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HIGHER-DIMENSIONAL DELTA-SYSTEMS

CHRIS LAMBIE-HANSON

Abstract. We investigate higher-dimensional ∆-systems indexed by finite
sets of ordinals, isolating a particular definition thereof and proving a higher-
dimensional version of the classical ∆-system lemma. We focus in particular on
systems that consist of sets of ordinals, in which case useful order-theoretic uni-
formities can be ensured. We then present three applications of these higher-
dimensional ∆-systems to problems involving the interplay between forcing
and partition relations on the reals.

1. Introduction

The starting point for this paper is one of the basic concepts of combinatorial
set theory: the ∆-system.

Definition 1.1. A family U of sets is a ∆-system if there is a set r, known as the
root of the ∆-system, such that u ∩ v = r for all distinct u, v ∈ U .

The uniformity provided by ∆-systems can be quite useful, so it is no surprise
that the ∆-system lemma, which isolates conditions that guarantee that a given
family of sets can be thinned out to form a large ∆-system, is one of the foundational
results of combinatorial set theory. The most commonly stated form of the lemma,
introduced by Shanin [15], is the following.

Lemma 1.2. Suppose that U is an uncountable family of finite sets. Then there is
an uncountable subfamily U∗ ⊆ U such that U∗ is a ∆-system.

The following is a less pithy but more general formulation. For a proof, we direct
the reader to [13, Ch. II, §1].

Lemma 1.3. Suppose that κ < λ are infinite cardinals such that λ is regular and,
for all ν < λ, we have ν<κ < λ. Suppose also that U is a family of sets such that
|U| ≥ λ and |u| < κ for all u ∈ U . Then there is U∗ ⊆ U such that |U∗| = λ and
U∗ is a ∆-system.

∆-systems are inherently one-dimensional objects, in practice often enumerated
as sequences indexed by ordinals. When investigating higher-dimensional combi-
natorial objects, however, one frequently encounters families of sets indexed by
n-element sets of ordinals for some n > 1 and desires to find large subfamilies ex-
hibiting certain uniformity properties analogous to the uniformities exhibited by
∆-systems. In this context, higher-dimensional analogues of the ∆-system lemma
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2 CHRIS LAMBIE-HANSON

come into play. Such analogues were first developed in work of Todorčević [19] and
Shelah [16], [17], and have appeared with increasing frequency of late in works such
as [2], [3], [5], [6], [12], [21], and [22].

The higher-dimensional ∆-systems in the aforementioned works have taken a
number of slightly different forms. In this paper, we isolate one particular def-
inition, based most directly on the 2-dimensional ∆-systems of [19] and [2] and
on the n-dimensional ∆-systems of [3]. This definition generalizes the familiar 1-
dimensional definition and, in the case in which the higher-dimensional ∆-system
consists of sets of ordinals, it can be strengthened to incorporate some additional
order-theoretic uniformities. The definition is presented in Section 2, where we
also prove some basic properties of our higher-dimensional ∆-systems. In Section
3, we prove our main result, Theorem 3.8, which is an n-dimensional analogue of
the classical ∆-system lemma, isolating conditions under which an n-dimensional
∆-system of a particular size can be guaranteed to exist inside of an arbitrary
collection of sets indexed by n-element sets of ordinals. Theorem 3.8 is naturally
seen as an elaboration of the Erdős-Rado theorem and is closely connected to the
work on canonical partition relations of Erdős and Rado [9] and of Baumgartner
[1]. After proving Theorem 3.8, we turn to a discussion of its optimality, proving
that one of its parameters, the size of the arbitrary collection of sets inside of which
we are guaranteed to find a large n-dimensional ∆-system, cannot be improved and
indicating precisely the extent to which another of its parameters, the upper bound
on the size of the members of our arbitrary collection of sets, can consistently be
improved. The results of this section are summarized in Corollaries 3.19 and 3.21,
which incorporate Theorem 3.8, our discussion of its optimality, and its connections
with the Erdős-Rado theorem.

