite case, we show the importance of maximal elements in the
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description of these posets. Therefore, Section 5 focuses on identifying these maxi-

mal elements to characterize the minor homomorphism posets in terms of disjoint

unions of partition lattices. We conclude the paper with final remarks and topics

for further research.

2. Preliminaries

In this section, we set some notation and vocabulary for the rest of the paper.

We recall the basic constructions of natural dualities, which we illustrate with a

number of examples. In Subsection 2.4 we recall the definition of the minor relation

and the concepts related to it.

2.1. Posets, Partitions and Permutations. If P = 〈P,≤〉 is a partially ordered

set (in short, a poset) and p ∈ P , then p↓ and p↑ denote the principal ideal and the

principal filter generated by p, respectively. We use P∂ to denote the dual poset of

P, that is, the poset 〈P,≤∂〉 defined by p ≤∂ q iff q ≤ p.

Recall that a poset L is called a lattice if every pair {a, b} of elements of L has a

greatest lower bound a∧ b and a least upper bound a∨ b. A lattice L is distributive

if it satisfies the equation x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and its dual. Distributive

lattices can be characterized as those lattices which neither contain the pentagon

lattice N5 nor the diamond lattice M3 as sublattice (see, e.g., [13, Section 3.II.1]).

If π is a partition of a set S, we often refer to its elements as blocks. We denote

by Πn the set of partitions of [n] := {1, 2, . . . , n}. In particular, we have Π0 = {∅}

and Π1 = {{1}}. We use the usual lattice order on Πn, which is defined by π1 ≤ π2
iff for every B ∈ π1 there is some C ∈ π2 such that B ⊆ C. We refer to 〈Πn,≤〉

as the n-th partition lattice Πn. The cardinality of Πn is given by the Bell number

Bn for every n ≥ 0 (see [26]).

Finally, we denote by Sn the n-th symmetric group, that is, the group of permu-

tations over [n].

2.2. Natural Dualities. The theory of natural dualities emerged in the late 1970s

in order to give a common framework to develop and study dual equivalences for

categories of algebras, generalizing Stone duality for Boolean algebras and Priestley

duality for distributive lattices. Natural dualities are at the core of our investigation

of the minor posets of homomorphims. Here we only recall the basic definitions of

this theory. We refer the reader to [5] for a more detailed reference.

Let A = ISP(M) be the quasivariety generated by a finite algebra M with under-

lying set M (we claim that our results can be naturally generalized for quasivarieties

generated by a finite set of finite algebras). We denote by M
˜

an alter-ego of M,

i.e., a topological structure

M
˜

= 〈M,G,H,R, Tdis〉,

where Tdis is the discrete topology on M and G, H , R are a set (possibly empty)

of algebraic operations, algebraic partial operations (with nonempty domain), and

algebraic (nonempty) relations on M, respectively (here, an n-ary relation is alge-

braic on M if it is a subalgebra of Mn, and an operation or a partial operation is

algebraic on M if its graph is algebraic on M). We denote by X the class IScP(M
˜

)

of topological structures that are isomorphic to a closed substructure of a nonempty

power of M
˜

, and we consider X as a category with continuous structure preserving

maps as arrows. We let G, H and R be sets of symbols for operations, partial
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operations and relations, respectively, that correspond to the type of elements of

X . For any X ∈ X , we use X∗ to denote X (X,M
˜

), considered as a subalgebra of

MX .

For every A ∈ A, the Preduality Theorem [5, Theorem 1.5.2] states that A(A,M)

is a closed substructure A∗ of M
˜

A, and therefore an element of X . Moreover, the

object mappings A 7→ A∗ and X 7→ X∗ can be lifted to contravariant functors

·∗ : A → X and ·∗ : X → A by setting

f∗(u) = u ◦ f for all f ∈ A(A,B) and u ∈ B∗,

ϕ∗(x) = x ◦ ϕ for all ϕ ∈ X (X,Y) and x ∈ Y∗.

The Dual Adjunction Theorem [5, Theorem 1.5.3] asserts that ·∗ and ·∗ define a

dual adjunction between A and X , where the associated natural transformations

e : 1A → (·∗)∗ and ε : 1X → (·∗)∗ are given by

eA(a)(u) = u(a) for all A ∈ A, u ∈ A∗ and a ∈ A,

εX(ϕ)(x) = ϕ(x) for all X ∈ X , ϕ ∈ X∗ and x ∈ X.

Definition 2.1 ([5]). We say that M
˜

yields a duality on A if eA is an isomorphism

for every A ∈ A, and that M
˜

yields a full duality on A if in addition εX is an

isomorphism for every X ∈ X . A full duality is called strong if M
˜

is injective in X .

For X in X , we denote by CX the set of 0-ary functions in GX and refer to

them as constants, where each c ∈ CX is identified with its value, which forms a

one-element subalgebra of M. The structure on M
˜

shall always be chosen such

that no other total or partial function in (GX\CX ∪HX) is constant.

One of the main benefits of a full duality is that it maps products in one category

to coproducts in the other category and vice versa. As we shall see throughout the

paper, this correspondence is the key ingredient to our investigation of the minor

order on homomorphisms.

The case of a full duality generated by a unary alter-ego M
˜

(i.e., the partial and

total operations of M
˜

are at most unary) is of particular interest, since coproducts

in X might turn out to be direct unions. Recall that the direct union X ⊕ Y of

X,Y ∈ IScP(M
˜

) (where M
˜

is unary) is defined on the disjoint union X ⊎ Y :=

({1} ×X) ∪ ({2} × Y ) of X and Y by amalgamating (1, cX) and (2, cY) for every

c ∈ C, by defining the operations and relation as the unions of the corresponding

ones in X and Y, and by equipping the resulting structure with the final topology

with respect to the inclusion maps X,Y → X ⊎ Y . If X is closed under direct

unions, then the coproduct of X and Y in X is realized by X ⊕ Y (see [5, Lemma

6.3.2]).

Definition 2.2. A unary structure M
˜

yields a logarithmic duality on A if it yields

a strong duality on A and finite coproducts in X are realized by direct unions.

For the purposes of this paper it is convenient to think of the carrier set of the

direct union of X and Y in a slightly different (but isomorphic) way as

X\CX ⊎ Y \CY ⊎ CX⊕Y.

The Logarithmic Duality Theorem [5, Theorem 6.3.3] provides a sufficient condition

to get a logarithmic duality. Here, a n-ary relation R on M
˜

with arity n ≥ 2 avoids

binary products if for all 1 ≤ i < j ≤ n the set

{
(
πi (r) , πj (r)

)
| r ∈ R}
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contains no product of nontrivial subalgebras of M
˜

.

Theorem 2.3 ([5]). Let M
˜

be a unary structure which yields a strong duality on

ISP(M). Then the following are equivalent:

(i) M
˜

yields a logarithmic duality on ISP(M).

(ii) For all n ≥ 2, every n-ary relation of M
˜

avoids binary products.

Remark 1. The main results of this paper are all based on the assumption of a

logarithmic duality (see Assumption 3.3). This framework might seem a bit narrow.

However, due to the above theorem combined with other results from [5], we can

find a lot of examples of logarithmic dualities. In particular, there is a logarithmic

duality for ISP(M) if M is quasi-primal, that is, the ternary discriminator

t(x, y, z) =

{
z if x = y

x if x 6= y

is term-definable in M (quasi-primal algebras are precisely the finite discriminator

ones). Examples of quasi-primal algebras can, for example, be found in [30, 4].

In [24] it is shown that, over a fixed algebraic type containing some operation of

arity at least 2, almost all finite algebras of that type are quasi-primal. That is, a

randomly chosen algebra of that type is quasi-primal with probability one.

2.3. Examples of Natural Dualities. We end this section with some concrete

examples of full natural dualities, which will be used throughout this paper to both

motivate and illustrate the results. All the dualities described here except for the

last one are logarithmic due to the Logarithmic Duality Theorem 2.3.

2.3.1. Boolean Algebras. Let B be the variety of Boolean algebras, which is gener-

ated as a quasivariety by the two-element Boolean algebra

2 := 〈{0, 1}, 0, 1,∧,∨, ·−1〉.

The discrete space

2
˜

:= 〈{0, 1}, Tdis〉

yields a strong duality between B and the category S = IScP(2
˜

) of Stone spaces

(that is, zero-dimensional compact Hausdorff spaces). This is the formulation of

the renowned Stone duality (see [29]) in the language of natural dualities.

Any finite Boolean algebra 2k with k ≥ 1 has the discrete space 〈[k], Tdis〉 as dual

space. The category of finite Boolean algebras Bfin is therefore dually equivalent to

the category of finite sets.

2.3.2. Distributive Lattices. Let D be the variety of (unbounded) distributive lat-

tices, which is generated as a quasivariety by the two-element distributive lattice

2 = 〈{0, 1},∧,∨〉.