The remaining sections of the paper present applications of our main result.
Section 4 is a short section presenting a higher-dimensional analogue of the famil-
iar use of ∆-systems to prove that Cohen forcing satisfies the Knaster property.
In Section 5, we present an application to a problem involving the interplay of
forcing and polarized partition relations. In Section 6, we show that, in certain
arguments, the ∆-system lemma presented here can successfully replace a different
lemma (from [16]) that, at least under the currently best known results, requires
stronger assumptions. We apply this to a recent result of Zhang [22] regarding
additive partition relations on the reals, obtaining a slight local improvement of his
result.

Notation and conventions. For a class X and a cardinal κ, [X ]κ := {Y ⊆ X |
|Y | = κ}, and [X ]<κ := {Y ⊆ X | |Y | < κ}. For a set u of ordinals, otp(u) denotes
the order type of u. The class of ordinals is denoted by On. If ρ is an ordinal and
X is a class of ordinals, then [X ]ρ := {Y ⊆ X | otp(Y ) = ρ}. This is a slight abuse
of notation given the previous definition of [X ]κ and the customary identification
of a cardinal with its initial ordinal, but in practice we will use the Greek letter
ρ precisely when the order-type definition of [X ]ρ is intended, so no confusion will
arise from this.

We will often think of sets of ordinals as increasing sequences of ordinals in the
natural way. So, for instance, if u is a set of ordinals, ρ = otp(u), and i < ρ, then
u(i) denotes the unique element α ∈ u such that otp(u ∩ α) = i. If i ⊆ ρ, then
u[i] denotes {u(i) | i ∈ i}. If X is a set of ordinals and n < ω, then we will use
the notation (α0, . . . , αn−1) ∈ [X ]n to denote the conjunction of the statements
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{α0, . . . , αn−1} ∈ [X ]n and α0 < . . . < αn−1. If A and B are nonempty sets of
ordinals, then we write A < B to assert that α < β for all (α, β) ∈ A × B. For
improved readability, we will also sometimes omit commas and brackets when using
small sets as subscripts or superscripts. For example, we may write u0

αβ instead of

u
{0}
{α,β}. For notational convenience, we will adopt the convention that max(∅) = −1.

If κ is an infinite cardinal, then in(κ) is defined by recursion on n < ω by
setting i0(κ) := κ and in+1(κ) := 2in(κ) for all n < ω. As is customary, we will
denote in(ℵ0) simply by in. Suppose that κ < λ are cardinals. We say that λ is
κ-inaccessible if νκ < λ for all ν < λ. Similarly, λ is <κ-inaccessible if ν<κ < λ for
all ν < λ.

If µ, λ, and ν are cardinals and n is a natural number, then the partition relation
µ → (λ)nν is the assertion that, for all c : [µ]n → ν, there is H ∈ [µ]λ such that
c ↾ [H ]n is constant. The negation of this partition relation is denoted by µ 6→ (λ)nν .

If P is a forcing notion and p, q ∈ P, then p ‖ q asserts that p and q are compatible,
i.e., there is r ∈ P such that r ≤ p and r ≤ q, and p ⊥ q asserts that p and q are
incompatible.

2. Uniform n-dimensional ∆-systems

In this section, we present the basic definitions of the paper and prove some
of their basic properties. We begin by working towards our definition of an n-
dimensional ∆-system indexed by finite sets of ordinals. Most of the paper will
focus on the case in which the elements of the ∆-system are themselves sets of
ordinals, in which case we can arrange for significant order-theoretic uniformities,
but we first present a more general definition.

Our n-dimensional ∆-systems will be indexed by sets of the form [H ]n, where H
is a set of ordinals, and for n > 1 they will have not a single root witnessing the fact
that they are n-dimensional ∆-systems, but rather a family of roots. When first
attempting to generalize ∆-systems to higher dimensions, one might optimistically
hope to require that, in an n-dimensional ∆-system 〈ub | b ∈ [H ]n〉, the intersection
ua ∩ ub depends only on a ∩ b for all a, b ∈ [H ]n. In other words, one might hope
to require the existence of a family of roots 〈Ra | a ∈ [H ]≤n〉 such that, for all
b, b′ ∈ [H ]n, we have ub ∩ ub′ = Rb∩b′ . However, this would be an overly restrictive
requirement, even in the case of n = 2. To see this, let µ be any infinite cardinal,
and define a family of sets 〈ub | b ∈ [µ]2〉 by letting uαβ := {α, β + 1} for all
(α, β) ∈ [µ]2. Now observe that, if α < β < γ < δ < µ, then

• β ∈ uβγ ∩ uβδ;
• β /∈ uαβ ∩ uβγ .

Hence, uβγ∩uβδ 6= uαβ∩uβγ , yet {β, γ}∩{β, δ} = {β} = {α, β}∩{β, γ}. Therefore,
if one adopts the requirement that ua∩ub must depend only on a∩b, then one could
not even find a subset H ⊆ µ of size 4 for which 〈ub | b ∈ [H ]n〉 is a 2-dimensional
∆-system.

The starting point for what will become our actual definition is Todorčević’s
2-dimensional double ∆-system from [19]. According to Todorčević’s definition, if
H is a set of ordinals, then a family of sets 〈ub | b ∈ [H ]2〉 is a double ∆-system if

• for all α ∈ H , the family 〈uαβ | β ∈ H \ (α + 1)〉 is a ∆-system with root
r0α (for simplicity, assume that H has no maximal element);
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• for all β ∈ H \ {min(H)}, the family 〈uαβ | α ∈ H ∩ β〉 is a ∆-system with
root r1β ;

• both 〈r0α | α ∈ H〉 and 〈r1β | β ∈ H \ {min(H)}〉 are ∆-systems, with roots

r0 and r1, respectively.

Note that, if 〈ub | b ∈ [H ]2〉 is a double ∆-system, as witnessed by sets 〈r0α | α ∈ H〉,
〈r1β | β ∈ H \ {min(H)}〉, r0, and r1, then it is in fact the case that r0 = r1 =
⋂

b∈[H]2 ub.

In order to succinctly generalize this definition to higher dimensions, and to
help facilitate the later incorporation of further order-theoretic uniformities, the
following notion will be useful.

Definition 2.1. Suppose that a and b are sets of ordinals.

(1) We say that a and b are aligned if otp(a) = otp(b) and, for all γ ∈ a∩ b, we
have otp(a ∩ γ) = otp(b ∩ γ). In other words, if γ is a common element of
a and b, then it occupies the same relative position in both a and b.

(2) We let r(a, b) := {i < otp(a) | a(i) ∈ b}. Notice that a ∩ b = a[r(a, b)] and,
if a and b are aligned, then a ∩ b = a[r(a, b)] = b[r(a, b)].

Note that, in our counterexample to our initial overly restrictive attempt at a
definition of a higher-dimensional ∆-system at the beginning of this section, the
problem came about when we considered the non-aligned sets {α, β} and {β, γ}. As
we will see shortly, it turns out that this is the only insurmountable problem with
our definition, and if one only requires the family of roots in an n-dimensional ∆-
system to control the intersections of elements of the ∆-system indexed by aligned
sets, then one obtains a much more workable definition, which we adopt as our gen-
eral definition of an n-dimensional ∆-system indexed by n-element sets of ordinals.

Definition 2.2. Suppose that H is a set of ordinals, 1 ≤ n < ω, and, for each
b ∈ [H ]n, ub is a set. We call 〈ub | b ∈ [H ]n〉 an n-dimensional ∆-system if there is
a family of roots 〈Rm

a | m ⊆ n, a ∈ [H ]|m|〉 such that, for all b, b′ ∈ [H ]n, if b and
b′ are aligned and r(b, b′) = m, then ub ∩ ub′ = Rm

b∩b′ .

We observe that, if n = 1, then this is precisely the classical definition of a
∆-system as given in Definition 1.1 modulo an enumeration of the ∆-system via a
set of ordinals; the root r in Definition 1.1 corresponds to the root R∅

∅ in Definition

2.2. When n = 2, we obtain Todorčević’s double ∆-systems; the roots r0α, r1α,

and r0(= r1) of Todorčević’s definition correspond to the roots R0
α, R

1
α, and R∅

∅,
respectively.