The discrete structure

2
˜

:= 〈{0, 1}, 0, 1,≤, Tdis〉

yields a strong duality between D and the category P01 = IScP(2
˜

) of bounded

Priestley spaces, i.e, bounded ordered compact spaces (X, 0, 1,≤, T ) in which for

all x, y ∈ X with x 6≤ y there is a clopen downset that contains y but not x. This

is the formulation of the renowned Priestley duality (see [28]) in the language of

natural dualities .
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The full subcategory Dfin of D consisting of finite distributive lattices is dually

equivalent to the category of finite bounded posets (this discrete version of the

Priestley duality is known as Birkhoff duality). The dual of a finite distributive

lattice D can be equivalently constructed as the poset 〈J(D)01,≤D〉 of the join-

irreducible elements J(D) of D with additional bounds 0 and 1, and the map a 7→

a↓∩J(D) is an isomorphism between D and the lattice of downsets of 〈J(D)01,≤D〉.

2.3.3. Median Algebras. A median algebra (see [2]) is a ternary algebra A = 〈A,m〉

that satisfies the equations

m(x, x, y) = x,

m(x, y, z) = m(y, x, z) = m(y, z, x),

m(m(x, y, z), v, w) = m(x,m(y, v, w),m(z, v, w)).

In particular, every distributive lattice D ∈ D yields a median algebra 〈D,mD〉

by stipulating

mD(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

It turns out that median algebras are exactly the subalgebras of median algebras

〈D,mD〉 stemming from some D ∈ D (see [1] and the references therein).

The variety of median algebras M is generated as a quasivariety by the two

element median algebra

2 := 〈{0, 1},m〉,

where m is the majority operation m(x, x, y) = m(x, y, x) = m(y, x, x) = x. The

discrete structure

2
˜

:= 〈{0, 1}, 0, 1,≤, ·c, Tdis〉,

where ≤ is the natural order and ·c is the unary operation that swaps 0 and 1, is

known to yield a strong duality on M (see [5, 14, 31]). The dual category IScP(2
˜

)

is the category of bounded strongly complemented Priestley spaces, that is, bounded

Priestley spaces with an order-reversing homeomorphism ·c which is an involution

and that satisfies

x ≤ xc =⇒ x = 0.

2.3.4. MVm-algebras. Let 〈[0, 1],⊕,⊙,¬, 0, 1〉 be the standard MV-algebra defined

by

x⊕ y = min(1, x+ y), x⊙ y = max(0, x+ y − 1), ¬x = 1 − x.

The variety MVm of MVm-algebras (where m > 0) is defined as MVm := ISP( Lm)

where  Lm is the subalgebra {0, 1
m
, . . . , m−1

m
, 1} of [0, 1]. MVm-algebras are the

algebras of  Lukasiewicz (m+1)-valued logic. It is known (see [25]) that the discrete

structure with unary relations

 L
˜m := 〈 Lm, { Ld | d ∈ div(m)}, Tdis〉,

where div(m) is the set of positive divisors of m, yields a logarithmic strong duality

for MVm.
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2.3.5. Boolean Groups. A Boolean group is a group 〈G,+, 0〉 in which every element

x 6= 0 is of order two. The quasivariety of Boolean groups, denoted BG, is generated

by

Z2 = 〈{0, 1},+, 0〉,

where + is addition modulo 2. The structure Z2
˜

= 〈{0, 1},+, 0, Tdis〉 yields a full

duality for BG (see [16]). In particular, the full subcategory BGfin of finite Boolean

groups is self-dual. Since products and coproducts coincide in self-dual categories,

this duality is not logarithmic.

2.4. The Minor Relation. Let A and B be two nonempty sets and n be a positive

integer. A n-ary function from A to B is a function f : An → B. The collection of

all such functions is denoted by F
(n)
AB and the functions of several arguments from

A to B are the elements of

FAB :=
⋃

n≥1

F
(n)
AB.

For f ∈ FAB the arity of f is the unique n ∈ N for which f ∈ F
(n)
AB and is denoted

by ar(f).

Every map τ : [n] → [m] induces a map τA : Am → An via τA(a1, . . . , am) =

(aτ(1), . . . , aτ(n)). For g ∈ F
(m)
AB and f ∈ F

(n)
AB, we say that g is a minor of f and

write g � f if there is some τ : [n] → [m] such that g = f ◦ τA. The relation � is

a preorder on FAB (see [22, Subsection 2.2]) called the minor preorder. As every

preorder does, it induces an equivalence relation ≡, called the minor equivalence

on FAB, given by f ≡ g iff both f � g and g � f . The minor order is the partial

order on FAB/≡ (well-)defined by [g] ≤ [f ] iff g � f . The minor (A,B)-poset is

given by

FAB := 〈FAB/≡,≤〉.

We will simply write FA for the minor (A,A)-poset (instead of FAA).

For f ∈ F
(n)
AB and i ∈ [n] we say that the i-th argument of f is essential if there

are a, b ∈ An with ai 6= bi and aj = bj for every j 6= i such that f(a) 6= f(b).

Otherwise the i-th argument of f is called inessential. The number of essential

arguments of f is called the essential arity of f , denoted by ess(f). By definition

we always have ess(f) ≤ ar(f).

Informally, we have g � f if g can be obtained from f by permuting argu-

ments, identifying arguments, or by adding/deleting inessential arguments. In par-

ticular, for every function f ∈ FAB there is a function f ′ equivalent to f with

ar(f ′) = ess(f ′). We usually choose such functions without inessential arguments

as representatives for ≡. If f and g are in F
(n)
AB and both have no inessential ar-

guments, then f ≡ g holds if and only if there is a permutation σ ∈ Sn with

f = g ◦ σA.

For n ≥ 2 let
(
[n]
2

)
be the family of 2-element subsets of [n]. For I = {i, j} ∈

(
[n]
2

)

with i < j, define the map δI : [n] → [n− 1] by

δI(k) =





k for k < j

i for k = j

k − 1 for k > j.
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Given f ∈ F
(n)
AB, we write fI for the minor f ◦ δAI and call it an identification minor

of f . The identification minor f{i,j} � f is the result of identifying the i-th and

the j-th argument of f .

To introduce the next notion, recall that a multiset is a collection of elements in

which elements are allowed to appear more than once. Formally, a multiset is a pair

(M,m) where M is a set and m : M → Z+ assigns a multiplicity to each element of

M . For example, we write {a, a, a, b, b} for the multiset ({a, b},m) where m(a) = 3

and m(b) = 2. Clearly a multiset (M,m) can be identified with a (regular) set if

m(x) = 1 holds for all x ∈M .

For f ∈ F
(n)
AB, the deck of f is the multiset deck(f) = {[fI ] | I ∈

(
[n]
2

)
} of

all equivalence classes of identification minors of f . A function g ∈ F
(n)
AB is a

reconstruction of f if deck(f) = deck(g).

Example 2.4. Let f : Z3 → Z be given by f(x, y, z) = x2 + y2 + z2. Then

f{1,2}(x, y) = 2x2 + y2 and f{2,3}(x, y) = x2 + 2y2. Since these two identification

minors only differ by a permutation of arguments, we have f{1,2} ≡ f{2,3}. Still,

in the deck of f we count the equivalence classes of these two identification minors

separately, that is, deck(f) = {[f{1,2}], [f{1,3}], [f{2,3}]}.

The only case in which the deck of f ∈ F
(n)
AB can be identified with a (regular)

set is if all the identification minors of f are pairwise non-equivalent. As we will

see later (in Proposition 4.4), this is actually the case in our setting.

A series of recent papers (see [19, 20, 21, 22]) deals with reconstruction properties

in the following sense.

Definition 2.5 ([19]). A function f ∈ FAB is reconstructible if all of its recon-

structions are equivalent. Furthermore, if C is a subclass of FAB we say that

• C is reconstructible if all members of C are reconstructible,

• C is weakly reconstructible if for every f ∈ C, all the reconstructions of f

which are members of C are equivalent,

• C is recognizable if all reconstructions of members of C are again members

of C.

Remark 2. The minor relations and reconstruction problems introduced in this

section stem from corresponding relations and problems in Graph Theory, where

they are topics of long-term investigation (see [11] for an introducion).

In Section 4 we show that certain classes of homomorphisms of sufficient arity

are weakly reconstructible (see Theorem 4.6). Before that, we ‘set the scene’ of

restricting the minor poset to homomorphisms. This is the purpose of the next

section.

3. Minor Homomorphism Posets

We begin the section by introducing the minor homomorphism posets, which

are obtained by restricting the minor relations to those functions that are algebra

homomorphisms. Then, we restrict our investigation of homomorphisms posets to

quasivarieties A = ISP(M) for which there is a discrete structure M
˜

that yields a

logarithmic duality on A. We introduce co-minor relations for morphisms in the

dual category X := IScP (see Subsection 2.2) and show that they correspond by

duality to the minor relations for homomorphisms in A (see Corollary 3.6).
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This correspondence is central for the results stated in the paper. Indeed, our

reconstruction result for homomorphisms (see Theorem 4.6) and the structural

analysis of the homomorphism posets that we carry out in Section 5 are based on

the correspondence between the minor and co-minor relations.