We now turn to the special setting in which the elements of our ∆-systems are
sets of ordinals. In this setting, we can ask for our ∆-systems to satisfy certain
additional order-theoretic uniformities, and we will call n-dimensional ∆-systems
that satisfy these uniformities uniform n-dimensional ∆-systems. Since any family
of sets 〈ub | b ∈ [H ]n〉 can be transformed into a family of sets of ordinals via
a bijection between

⋃

b∈[H]n ub and an ordinal, and since the proof of our higher

dimensional analogue of the ∆-system lemma (Theorem 3.8) in fact yields uniform
n-dimensional ∆-systems with no additional hypotheses, there will be no loss of
generality for us in focusing on this setting. (However, for n > 1 it will not in
general be the case that every sufficiently large n-dimensional ∆-system consisting
of sufficiently small sets of ordinals can be refined to a uniform n-dimensional ∆-
system of the same size; see Remark 2.7.)
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Let us first look at the 1-dimensional case to help us motivate our definition. In
the context of families of sets of ordinals, the classical ∆-system lemma can easily
be strengthened to require that the root of the ∆-system “sits inside” each of its
elements in the same way, in the following sense.

Definition 2.3. A family U of sets of ordinals is a uniform ∆-system if there is a
set r such that, for all distinct u, v ∈ U , u and v are aligned and u ∩ v = r.

The following proposition indicates that Lemma 1.3 can be strengthened to yield
a uniform ∆-system in the case in which U is a family of sets of ordinals.

Proposition 2.4. Suppose that κ < λ are infinite cardinals such that λ is regular
and <κ-inaccessible. Suppose also that U is a ∆-system consisting of sets of ordi-
nals, and that |U| ≥ λ and |u| < κ for all u ∈ U . Then there is U∗ ⊆ U such that
|U∗| = λ and U∗ is a uniform ∆-system.

Proof. Let r be the root of U . Since λ is regular and |u| < κ < λ for all u ∈ U , by
thinning out U if necessary, we may assume that there is an ordinal ρ < κ such that
otp(u) = ρ for all u ∈ U . Define a function g : U → P(ρ) by letting g(u) := r(u, r).
Since λ is <κ-inaccessible, we can find a fixed set r∗ ⊆ ρ and a set U∗ ⊆ U such
that |U∗| = λ and g(u) = r∗ for all u ∈ U∗. Then, for all distinct u, v ∈ U∗, it
follows that u and v are aligned, with r(u, v) = r∗ and u ∩ v = r. �

We are now ready for our definition of a uniform n-dimensional ∆-system. In
the case n = 1, this will coincide with Definition 2.3, and in the general case it will
strengthen Definition 2.2 in the same way that Definition 2.3 strengthens Definition
1.1.

Definition 2.5. Suppose that H is a set of ordinals, 1 ≤ n < ω, and, for all
b ∈ [H ]n, ub is a set of ordinals. We call 〈ub | b ∈ [H ]n〉 a uniform n-dimensional
∆-system if there is an ordinal ρ and, for each m ⊆ n, a set rm ⊆ ρ satisfying the
following statements.

(1) otp(ub) = ρ for all b ∈ [H ]n.
(2) For all a, b ∈ [H ]n and m ⊆ n, if a and b are aligned with r(a, b) = m, then

ua and ub are aligned with r(ua, ub) = rm.
(3) For all m0,m1 ⊆ n, we have rm0∩m1 = rm0 ∩ rm1 .

We now show that Definition 2.5 does indeed strengthen Definition 2.2; clause
(1) of the following proposition will also be useful in a number of other situations.

Proposition 2.6. Suppose that 1 ≤ n < ω, H is a set of ordinals, and 〈ub | b ∈
[H ]n〉 is a uniform n-dimensional ∆-system as witnessed by an ordinal ρ and sets
〈rm | m ⊆ n〉. Then the following statements hold.

(1) For all m ⊆ n and all a, b ∈ [H ]n, if a[m] = b[m], then ua[rm] = ub[rm].
(2) The family 〈ub | b ∈ [H ]n〉 is an n-dimensional ∆-system in the sense of

Definition 2.2.

Proof. (1) For all a, b ∈ [H ]n, let ∂(a, b) := |{β ∈ a ∩ b | |a ∩ β| 6= |b ∩ β|}|. Our
proof will be by induction on ∂(a, b).

Fix m, a, and b as in the statement of clause (1) of the proposition. If ∂(a, b) = 0,
then a and b are aligned and m ⊆ r(a, b). It follows from clauses (2) and (3)
of Definition 2.5 that ua and ub are aligned and r(ua, ub) ⊇ rm. In particular,
ua[rm] = ub[rm], as desired.



6 CHRIS LAMBIE-HANSON

Now suppose that ∂(a, b) > 0 and we have established all instances of clause (1)
of the proposition for a′, b′ ∈ [H ]n for which a′[m] = b′[m] and ∂(a′, b′) < ∂(a, b).
Let α ∈ a ∩ b be least such that |a ∩ α| 6= |b ∩ α|. Let ka, kb < n be such that
a(ka) = α = b(kb). Without loss of generality, we may assume that ka < kb.

We now alter a to form a new set a′ ∈ [H ]n. If a ∩ b ∩ α 6= ∅, then let α∗ :=
max(a ∩ b ∩ α). In this case, by our choice of α, there must be k∗ < ka such that
a(k∗) = b(k∗) = α∗. If a ∩ b ∩ α = ∅, then let k∗ := −1. In either case, note that,
for all ℓ ∈ (k∗, ka], we have b(ℓ) /∈ a and, if k∗ ≥ 0, then a(k∗) < b(ℓ). Moreover,
m ∩ (k∗, ka] = ∅. We define a′ by specifying a′(ℓ) for all ℓ < n. If ℓ ≤ k∗ or
ℓ > ka, then let a′(ℓ) := a(ℓ). If ℓ ∈ (k∗, ka], then let a′(ℓ) := b(ℓ). The following
observations are immediate.

(i) a and a′ are aligned, with r(a, a′) = n\ (k∗, ka]. In particular, m ⊆ r(a, a′).
(ii) ∂(a′, b) = ∂(a, b)− 1, since

{β ∈ a′ ∩ b | |a′ ∩ β| 6= |b ∩ β|} = {β ∈ a ∩ b | |a ∩ β| 6= |b ∩ β|} \ {α}.

We can therefore invoke the inductive hypothesis together with (i) to conclude that
ua[rm] = ua′ [rm] and together with (ii) to conclude that ua′ [rm] = ub[rm], so it
follows that ua[rm] = ub[rm], as desired.

(2) To prove that 〈ub | b ∈ [H ]n〉 satisfies Definition 2.2, we must specify roots

〈Rm

a | m ⊆ n, a ∈ [H ]|m|〉.

To this end, fix m ⊆ n and a ∈ [H ]|m|. If there are no b ∈ [H ]n for which b[m] = a,
then simply let Rm

a := ∅. Otherwise, choose b ∈ [H ]n for which b[m] = a and set
Rm

a := ub[rm]. By clause (1) of this proposition, the value of Rm

a is independent of
our choice of b.

Now suppose that b, b′ ∈ [H ]n are aligned and r(b, b′) = m, so, in particular,
b[m] = b ∩ b′. Then ub and ub′ are aligned and r(ub, ub′) = rm. Moreover, we
defined Rm

b∩b′ so that Rm

b∩b′ = ub[rm]. It follows that ub ∩ ub′ = Rm

b∩b′ , so 〈Rm

a |
m ⊆ n, a ∈ [H ]|m|〉 witnesses the fact that 〈ub | b ∈ [H ]n〉 satisfies Definition
2.2. �

Remark 2.7. There is no direct analogue of Proposition 2.4 for n-dimensional
∆-systems when n > 1 unless λ is weakly compact (see Corollary 3.17 for a positive
result in case λ is weakly compact). For a simple counterexample, suppose that λ
is a regular uncountable cardinal that is not weakly compact, let π : λ× λ → λ be
a bijection, and let c : [λ]2 → 2 be a function such that c“[H ]2 = 2 for all H ∈ [λ]λ.
Now, for all α < β < λ, let

uαβ :=

{

∅ if c(α, β) = 0

π(α, β) if c(α, β) = 1.

Then 〈uαβ | α < β < λ〉 is a 2-dimensional ∆-system (with R0
α = R1

α = ∅ for
all α < λ) consisting of finite sets of ordinals, yet whenever H ∈ [λ]λ, the family
〈uαβ | (α, β) ∈ [H ]2〉 contains sets of cardinality 0 and of cardinality 1 and therefore
cannot be a uniform 2-dimensional ∆-system.