3.1. Minors of homomorphisms. We use the notation introduced in Subsec-

tion 2.4. Furthermore, A will always denote a category of algebras of the same

type with homomorphisms. We will soon require additional assumptions for A (see

Assumption 3.3) but for now we may keep this level of generality.

Definition 3.1. For every n ≥ 1 and every A,B ∈ A we set A
(n)
AB

:= A(An,B),

and

AAB :=
⋃

n≥1

A
(n)
AB

.

We call AAB := 〈AAB/≡,≤〉 the minor (A,B)-homomorphism poset. Instead of

AAA we simply write AA.

Our first observation is that if f ∈ AAB and g � f , then g ∈ AAB.

Lemma 3.2. Let τ : [n] → [m], and A,B ∈ A.

(1) The map τA : Am → An belongs to A(Am,An).

(2) If f ∈ A
(n)
AB

then f ◦ τA ∈ A
(m)
AB

.

(3) If f ∈ AAB then [f ] ⊆ AAB and [f ]↓ ⊆ AAB/≡.

In particular, AAB/≡ is a downset in 〈FAB/≡,≤〉.

Proof. Let O be a k-ary operation in the signature of A, and a1, . . . , ak ∈ Am. We

obtain successively

τA(OA
m

(a1, . . . , ak)) = τA(OA(a11 . . . , a
k
1), . . . , OA(a1m, . . . , a

k
m))

= (OA(a1τ(1), . . . , a
k
τ(1)), . . . , O

A(a1τ(n), . . . , a
k
τ(n))),

= OA
n

((a1τ(1), . . . , a
1
τ(n)), . . . , (a

k
τ(1), . . . , a

k
τ(n)))

= OA
n

(τA(a11, . . . , a
1
m), . . . , τA(ak1 , . . . , a

k
m))

= OA
n

(τA(a1), . . . , τA(am)),

which proves (1).

(2) and (3) immediately follow from (1). �

3.2. Dualizing the minor relation of homomorphisms. We show how to du-

alize the minor relation on AAB under the assumption that there is a logarithmic

natural duality for A (we use the notation of Subsection 2.2). All our upcomping

results about the minor relation on homomorphisms are based on Assumption 3.3,

that holds for the remainder of the paper.

Assumption 3.3. A is the quasivariety ISP(M) generated by a finite algebra M

and the discrete structure M
˜

= 〈M,G,H,R, Tdis〉 yields a logarithmic duality on

A.

We use X to denote the dual category of A. For an object X of X we denote

by nX the n-th copower of X. As noted after Definition 2.2, for our purpose it

is convenient to consider the carrier of nX as n disjoint copies of X\CX with the

constants CnX added separately:

nX =
(
[n] × (X\CX)

)
∪ CnX.
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We abbreviate X\CX by X♭, and for every i ≤ n we will refer to the set {i}×X♭

as the i-th copy of X♭ in nX.

Given any A,B ∈ A, we aim to describe the dual of the minor preorder � on

AAB. For every f ∈ A
(n)
AB

and g ∈ A
(m)
AB

with g � f , there is a map τ : [n] → [m]

such that the diagram

Am An

B

τA

g
f

commutes. According to Assumption 3.3 and the first statement of Lemma 3.2, the

previous diagram is equivalent to

mA∗ nA∗

B∗

(τA)∗

g∗

f∗

in the dual category X . Hence, in order to translate the minor relation to X , we

need to characterize the dual of the map τA for τ : [n] → [m]. Lemma 3.5 states

that (τA)∗ identically maps the i-th copy of A∗♭ in nA∗ to the τ(i)-th copy of A∗♭

in mA∗.

Definition 3.4. Let τ : [n] → [m] and X ∈ X . The term-wise identity map induced

by τ on X is the map τX : nX → mX defined by τX(cnX) = cmX for all c ∈ C, and

τX(i, x) = (τ(i), x) for all i ∈ [n], x ∈ X♭.

Lemma 3.5. Let τ : [n] → [m]. For every A ∈ A we have (τA)∗ = τA∗ .

Proof. By Assumption 3.3, for every k ≥ 1 the map ϕk : kA∗ → (Ak)∗ defined by

ϕk(ckA
∗

) = c(A
k)∗ for every c ∈ C and ϕk

(
(i, u)

)
= u ◦ pri for every i ∈ [k] and

u ∈ A∗♭ is an isomorphism in X . Hence, the statement of the lemma is equivalent

to

(τA)∗ ◦ ϕn = ϕm ◦ τA∗ . (1)

Let u ∈ A∗ and a ∈ Am. On the one hand, we successively obtain
((

(τA)∗ ◦ ϕn

)
(i, u)

)
(a) =

(
(τA)∗(u ◦ pri)

)
(a)

=
(
(u ◦ pri) ◦ τ

A
)
(a)

= u(aτ(i)).

On the other hand, we successively obtain
(
(ϕm ◦ τA∗)(i, u)

)
(a) = ϕm

(
(τ(i), u)

)
(a)

= (u ◦ prτ(i))(a)

= u(aτ(i)).

Thus we have verified identity (1). �

Lemma 3.5 together with the argument preceding Definition 3.4 lead to the

following definition.

Definition 3.6. Let X,Y ∈ X and ϕ ∈ X (Y, nX), ψ ∈ X (Y,mX). We say that

ψ is a co-minor of ϕ, and we write ψ �d ϕ, if there is a map τ : [n] → [m] such

that ψ = τX ◦ ϕ.
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It is easy to check that �d is a preorder on XYX :=
⋃

n≥1 X (Y, nX) for all X,Y ∈

X , and we denote the equivalence relation associated with it by ≡d. Moreover, we

denote by ≤d the partial order induced by �d on XXY/≡d and we set

XXY := 〈XXY/≡d,≤d〉.

If ϕ ∈ XXY, then we denote the class of ϕ for ≡d by [ϕ]d. As usual, we write XX

instead of XXX.

The cornerstone for our investigation of the minor homomorphism posets via

duality is the following result.

Corollary 3.7. Let A,B ∈ A and f, g ∈ AAB.

(1) The map ·∗ : 〈AAB,�〉 → 〈XB∗A∗ ,�d〉 is an isomorphism of preorders.

(2) The induced map ·∗ : AAB → XB∗A∗ defined by [f ]∗ = [f∗]d is a poset

isomorphism.

To conclude this section, we recall how to recognize inessential arguments by

duality from [15].

Definition 3.8. Let X,Y ∈ X , let ϕ ∈ X (Y, nX) and i ∈ [n]. We say that the

i-th co-argument of ϕ is essential if

ϕ(Y ) ∩ ({i} ×X♭) 6= ∅.

The co-essential arity of ϕ is its number of essential co-arguments, denoted by

essd(ϕ).

Lemma 3.9 ([15, Lemmas 3.4 and 3.9, Proposition 4.2]). Let f ∈ A
(n)
AB

. For every

i ∈ [n] the following conditions are equivalent.

(i) The i-th argument of f is essential.

(ii) The i-th co-argument of f∗ is essential.

Therefore, ess(f) = essd(f∗).

In other words, in order to determine the essential arguments of f ∈ A
(n)
AB

we

only need to ask which copies of A∗♭ intersect with f∗(B∗) in nA∗.

4. Principal Ideals and Weak Reconstructibility

Inspired by [23], we look at principal ideals [f ]↓ in AAB and relate them to

partition lattices. It turns out that, in our setting, every such principal ideal is anti-

isomorphic to the partition lattice of size ess(f) (see Proposition 4.2). The deck

(as introduced in Subsection 2.4) of a homomorphism f forms a diverse collection

which seems to carry a lot of information about f . This suggests that f is likely

to be reconstructible. Indeed, as stated in Theorem 4.6, this is the case if we only

consider reconstructions which are themselves homomorphisms.

Let f ∈ F
(n)
AB and π ∈ Πn be a partition with m blocks. For every ℓ ∈ [n], denote

by πℓ the block of π that contains ℓ. Any bijective labeling c : π → [m] defines a

minor fc := f ◦ (ĉA), where ĉ : [n] → [m] is defined by ĉ(ℓ) = c(πℓ). Moreover,

we have fc ≡ fc0 for any two bijective labelings c, c0 : π → [m]. This justifies the

following definition.

Definition 4.1. Let f ∈ F
(n)
AB and π ∈ Πn with cardinality m. We denote by [fπ]

the equivalence class of fc for ≡, where c : π → [m] is any bijective labeling of the



12 WOLFGANG POIGER AND BRUNO TEHEUX

elements of π. If in addition f ∈ A
(n)
AB

, then we denote by [f∗
π ]d the equivalence

class for ≡d of (fc)
∗ = ĉA∗ ◦ f∗.