Nonetheless, as we shall see in Section 3, the cardinality hypotheses on the
cardinal µ and the sizes of the sets ub that guarantee that a family 〈ub | b ∈
[µ]n〉 of sets of ordinals can be refined to an n-dimensional ∆-system of a specified
cardinality are already sufficient to guarantee that the family can be refined to a
uniform n-dimensional ∆-system of the same cardinality.
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3. A higher-dimensional ∆-system lemma

In this section, we prove the main result of the paper (Theorem 3.8), a higher-
dimensional analogue of the ∆-system lemma which asserts, roughly speaking, that
inside every family of sets of ordinals indexed by n-element subsets of some suffi-
ciently large cardinal µ, we can find a subset H of µ of some specified size such
that [H ]n indexes a uniform n-dimensional ∆-system. In the absence of weakly
compact cardinals, this H will necessarily be smaller than µ. In the same way that
the ∆-system lemma can fruitfully be seen as as an extension of the pigeonhole
principle, this n-dimensional ∆-system lemma can fruitfully be seen as an elabora-
tion of the Erdős-Rado theorem, and in fact a version of the Erdős-Rado theorem
will be folded into our statement to carry along as an inductive hypothesis.

The result is also closely related to results on canonical partition relations, intro-
duced by Erdős and Rado in [9], and in particular to work done by Baumgartner
on canonical partition relations [1], which can also be seen as an elaboration of the
Erdős-Rado theorem. Indeed, in the cases in which κ is a successor cardinal, much
of our main result can be derived from the main result of [1]. When κ is a limit
cardinal (and in particular in the important case κ = ℵ0, λ = ℵ1), this approach
does not seem to work, so we provide a single proof that covers all cases. We first
introduce the following notation, from [1], that allows us to indicate precisely the
size of the family needed to ensure the existence of a large uniform n-dimensional
∆-system.

Definition 3.1. Given an infinite regular cardinal λ, recursively define σ(λ, n) for
1 ≤ n < ω by letting σ(λ, 1) := λ and, given 1 ≤ n < ω, letting σ(λ, n + 1) :=
(

2<σ(λ,n)
)+

.

Remark 3.2. To connect Definition 3.1 with the already familiar i-notation and
to help clarify the choice of cardinals in the statements of Corollary 3.16, Theorem
5.4, and Corollary 6.2, we make the following observations, which we leave the
reader to verify.

(1) If λ = κ+ and 1 ≤ n < ω, then σ(λ, n) = (in−1(κ))
+. In particular,

σ(ℵ1, n) = i
+
n−1 and σ(i+

1 , n) = i+
n .

(2) For every infinite regular λ, if 2 ≤ n < ω, then σ(λ, n) = (in−2(2
<λ))+.

Note in particular that σ(λ, n) is regular for each regular infinite λ and each 1 ≤
n < ω.

We also remark that σ(λ, n) is precisely the cardinal resource needed to ensure a
monochromatic set of size λ in the n-dimensional Erdős-Rado theorem, which can
be formulated as follows: for every 1 ≤ n < ω and all infinite cardinals ν < λ, with
λ regular, the partition relation σ(λ, n) → (λ+ (n− 1))nν holds ([10, Theorem 39];
cf. also [1, Proposition 1]). See Corollary 3.19 for a more precise formulation of the
connection between our main result and the Erdős-Rado theorem.

In the proof of Theorem 3.8, we will make use of the following notion of the type
of a sequence of sets of ordinals, which describes the order-relations existing among
the sets.

Definition 3.3. Suppose that I is a set and, for all i ∈ I, ui is a set of ordinals.
Then tp(〈ui | i ∈ I〉) (the type of 〈ui | i ∈ I〉) is a function from otp(

⋃

i∈I ui) to
P(I) defined as follows. First, let

⋃

i∈I ui be enumerated in increasing order as
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〈αη | η < otp(
⋃

i∈I ui)〉. Then, for all η < otp(
⋃

i∈I ui), let tp(〈ui | i ∈ I〉)(η) :=
{i ∈ I | αη ∈ ui}.

We will often slightly abuse notation and write, for instance, tp(u0, u1, u2) in-
stead of tp(〈u0, u1, u2〉).