It is known that for every f ∈ F
(n)
AB, the mapping [f·] : Πn → [f ]↓ defined by π 7→

[fπ] is onto and order-reversing (see [23, Corollary 7]). It may happen that [fπ] =

[fπ′ ] holds for distinct π and π′ in Πn, and [23] is devoted to the characterization

of those equivalence relations ∼ on Πn that leads to an anti-isomorphism between

Πn/∼ and some [f ]↓. Restricting the minor relation to AAB gives a much simpler

situation, as shown in the next result.

Proposition 4.2. For every f ∈ AAB the principal ideal [f ]↓ in AAB is anti-

isomorphic to the partition lattice Πess(f).

Proof. We can assume that f ∈ A
(n)
AB

, where n is the essential arity of f . We

know by Corollary 3.7 that [f ]↓ is order-isomomorpic to [f∗]d↓, and we prove that

[f∗]d↓ is anti-isomorphic to Πess(f). We use the notation defined in (the paragraph

preceding) Definition 4.1.

Let φ : Πn → [f∗]d↓ be the map defined by φ(π) = [f∗
π ]d. We have already noted

that φ is an onto, order-reversing map, and now we prove that φ is one-to-one. Let

π1 and π2 be distinct elements of Πn and for i ∈ {1, 2} let

ψi := (ĉi)X ◦ f∗ (2)

where ci : πi → [|πi|] is an arbitrary bijective labeling of the elements of πi. We show

that ψ1 6≡d ψ2. By symmetry, we may assume that there is some block C ∈ π1\π2,

and we let ℓ be an element of C and D := πℓ
2 be the unique block of π2 containing

ℓ. Since C 6= D, we may assume that there is some k ∈ C\D (the case k ∈ D\C

is similar). Since f has no inessential arguments, we know by Lemma 3.9 that the

ℓ-th and k-th co-arguments of f∗ are essential. This means that there are some

u, v ∈ B∗ such that

f∗(u) ∈ {ℓ} × A∗♭ and f∗(v) ∈ {k} × A∗♭.

By construction, we obtain

{ψ1(u), ψ1(v)} ⊆ {c1(C)}×A∗♭, ψ2(u) ∈ {c2(D)}×A∗♭, ψ2(v) /∈ {c2(D)}×A∗♭,

which shows that ψ1 maps u and v into the same copy of A∗♭ in |π1|A∗, while

ψ2 maps u and v into two different copies of A∗♭ in |π2|A∗. We conclude that

ψ1 6≡d ψ2.

It remains to show that ϕ−1 is order-reversing. Let π1, π2 ∈ Πn such that π1 6≥ π2
and show that ϕ(π1) 6≤d ϕ(π2). Let C be a block of π2 which is not contained in any

block of π1. There are two distinct elements i, j ∈ C which belong to two distinct

blocks of π1. For every i ∈ {1, 2}, denote by ci a bijective labeling ci : πi → [|πi|],

and let ψi ∈ [fπi
] be defined as in (2). By a similar argument as in the first part

of the proof, we can find u, v ∈ B∗ such that ψ2 maps u and v into the same copy

of A∗♭ in |π2|A∗, while ψ1 maps u and v into two distinct copies of A∗♭ in |π1|A∗.

This shows that ψ1 6�d ψ2, and therefore ϕ(π1) 6≤d ϕ(π2) as desired. �

Recall that the arity gap of f ∈ FAB is defined as the minimum difference

between that the essential arity of f and of that of an identification minor of f . We

retrieve the following result, which is a special instance of [15, Proposition 3.13], as

a consequence of Proposition 4.2.
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Corollary 4.3. For every A,B ∈ A and n > 1, the arity gap of f ∈ A
(n)
AB

is one.

Functions f ∈ FAB that have a unique identification minor have received special

interest and have been studied in relation with their invariance group (see [21, 19]).

Recall that the invariance group Inv(f) of f ∈ F
(n)
AB is defined to be the subgroup

of Sn given by {σ ∈ Sn | f = f ◦ σA}. If f ∈ A
(n)
AB

, we obtain the following result.

Proposition 4.4. Let f ∈ A
(n)
AB

with ess(f) = n.

(1) f has
(
n
2

)
pairwise non-equivalent identification minors.

(2) Inv(f) is trivial.

Proof. (1) is a direct consequence of Proposition 4.2.

(2) An element σ ∈ Sn belongs to Inv(f) if and only if the diagram

An

An B

σA f

f

(3)

commutes. Diagram (3) is, by Assumption 3.3, equivalent to

nA∗

nA∗ B∗

σA∗ f∗

f∗

(4)

which commutes if and only if σ = idn since ess(f) = n. �

In the following example, we show how Proposition 4.2 may fail if we weaken

Assumption 3.3 by assuming that M
˜

yields a duality which is not logarithmic.

Example 4.5. Let BG be the variety of Boolean groups and Z2 = 〈{0, 1},+, 0〉 as

in 2.3.5. The homomorphism f ∈ BG
(3)
Z

given by f(x, y, z) = x+ y+ z has essential

arity 3. But f has an unique identification minor (namely, the identity map) and

arity gap 2.

Proposition 4.2 shows that the deck of any f ∈ AAB could not actually be richer

(it does not contain any duplicates). This observation leads us to the investigation

of reconstructibility properties for homomorphisms, as introduced in Section 2.4.

As explained in [22], the class AAB cannot be reconstructible. Indeed, let A,B ∈

A and n < |A|. Let An
6= ⊆ An consists of all elements of An which are injective on [n]

(i.e. the tuples in which no entry appears more than once). If f ∈ AAB has arity n,

then any map g : An → B which is equal to f on An\An
6= satisfies deck(f) = deck(g),

which shows that f is not reconstructible. However, such a map g is unlikely to

still belong to AAB, which naturally leads to the weak reconstruction problem for

AAB.

Theorem 4.6. Let A,B ∈ A. The subclass A>2
AB

of homomorphisms in AAB of

essential arity strictly greater than 2 is weakly reconstructible.

Proof. We proceed by contradiction, assuming that there are f, g ∈ A
(n)
AB

for some

n > 2 with deck(f) = deck(g) but f 6≡ g. We may assume that f and g both have

no inessential arguments. Due to Assumption 3.3 and Lemma 3.9, this means that

every co-argument of f∗ and g∗ is essential and f∗ 6≡d g
∗.
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First we show (f∗)−1(CnA
∗

) = (g∗)−1(CnA
∗

) and for all u ∈ B∗\(f∗)−1(CnA
∗

)

we have that pr2(f∗(u)) = pr2(g∗(u)). For the sake of contradiction, assume that

there is some element u ∈ B∗ with f∗(u) ∈ CnA
∗

and g∗(u) /∈ CnA
∗

(the case

f∗(u), g∗(u) 6∈ CnA
∗

and pr2(f∗(u)) 6= pr2(g∗(u)) is dealt with similarly). Let

I ∈
(
n
2

)
. We have

(f ◦ δAI )∗(u) = ((δI)A∗ ◦ f∗)(u) belongs to C(n−1)A∗

while

(g ◦ δAJ )∗(u) = ((δJ )A∗ ◦ g∗)(u) does not belong to C(n−1)A∗

,

for every J ∈
(
n
2

)
. It follows that the equivalence class of f ◦ δAI belongs to deck(f)

but not to deck(g), a contradiction.

Then, since f∗ 6≡d g
∗ there is some u ∈ B∗ such that pr1(f∗(u)) 6= pr1(g∗(u)).

For every i ∈ [n], set

Xi := (f∗)−1({i} × A∗♭) and Yi := (g∗)−1({i} × A∗♭).

We have proved that

X := {Xi | i ∈ [n]} and Y := {Yi | i ∈ [n]} (5)

are distinct partitions of B∗\(f∗)−1(CnA
∗

). Without loss of generality, we may

assume that there is some i ∈ [n] with Xi 6∈ Y . Let u be an element of Xi, and

let Yj be the block of Y that contains u. We may assume that Xi 6⊆ Yj (the case

Yj 6⊆ Xi is dealt with similarly) and we let v be an element of Xi\Yj , and Yk be

the block of Y that contains v. Since n > 2, either i 6= j or i 6= k. If i 6= j (the case

i 6= k can be dealt with similarly), then (g ◦ δA{i,k})∗(u) and (g ◦ δA{i,k})∗(v) belong

to the δ{i,k}(j)-th copy and δ{i,k}(k)-th copy of A∗♭ in (n− 1)A∗, respectively, and

δ{i,k}(j) 6= δ{i,k}(k). On the other hand, for every I ∈
(
n
2

)
, the map (f ◦ δAI )∗ maps

u and v to the δI(i)-th copy of A∗♭ in (n − 1)A∗. Therefore the equivalence class

of g ◦ δA{i,k} belongs to deck(g) but not to deck(f), a contradiction. �

Theorem 4.6 also shows that A>2
AB

is not recognizable (see Definition 2.5) if

it is nonempty and |A| > 2. Indeed, we already noted that a homomorphism

f : An → B with n ≤ |A| is not reconstructible, while now we showed that all its

reconstructions which are homomorphisms are equivalent. Therefore, there needs

to be a reconstruction of f which is not a homomorphism.

The first part of the proof of Theorem 4.6 shows that if two X -morphisms

φ, ψ : Y → nX have a common minor, then φ and ψ might map an element x ∈ Y

into two different copies of X in nX, but never to different elements. We generalize

this proof in the following lemma.

Lemma 4.7. Let ϕ, ψ : Y → nX be two morphisms such that [ϕ]d↓ ∩ [ψ]d↓ 6= ∅.

Then ϕ−1(CnX) = ψ−1(CnX) =: P and for all y ∈ Y \P we have pr2(ϕ(y)) =

pr2(ψ(y)).

Proof. Let µ : Y → mX be a morphism such that µ �d ϕ and µ �d ψ. By

Proposition 4.2, there are τ, τ ′ : [n] → [m] such that µ = τX ◦ ϕ = τ ′
X

◦ ψ. In

particular, for every y ∈ Y, we have the following equivalences

ϕ(y) ∈ CnX ⇐⇒ µ(y) ∈ CmX ⇐⇒ ψ(y) ∈ CnX.
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Furthermore, for y ∈ Y \P we have

ϕ(y) = (i, x) ⇐⇒ µ(y) = (τ(i), x)

ψ(y) = (j, x) ⇐⇒ µ(y) = (τ ′(j), x),

from which we get the second part of the statement. �

5. Characterizing the minor homomorphism poset

Proposition 4.2 and Lemma 4.7 pave the way to a complete description of the

posets AAB in terms of partition lattices. Prior to developing the general tools to

characterize these posets, we look at a few examples to get a better understanding

of how they are influenced by the structure defined by M
˜

. We use the vocabulary

and notation introduced in Section 2.3, in particular, B and D denote the variety

of Boolean algebras and unbounded distributive lattices, respectively.

Example 5.1. The minor homomorphism poset B2k of the finite Boolean algebra

2k consists of kk disjoint copies of the order dual of the k-th partition lattice:

B2k ≃
⊎

1≤i≤kk

Π∂
k.

Proof. Recall that [k] = {1, . . . , k} is the dual of 2k under Stone duality. We first

note that a homomorphism f : (2k)n → 2k satisfies ess(f) ≤ k, since Im(f∗) can

meet at most k copies of (2k)∗ in n(2k)∗. So, maximal elements [ϕ]d of X (2k)∗ are

represented by maps ϕ : [k] → k[k] with essd(ϕ) = k. If ϕ and ψ are two such maps,

then ϕ ≡d ψ if and only if pr2 ◦ ϕ = pr2 ◦ ψ. Thus, there are kk maximal classes

in X (2k)∗ . For each maximal class [ϕ]d, the corresponding class [ϕ∗] is maximal in

B2k . We know by Proposition 4.2 that [ϕ∗]↓ ≃ Π∂
k . Moreover, for two maximal

elements [ϕ]d 6= [ψ]d, we have pr2 ◦ ϕ 6= pr2 ◦ ψ, so [ϕ]d↓ ∩ [ψ]d↓ = ∅ holds by

Lemma 4.7. �

Remark 3. By extending the argument of Example 5.1, one can show that

B2ℓ,2k ≃
⊎

1≤i≤ℓk

Π∂
k .

The only difference here is that the morphisms ϕ : [k] → k[ℓ] which represent max-

imal elements are now characterized by all the distinct elements of [ℓ][k].

Example 5.2. The minor homomorphism poset of the distributive lattice L de-

picted in Fig. 1 is isomorphic the disjoint union of 30 copies of the two-element

chain and an antichain of order 35:

DL ≃
⊎

1≤i≤30

Π∂
2 ⊎

⊎

1≤j≤29

Π∂
1 ⊎

⊎

1≤k≤6

Π∂
0 .

Proof. The dual L∗ of L is computed as described in Subsection 2.3.2 as the finite

bounded poset 〈J(L)01,≤L, 0, 1〉 of the join-irreducible elements J(D) = {a, b, c}

of L with constants 0 and 1 added, and is depicted in Fig. 1.

A morphism ϕ : L∗ → nL∗ needs to be order-preserving and to preserve 0 and

1. Therefore, if {ϕ(a), ϕ(c)} ∩ {0, 1} = ∅, then there is one index i ∈ [n] such that

{ϕ(a), ϕ(c)} ⊆ {i}×L∗♭. In particular, we have essd(ϕ) ≤ 2, since ϕ(L∗) can meet

at most 2 different copies of L∗♭ in nL∗ (ϕ(b) may not be in the same copy of L∗♭

as {ϕ(a), ϕ(c)}).
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0

1

a b

c d

L

0

1

a

c

b

L∗

Figure 1. Distributive lattice L of Example 5.2 and its dual L∗.

Hence, up to equivalence ≡d, there are 30 morphisms ϕ : L∗ → 2L∗ of co-essential

arity 2 and they are defined by the constraints

(
pr2(ϕ(a)), pr2(ϕ(c))

)
∈
{

(0, a), (0, b), (0, c), (a, c), (a, 1), (c, 1),

(b, 1), (a, a), (b, b), (c, c)
}
, (6)

pr2(ϕ(b)) ∈ {a, b, c}, (7)

{pr1(ϕ(a)), pr1(ϕ(c))} = {1}, pr1(ϕ(b)) = 2. (8)

They correspond to 30 maximal elements in DL.

Moreover, there are 29 maximal elements [ϕ]d where ϕ : L∗ → L∗ has co-essential

arity 1. These maps satisfy either ϕ(b) ∈ {0, 1} and (6), or {ϕ(a), ϕ(c)} ⊆ {0, 1}

and (7).

To complete the picture, there are 6 non-equivalent nullary morphisms ϕ defined

by the constraints ϕ(L∗) ⊆ C and ϕ(a) ≤ ϕ(c), and they also all correspond to

maximal elements in 〈AL/≡,≤〉. �

Example 5.1 illustrates that a minor homomorphism poset can be much smaller

than the corresponding minor poset. For instance, while B2k is of finite size kkBk,

the poset F{0,1} is countably infinite and contains a copy of every finite poset, as

shown in [9].

Nevertheless, even for Boolean algebras A ∈ B the minor homomorphism poset

BA can get quite complex in the infinite case. There are two reasons why things

get more complicated in this case: the essential arities might be unbounded and

the topology comes into play. The following example illustrates this phenomenon

(see also Example 5.23).

Example 5.3. The minor homomorphism poset of the Boolean algebra A of finite

and cofinite subsets of N contains countably infinite chains, and uncountably infinite

antichains.

Proof. The dual space A∗ is given by the one-point compactification N ∪ {ω} of N

(or, equivalently, the ordinal ω + 1 with the order topology). Explicitly this means

that for any U ⊆ A∗ we have

U is open ⇐⇒ U ⊆ N or (ω ∈ U and U ∩ N is cofinite).

The dual of a homomorphism f : An → A is a continuous map f∗ : A∗ → nA∗

and vice versa. Dealing with the topology on A∗ easily leads to the construction

of infinite chains and infinite antichains in BA, for instance.
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To construct an uncountable antichain, for every S ⊆ N let cS : A∗ → A∗ be the

continuous map defined by

cS(x) =

{
ω if x ∈ S

x otherwise.

Then {[cS∗] | S ⊆ N} is an uncountable antichain in BA.

Now we construct a countable chain above an element [ϕ]d where ϕ is any unary

morphism. For every n ≥ 2, we define ϕn : A∗ → nA∗ by

ϕn(u) =

{
(1, ϕ(u)) if u ∈ A∗\{1, . . . , n− 1}

(u+ 1, ϕ(u)) if u ∈ {1, . . . , n− 1}.

For every n ≥ 2, the map ϕn is continuous (we have ϕn(u) = ϕ(u) for all but a finite

number of u ∈ A∗) with essd(ϕn) = n and ϕn ≺d ϕn+1, since ϕn = (δI)A∗ ◦ ϕn+1

holds for I = {1, n+ 1}. Hence, the map n 7→ [ϕn]d embeds 〈N,≤〉 in XA∗ for all

ϕ ∈ X
(1)
A∗ . �

In Examples 5.1 and 5.2 the corresponding sets of essential arities ess(AAB) :=

{ess(f) | f ∈ AAB} have an upper bound. We generalize these examples in the

following result.