Remark 3.4. To connect Definition 3.3 with the earlier definition of aligned sets,
we note that, if a and b are sets of ordinals, then a and b are aligned if and only if
tp(a ∩ b, a) = tp(a ∩ b, b). We also observe the following useful facts about the tp
operator, which can easily be verified:

(1) Suppose that I is a set and, for all i ∈ I, ui and u′
i are sets of ordinals.

Suppose also that tp(〈ui | i ∈ I〉) = tp(〈u′
i | i ∈ I〉). Then the following

statements hold.
(a) For all i ∈ I, we have otp(ui) = otp(u′

i).
(b) For all J ⊆ I, we have tp(〈ui | i ∈ J〉) = tp(〈u′

i | i ∈ J〉).
(2) Suppose that u0, u1, u′

0, and u′
1 are sets of ordinals. If u0 and u1 are

aligned and tp(u0, u1) = tp(u′
0, u

′
1), then u′

0 and u′
1 are also aligned and

r(u′
0, u

′
1) = r(u0, u1).

The higher-dimensional ∆-systems that we isolate in our main result will have
an additional technical uniformity (the “moreover” clause of Theorem 3.8) that
allows us to control the relationship between ua and ub for certain non-aligned pairs
a, b ∈ [H ]n and is useful in some applications. In order to properly state it, we need
some further definitions. Readers can safely skip these technical considerations and
the “moreover” clause of the theorem on first read, if desired, as they are not needed
in our applications in Sections 4 and 5. They are used in the proof of Corollary
6.2, which is presented not in this paper but in [14].

Definition 3.5. Suppose that i < ρ are ordinals and a, b ∈ [On]ρ. We say that a
and b are aligned above i if a[ρ \ i] and b[ρ \ i] are aligned.

The following notion provides strictly less information than tp(a, b) but is some-
times easier to control.

Definition 3.6. Suppose that a and b are sets of ordinals. Then the intersection
type of a and b, denoted tpint(a, b), is the set {(i, j) ∈ otp(a)×otp(b) | a(i) = b(j)}.

Definition 3.7. Suppose that a is a nonempty set of ordinals and i < otp(a).

(1) We say that an ordinal α is i-possible for a if the following two statements
hold:
(a) if i > 0, then α > a(i − 1);
(b) if i+ 1 < otp(a), then α < a(i + 1).
Intuitively, α is i-possible for a if a(i) can be replaced by α without changing
the relative positions of the other elements of a.

(2) If α is i-possible for a, then ai7→α is the set (a \ {a(i)}) ∪ {α}, i.e., the set
obtained by replacing the ith element of a with α.

We are now ready for our main result. As we will see at the end of this section,
unless λ is a weakly compact cardinal, the theorem is optimal in the sense that
µ cannot be lowered. We also note that clause (1) of the following theorem is
essentially the Erdős-Rado theorem. In response to a query from the referee, we
note that our proof does not yield an essentially new proof of the Erdős-Rado
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theorem; if one extracts the proof of just clause (1) from our proof, one obtains
more or less a proof of the Erdős-Rado theorem originally given by Simpson in [18]
(see also the proof of [4, Theorem 7.2.1]).

Theorem 3.8. Suppose that

• 1 ≤ n < ω;
• κ, ν < λ are infinite cardinals, λ is regular and <κ-inaccessible, and µ =
σ(λ, n);

• g : [µ]n → ν;
• for all b ∈ [µ]n, we are given a set ub ∈ [On]<κ.

Then there are H ∈ [µ]λ and k < ν such that

(1) g(b) = k for all b ∈ [H ]n;
(2) 〈ub | b ∈ [H ]n〉 is a uniform n-dimensional ∆-system.

Moreover, we can arrange our choice of H so that, for all a, b ∈ [H ]n and all
m < n, if it is the case that a and b are aligned above m and a(m) = b(m), then,
for any ordinal α ∈ H that is m-possible for both a and b, we have tpint(ua, ub) =
tpint(uam 7→α

, ubm 7→α
).

Proof. The proof is by induction on n. When n = 1, the result follows from
Proposition 2.4 and the pigeonhole principle (note that the “moreover” clause of
the theorem is trivial if n = 1). So suppose that 1 < n < ω and we have established
all instances of the theorem for n− 1.