Theorem 5.4. Let A,B ∈ A be algebras such that ess(AAB) is bounded and let K

be the collection of maximal elements in (AAB/≡,≤). Then

AAB ≃
⊎

[f ]∈K

Π∂
ess(f).

Proof. Since ess(AAB) is bounded, for every homomorphism h ∈ AAB there is

a maximal element mh � h, and we need to show that mh is unique. For the

sake of contradiction, assume that there are maximal elements [f ] and [g] of AAB

with [f∗]d↓ ∩ [g∗]d↓ 6= ∅. We can assume that f and g both have no inessential

arguments. By Lemma 4.7 the maps f∗ and g∗ differ only in how they distribute

elements of B∗ to different copies of A∗♭, and we construct the partitions X and Y

of B∗\f∗−1(CnA
∗

) as we did in (5).

Since [f∗]d is maximal and [g∗]d 6≤d [f∗]d, we can find a block Xi ∈ X and a

block Yj ∈ Y such that both Xi ∩ Yj and Xi\Yj are nonempty. Now consider the

map ϕ : B∗ → (n+ 1)A∗ defined by

ϕ(u) =

{(
n+ 1, pr2(f∗(u))

)
if u ∈ Xi ∩ Yj

f∗(u) otherwise.

We prove that ϕ is a morphism and that essd(ϕ) = n + 1. For the sake of contra-

diction, assume that there is some k-ary relation r such that (u1, . . . , uk) ∈ rA
∗

but

(ϕ(u1), . . . , ϕ(uk)) 6∈ rnA
∗

in the type of A∗ (the argument for partial or total func-

tions is similar). Since f∗ preserves relations, we have Xi ∩ Yj ∩ {u1, . . . , uk} 6= ∅

and (Xi\Yj) ∩ {u1 . . . , uk} 6= ∅. In particular, g∗({u1, . . . , uk}) meets at least two

different copies of A∗♭ in nA∗ and cannot preserve r, a contradiction.

Now, we prove that ϕ is continuous. Let k ∈ [n+ 1] and C be a closed subset of

{k} × A∗♭. Then

ϕ−1(C) =

{
(f∗)−1(C) ∩Xi ∩ Yj if k = n+ 1

(f∗)−1(C)\(Xi ∩ Yj) otherwise
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is closed since Xi and Yj are clopen and f∗ is continuous. Moreover, we have

essd(ϕ) = n+ 1 by definition of ϕ since f has essential arity n.

Now, we clearly have [f∗]d < [ϕ]d by construction, which contradicts the maxi-

mality of [f ]. �

Theorem 5.4 shows that AAB is completely determined by the essential arities

of its maximal elements. Now, we investigate how to recognize these maximal

elements in the dual category. Informally, they are represented by those morphisms

ϕ : B∗ → nA∗ without inessential co-arguments such that ϕ(B)∗∩
(
{i}×A∗

)
cannot

be decomposed into two substructures that would lead to a morphism covering ϕ

in 〈XB∗,A∗ ,�〉.

Definition 5.5. A substructure Y of X ∈ X is called complete if it satisfies the

following conditions.

(1) For every k-ary relation r of X and every x1, . . . , xk ∈ X
(
{x1, . . . xk} ∩ Y 6= ∅ and (x1 . . . , xk) ∈ r

)
=⇒ {x1, . . . , xk} ⊆ Y.

(2) For every partial or total operation O of X , the graph rO of O satisfies

condition (1).

For every S ⊆ X we denote by 〈S〉 the smallest complete substructure of X that

contains S. For every X ∈ X , let ∼ denote the equivalence relation defined on X♭

by x ∼ y iff 〈{x}〉 = 〈{y}〉.

Lemma 5.6. For every X ∈ X and every x, y ∈ X♭ we have x ∼ y if and only

if there are relations r1, . . . , rℓ ∈ RX ∪ {rO | O ∈ G ∪ H} of arity k1, . . . , kℓ,

respectively, and xi ∈ ri for all i ≤ ℓ such that x ∈ {x11, . . . x
1
k1
}, y ∈ {xℓ1, . . . , x

ℓ
kℓ
},

and {xj1, . . . , x
j
kj
} ∩ {xj+1

1 , . . . , xj+1
kj

} 6= ∅ for all j ≤ ℓ− 1.

From the perspective of topology, there is no reason for ∼ to have nice properties.

For instance, we cannot assume that the classes of ∼ are closed or open, although

this is obviously true if X is finite.

Definition 5.7. We say that X ∈ X has the FCO property if X♭/∼ is finite and if

E ∪ CX is a clopen subspace of X for every equivalence class E ∈ X♭/∼.

Proposition 5.8. Let A,B ∈ A. If B∗ has the FCO property, then ess(AAB) ≤

|B∗♭/∼|. If in addition A = B, then ess(AA) = |A∗♭/∼|.

Proof. Let ϕ : B∗ → nA∗ be a morphism, and u, v ∈ B∗♭. By Lemma 5.6, if u ∼ v

and {ϕ(u), ϕ(v)} ⊆ (nA∗)♭, then ϕ(u) and ϕ(v) need to belong to the same copy

of A∗♭ in nA∗, which proves the first assertion.

For the second part of the statement, let E1, . . . , En be the elements of A∗♭/∼.

Define ψ : A∗ → nA∗ as the map that preserves constants and satisfies ψ(u) =

(i, u) for any i ≤ n and any u ∈ Ei. Then, the map ψ is a co-essentially n-ary

morphism. �

Structures with the FCO property can sometimes be constructed using finite

products of algebras, as illustrated in the next result.

Corollary 5.9. If A1, . . . ,Ak ∈ A satisfy |(Ai)
∗♭/∼| = 1 for every i ≤ k, then the

dual of A := A1×· · ·×Ak has the FCO property. Moreover, we have ess(ABA) ≤ k

for every B ∈ A, and ess(AA) = k.



THE MINOR ORDER. OF HOMO. VIA NAT. DUAL. 19

Example 5.10. Let Lω be the distributive lattice whose elements are N and its

finite subsets, ordered by inclusion. Its dual Priestley space L∗
ω is given by an

enumerable antichain (made out of the filters generated by singletons {i} for i ∈ N),

the elements of which are all covered by some element ω, and two additional bounds

0 and 1. It follows from Lemma 5.6 that |L∗♭/∼| = 1. By Corollary 5.9, any

f ∈ DLLk
ω

has essential arity at most k for every bounded distributive lattice L and

every k ≥ 1, in particular there is no f ∈ DLLω
with ess(f) ≥ 2.

We can recover some Arrow type impossibility result from Corollary 5.9.

Corollary 5.11 ([8, Corollary 4]). Let C1, . . . ,Ck,D be chains. A map f : C1 ×

· · · × Ck → D is a median algebra homomorphism if and only if there is an i ∈ [k]

and a monotone map g : Ci → D such that f = g ◦ pri.

The argument of the second part of the proof of Lemma 5.8 can be generalized

as a useful Lemma that enables us to construct homomophism majors of elements

of AAB.

Lemma 5.12. Assume that A,B ∈ A, and that B∗ has the FCO property. For

any morphism ϕ : B∗ → nA∗ and any E in B∗♭/∼, the map ψ : B∗ → (n + 1)A∗

defined by

ψ(u) =

{(
n+ 1, pr2(ϕ(u))

)
if u ∈ E\ϕ−1(CnA

∗

)

ϕ(u) otherwise,

is a morphism. If, in addition, E\ϕ−1(CnA
∗

) 6= ∅, then ϕ ≺d ψ.

Proof. The map ψ is structure preserving by construction. We need to show that

it is also continuous. Let C be a closed subset of ({i} × A∗♭) ∪ CnA
∗

for some

i ∈ [n+ 1] and let ℓ be the unique element of [n] such that ϕ(E) meets {ℓ} × A∗♭.

We have

ψ−1(C) =

{
ϕ−1({ℓ} × pr2(C)) ∩E if i = n+ 1

ϕ−1(C) ∩ (B∗\E) otherwise,

which shows that ψ is continuous by continuity of ϕ and the fact that E is clopen

by assumption. Moreover, we have ϕ = (δI)A∗ ◦ ψ where I = {ℓ, n+ 1}. �

We have the following dual characterization of maximal elements in AAB. Ob-

serve that for any E ∈ B∗♭/∼ the subspace E# := E ∪ CB
∗

forms a closed sub-

structure E# of B∗.

Theorem 5.13. Assume that A,B ∈ A and that B∗ has the FCO property, and

let ϕ : B∗ → nA∗ be a map.

(1) We have ϕ ∈ X (B∗, nA∗) if and only it for every E ∈ B∗♭/∼ with ϕ(E) 6⊆

CnA∗

, there is an i ∈ [n] such that ϕ↾E# is valued in {i} × A∗ and is a

morphism.

(2) If condition (1) is satisfied, then [ϕ]d is maximal if and only if for every

E1 6= E2 in B∗♭/∼ and all i ≤ n we have

ϕ(E1) ∩ ({i} × A∗♭) 6= ∅ =⇒ ϕ(E2) ∩ ({i} × A∗♭) = ∅.

Proof. (1) The condition is clearly necessary. To prove the converse, it suffices to

note that ϕ is structure preserving by definition of ∼ and continuous since E# is

clopen for every E ∈ B∗♭/∼.
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(2) To show that the condition is necessary, we can assume that ϕ has no inessen-

tial co-argument and we prove the contrapositive. Let E1 and E2 be distinct ele-

ments in B∗♭/∼ and assume that ϕ(E1)∩({i}×A∗♭) 6= ∅ and ϕ(E2)∩({i}×A∗♭) 6=

∅ for some i ≤ n. Then, the map ψ : B∗ → (n+ 1)A∗ defined by

ψ(u) =

{
(n+ 1, (pr2 ◦ ϕ)(u)) if u ∈ E1

ϕ(u) otherwise

is a morphism with [ϕ]d <d [ψ]d according to Lemma 5.12. Thus we have proved

that [ϕ]d is not maximal.

We prove that the condition is sufficient by contrapositive. Assume that there

is a morphism ψ : B∗ → (n + 1)A∗ with no inessential co-argument and a map

τ : [n+ 1] → [n] such that ϕ = τA∗ ◦ ψ. By (1) there are elements E1, E2 of B∗♭/∼

such that

E1 ⊆ ψ−1({n+ 1} × A∗♭) and E2 ⊆ ψ−1({τ(n+ 1)} × A∗♭).

It follows that ϕ(Ei) ∩ ({τ(n+ 1)} × A∗♭) 6= ∅ for i ∈ {1, 2}. �

It follows from Theorem 5.13 that, if B∗ has the FCO property and B∗♭/∼ =

{E1, . . . , En}, then

X (B∗, nA∗)/≡d
∼= X (E#

1 ,A
∗) × · · · × X (E#

n ,A
∗) ∼= X (B∗,A∗). (9)

In what follows, we may use these isomorphims without further notice.

In the finite case, we can now improve the characterization of Theorem 5.4 thanks

to Theorem 5.13. First, we introduce some notation.

Notation 5.14. Let A and B be finite algebras of A and denote by E1, . . . , Eℓ the

elements of B∗♭/∼. For any i ≤ ℓ and any ϕ ∈ X (E#
i ,A

∗), define cϕ by

cϕ =

{
0 if ϕ(E#

i ) ⊆ CA
∗

1 else.

Denote by ΠB∗A∗ the Cartesian product
∏
{X (E#

i ,A
∗) | i ≤ ℓ}, and for any

ϕ ∈ ΠB∗A∗ set cϕ := cϕ1 + · · · + cϕℓ
. We know by (9) that there is a bijective

correspondence between X (B∗,A∗) and ΠB∗A∗

Corollary 5.15. Let A and B be finite algebras of A. Using Notation 5.14, we

have

AAB
∼=

⊎
{Π∂

cϕ
| ϕ ∈ ΠB∗A∗}.

Corollary 5.16. Let A,B be finite elements of A and let E1, . . . , En be the ele-

ments of A∗♭/∼. Then

AAB
∼=

⊎
{Π∂

dϕ
| ϕ ∈ X (B∗,A∗)},

where dϕ = #{Ei | ϕ(Ei) ∩ A∗♭ 6= ∅} for any ϕ ∈ X (B∗,A∗).

We now give a number of applications of Corollary 5.15 and 5.16. Recall that a

finite algebra M is quasi-primal if it has the ternary discriminator operation

tM (x, y, z) :=

{
x if x 6= y

z if x = y

as a term function. Semi-primal algebras are those quasi-primal algebras that have

no isomorphism between their non-trivial subalgebras other than the identity. The
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finite subalgebras  Ln of the standard MV-algebra [0, 1] are examples of semi-primal

algebras. For any semi-primal algebra M, there is structure M
˜

that has neither

(partial) functions nor n-ary relations for n ≥ 2 and yields a logarithmic duality

for ISP(M) [5, Theorem 3.3.14].

Proposition 5.17. Assume that M is a semi-primal algebra and that M
˜

is a

dualizing structure defined as above. For any finite elements A,B ∈ A, we have

AAB
∼=

⊎
{Π∂

dϕ
| ϕ ∈ X (B∗,A∗)},

where dϕ = |B∗♭| − |ϕ−1(CA
∗

) ∩ B∗♭| for every ϕ ∈ X (B∗,A∗).

Proof. It follows from the assumptions on M
˜

that every singleton is an equivalence

class of ∼ on B∗♭. According to Theorem 5.13, this means that every morphism

ϕ : B∗ → A∗ defines a corresponding maximal element [ϕ′]d in XB∗A∗ where ϕ′

has co-essential arity dϕ. �

Example 5.18. For every m ≥ 1, the algebra  Lm is semi-primal and a dualizing

structure is given in (2.3.4). For the sake of illustration, set m = 12 and consider

the algebra A :=  L2 ×  L4 ×  L4 ×  L6 of ISP( L12). Then A∗ is the discrete structure

〈{u1, . . . , u4}, {rm | m ∈ div(12)}, Tdis〉,

where

r1 = r3 = ∅, r2 = {u1}, r4 = {u1, u2, u3},

r6 = {u1, u4}, r12 = {u1, . . . , u4}.

It follows that morphisms ϕ : A∗ → A∗ are defined by the constraints

ϕ(u1) = u1, {ϕ(u2), ϕ(u3)} ⊆ {u1, u2, u3}, ϕ(u4) ∈ {u1, u4},

and dϕ = |A∗| = 4 for every ϕ since there is no constant in  L
˜m. We obtain by

Proposition 5.17 that the minor homomorphism poset MVA is the disjoint union

of 18 copies of Π∂
4 .

The argument developed in Example 5.18 leads us to the following result.

Proposition 5.19. Let {p1, . . . , pk} and {q1, . . . , qk} be two sets of prime numbers

and α1, . . . , αk ≥ 1. Set m := pα1
1 ×· · ·×pαk

k and m′ := q1
α1 ×· · ·× qαk

k , and define

the map µ : div(m) → div(m′) by

µ(pβ1

1 × · · · × pβk

k ) = qβ1

1 × · · · × qβk

k

Then, for every m1, . . . ,mt ∈ div(m), it holds that

MV  Lm1×···× Lmt

∼= MV  Lµ(m1)×···× Lµ(mt)
.

Example 5.20. Corollary 5.15 helps to define a systematic technique to compute

DLL′ for finite distributive lattices L and L′. Indeed, it turns out that L′∗♭/∼

is the set {E1, . . . , Eℓ} of the connected components of the Hasse diagram of L′∗♭

considered as an undirected graph. Maximal elements in XL∗L′∗ correspond via

(9) to tuples ϕ := (ϕ1, . . . , ϕℓ) such that ϕ ∈ X (E#
i ,L

∗) for every i ≤ ℓ, that is,

to tuples of partial morphisms on L′∗ with maximal domains. Each such tuple

corresponds to a maximal element of co-essential arity cϕ and we obtain

XL∗L′∗
∼=

⊎
{Π∂

cϕ | ϕ ∈ X (E#
1 ,L

∗) × · · · × X (E#
ℓ ,L

∗)}

by Corollary 5.15.
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If B is a Boolean algebra, then its {∨,∧}-reduct B− is a distributive lattice.

It turns out that these reducts, which form the class of complemented distributive

lattices, can be recognized by their minor homomorphim posets, as shown in the

next result. First, recall that the join-irreducible elements of a complemented dis-

tributive lattice coincide with its atoms (if there is an atom a strictly below a join

irreducible element b and bc is the complement of b then {0, a, b, bc, 1} is isomorphic

to N5).

Proposition 5.21. A finite distributive lattice L is complemented if and only if

DL is isomorphic to ⊎

1≤j≤n

⊎
{Π∂

j | 1 ≤ i ≤ dj}

for some n ≥ 1, where dj :=
(
n
j

)
nj2n−j for every j ≤ n.

Proof. Let L be a finite complemented distributive lattice and a1, . . . , an be its

atoms. Then L∗ is isomorphic to the antichain {a1, . . . , an} together with the

constants 1L
∗

= L and 0L
∗

= ∅ as top and bottom element, respectively. It follows

that the equivalence ∼ on L∗♭ is the identity, just as in the Stone dual of the Boolean

algebra associated with L. But, on the contrary to the case of Boolean algebras

where the dual structures have no constants, morphisms can map elements ai to

constants 0 or 1, which influences the number of morphisms and their co-essential

arities.

Let j ≤ n and let us count the number of morphisms ϕ : L∗ → jL∗ with co-

essential arity j such that [ϕ]d is maximal. Such a morphism ϕ maps j elements

among a1, . . . , an to distinct copies of L∗♭ in jL∗ and (n− j) elements to constants

0 or 1. So, there are dj :=
(
n
j

)
nj2n−j such morphisms and each of them satisfies

dϕ = j. The conclusion follows from Corollary 5.16.

Conversely, assume that L is a distributive lattice whose homomorphism poset

contains exactly dj disjoint copies of Πδ
j for each j ∈ {1, . . . , n}. It follows from

Theorem 5.4 that the maximum co-essential arity of an element ϕ ∈ XL∗ is n and

that the number of non ≡d-equivalent morphisms φ : L∗ → nL∗ of co-essential arity

n is equal to dn = nn. Moreover, we have |L∗♭/∼| = n by Proposition 5.8. Now,

we prove that the elements E1, . . . , En of L∗♭/∼ are singletons. For the sake of

contradiction, assume that E1 contains two elements u and v. By definition of ∼,

we may assume u < v. The map ϕ1 : L∗ → nL∗ defined by

ϕ1(z) =





0 if z ≤ u

(1, z) if z ∈ E1 and z 6≤ u

(i, z) if i 6= 1 and z ∈ Ei,

is a morphism of co-essential arity n. Now, for every i ≤ n, let ei be a fixed element

of Ei. For every h ∈ [n][n], define the map ϕh : L∗ → nL∗ by ϕh(Ei) = {(i, eh(i))}.

Together with ϕ1, we have found nn + 1 pairwise non ≡d-equivalent morphisms

L∗ → nL∗ of co-essential arity n, a contradiction. �

Finite median algebra are handled similarly as finite distributive lattices.

Proposition 5.22. Let A be a median algebra.

(1) If A is the m-reduct of a distributive lattice, then ess(f) ≤ 1 for every

f ∈ MA.
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(2) A is the m-reduct of a finite Boolean algebra if and only if

MA
∼=

⊎

1≤i≤k

⊎
{Π∂

i | j ≤

(
k

i

)
2kki}

holds for some k ≥ 1.

Proof. (1) If A is the m-reduct of a distributive lattice L = 〈A,∨,∧〉, then the

prime convex subsets of A are A, ∅ and the prime filters and prime ideals of L. It

follows that A∗ is the disjoint union of the poset of prime filters and the poset of

prime ideals of L, with ∅ and A as additional bottom and top elements, respectively,

and where uc = A \ u for any u ∈ A∗. It follows that ∼ is the total equivalence on

A∗♭, and essd(ϕ) ≤ 1 for any morphism ϕ : A∗ → nA∗.

(2) If A is the m-reduct of the Boolean algebra B = 2k then it follows by (1) that

A∗ is an antichain u1, . . . , uk, u
c
1, . . . , u

c
k with an additional top and bottom element

1A
∗

= A and 0A
∗

= ∅ , respectively. It follows that A∗♭/∼ = {{ui, uci} | i ≤ k}

has cardinality k. For each i ≤ k, there are 2k morphisms ϕi : {ui, uci}
# → A∗

that satisfy Im(ϕi) 6= {A,∅}, and two morphisms ϕi : {ui, uci}
# → A∗ that satisfy

Im(ϕi) = {A,∅}. We conclude that for any 0 ≤ i ≤ k there are
(
k
i

)
(2k)i2k−i =(

k
i

)
2kki tuples ϕ ∈ ΠA∗A∗ with cϕ = i, and we conclude the proof by Corollary

5.15.

Conversely, assume that the minor homomorphism poset of A is made of
(
k
i

)
2kki

copies of Π∂
i for every i ∈ {0, . . . , k}. In particular, the maximum essential arity of

an element of MA is k, which implies that A∗♭/∼ has k elements E1, . . . , Ek. It

follows that A∗ ∼= E
#
1 ⊕ · · ·⊕E

#
k , so that (A∗)∗ ∼= (E#

1 )∗ × · · ·× (E#
k )∗. Moreover,

there are 2k tuples ϕ ∈ ΠA∗A∗ that satisfy cϕ = 0, which means that

2k = |(A∗)∗| = |(E#
1 )∗| × · · · × |(E#

k )∗| (10)

according to (9). Since |Ei| > 1 for every i ≤ k, we obtain that |(E#
1 )∗| = · · · =

|(E#
k )∗| = 2. It follows that E

#
i is the dual of the m-reduct of the 2 element Boolean

algebra, so that A is the m-reduct of the 2k element Boolean algebra. �

Example 5.3 shows that the homomorphism poset of an infinite algebra can get

pretty wild. We end the section with an additional example in that direction.

Example 5.23. Let Fω be the free Boolean algebra with countably many generators.

For any n ≥ 1 and any f ∈ AFω
with essential arity n, there are (countably)

infinitely many elements f ′ : Fn+1
ω → Fω such that f ≺ f ′.

Proof. The Stone dual of Fω is the Cantor space Γ. Since f∗ : Γ → nΓ has co-

essential arity n, we know that Y := (f∗)−1({n} × Γ) is a nonempty clopen subset

of Γ, so it is homeomorphic to Γ. Let {ωi | i ∈ N} be a countable clopen basis of

Y . For every i ∈ N, the map ϕ : Γ → (n+ 1)Γ defined as

ϕ(u) =

{
f∗(u) if u 6∈ Y or u 6∈ ωi(
n+ 1, pr2(f∗(u))

)
if u ∈ ωi

is a morphism of co-essential arity n+ 1 and f∗ ≺d ϕ. �
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6. Concluding remarks and further research

In this paper, we used natural duality theory to investigate the minor relation for

algebra homomorphisms. Although our developments are limited to finitely gener-

ated quasivarieties that admit a logarithmic duality, we have shown that natural

duality theory may turn to be a powerful tool to explore combinatorial problems

pertaining to general algebra. Conversely, note that Proposition 4.4, Corollary 4.3

and Theorems 4.6 and 5.4 can be used as criteria to test non-dualizability of a finite

algebra M as follows.

Proposition 6.1. Let M be a finite algebra. If one of the following conditions is

satisfied, then no structure M
˜

can yield a logarithmic duality for A = ISP(M).

(1) There is a finite algebra A in A whose minor homomorphism poset is not

isomorphic to a disjoint union of order dual of partition lattices.

(2) There are an algebra A in A and homomorphims f, g : An → A for some

n ≥ 2 such that deck(f) = deck(g) but f 6≡ g.

(3) There are finite algebras A,B in A and a homomorphism f : An → B such

that ess(f) = n ≥ 2 and f ◦ δI ≡ f ◦ δJ for some I 6= J in
(
n
2

)
.

(4) There are algebras A,B ∈ A and a homomorphism f : An → B for some

n ≥ 2 whose arity gap is not 1.

We now list topics for further research. Theorem 5.4 states that for any A,B ∈ A

such that ess(AAB) is bounded, the poset AAB is a disjoint union of finite partition

lattices, and leads us to the following definition.

Definition 6.2. Let A,B be elements of A such that ess(AAB) is bounded, and

let K be the set of maximal elements of AAB. The (A,B)-minor sequence sAB

is defined by sAB(1) = #{[f ] ∈ K | ess(f) ∈ {0, 1}} and sAB(n) = #{[f ] ∈ K |

ess(f) = n} for every n ≥ 2 (these cardinals may be infinite). If A = B, we write

sA for sAA, and we call it the minor sequence of A.

If ess(AAB) is bounded, then the sequence sAB completely characterizes AAB,

which leads us to the following problems.

(I) Characterize those cardinal sequences that can be realized as (A,B)-minor

sequence for some A,B ∈ A.

(II) Proposition 5.21 states that the class of finite complemented lattices can be

characterized in the variety of distributive lattices by their minor sequence.

Proposition 5.22 states that finite ternary Boolean algebras can be charac-

terized among median algebras by their minor sequences. Generally, how to

find subclasses of A that can be characterized in A by the minor sequences

of its elements?

(III) More generally, for any cardinal α and any subclass B of A, say that B is

α-minor determined if for every A ∈ B, every set of mutually non-isomorphic

B ∈ B such that AB
∼= AA has cardinality smaller than α. For example, the

class of finite Boolean algebras is 1-minor determined, but if m > 1 then the

class of finite MVm-algebras is not (if p is a prime divisor of m then the minor

posets of  Lp and  L1 are isomorphic). What are other nontrivial examples of

α-minor determined classes B? A similar problem has been investigated in

[18] by considering endomorphism monoids instead of minor posets.
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We obtain other interesting open problems by going beyond logarithmic natural

dualities.

(IV) Find instances of non logarithmic natural dualities for which co-products can

still be easily computed in the dual category, and apply the tools developed

in this paper.

(V) Use the TwoSwap Theorem [10, Theorem 2.4] to study minor continuous

homomorphism posets in topological algebras.

(VI) Use other types of dualities (Pontryagin duality, De Vries duality,. . . ) to

study minor homomorphism posets.
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