Set µ∗ := σ(λ, n − 1). We will construct the desired set H via a sequence of
refinements, which we outline here at the start. We will first isolate an ordinal
µM < µ, of size 2<µ∗

and cofinality at least µ∗. Next, we will build a set A ⊆ µM

of order type µ∗ exhibiting certain uniformities with respect to the family 〈ub | b ∈
[µ]n〉 and the function g. An application of the inductive hypothesis for n− 1 will
then yield a set H0 ⊆ A of cardinality λ. Finally, we will thin out H0 one last time
by recursively constructing an increasing sequence 〈βξ | ξ < λ〉 from H0 and letting
H := {βξ | ξ < λ}. Together, this sequence of refinements is as follows:

µ ⊇ µM ⊇ A ⊇ H0 ⊇ {βξ | ξ < λ} = H.

To begin, let θ be a sufficiently large regular cardinal, and letM be an elementary
substructure of (H(θ),∈, g, 〈ub | b ∈ [µ]n〉) such that M is closed under sequences
of length less than µ∗ and µM := M ∩ µ ∈ µ. This is possible, since µ∗ is regular

and µ = σ(λ, n) =
(

2<µ∗)+
. Note that cf(µM ) ≥ µ∗.

Temporarily fix an arbitrary a ∈ [µM ]n−1, and consider ua⌢〈µM 〉. Let wa :=

ua⌢〈µM 〉 ∩ M and ρa = otp
(

ua⌢〈µM 〉

)

. Let ia := r(ua⌢〈µM 〉, wa), and let ja :=
ρa \ ia. Note that ua⌢〈µM 〉[ia] = wa. For each j ∈ ja, let γa,j be the least ordinal
γ in M such that ua⌢〈µM 〉(j) < γ; to see that such an ordinal γ exists, note that
sup(

⋃

b∈[µ]n ub) is definable in M and is therefore an element of M .

Claim 3.9. There is a set A ⊆ µM of order type µ∗ such that:

(1) For every a ∈ [A]n−1 and every β ∈ A with max(a) < β:
(a) g(a⌢〈β〉) = g(a⌢〈µM 〉);
(b) otp(ua⌢〈β〉) = ρa;
(c) ua⌢〈β〉[ia] = wa.

(2) For every a ∈ [A]n−1, all α, β ∈ A with max(a) < α < β, and all j ∈ ja,
we have ua⌢〈β〉(j) /∈ ua⌢〈α〉.
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(3) For every β ∈ A, we have

tp(〈ua⌢〈β〉 | a ∈ [A ∩ β]n−1〉) = tp(〈ua⌢〈µM
〉 | a ∈ [A ∩ β]n−1〉).

In particular, if a0, a1 ∈ [A ∩ β]n−1, then

tp(ua0
⌢〈β〉, ua1

⌢〈β〉) = tp(ua0
⌢〈µM 〉, ua1

⌢〈µM 〉).

Proof. We will recursively construct an increasing sequence 〈αη | η < µ∗〉 of ordinals
below µM and then let A := {αη | η < µ∗}. Our construction will maintain the
hypothesis that, for all η < µ∗, Aη := {αξ | ξ < η} satisfies all of the items in the
statement of the claim.

Begin by letting αη = η for all η < n− 1. Now suppose that n− 1 ≤ η < µ∗ and
we have defined 〈αξ | ξ < η〉. By the closure of M and the fact that [Aη]

n−1 has
size less than µ∗, we know that all of the following are elements of M :

• Aη;
• 〈g(a⌢〈µM 〉) | a ∈ [Aη]

n−1〉;
• 〈(wa, ρa, ia, ja) | a ∈ [Aη]

n−1〉;
• 〈γa,j | a ∈ [Aη]

n−1, j ∈ jα〉.

Moreover, tp(〈ua⌢〈µM 〉 | a ∈ [Aη]
n−1〉) is a function from an ordinal less than µ∗

to P([Aη]
n−1), so again the closure of M implies that tp(〈ua⌢〈µM 〉 | a ∈ [Aη]

n−1〉)
is in M .

For each a ∈ [Aη]
n−1 and j ∈ ja, let

ǫa,j := sup{sup(ub ∩ γa,j) | b ∈ [Aη]
n}.

Note that cf(γa,j) ≥ µ∗, since otherwise there would be a cofinal x ⊆ γa,j such
that x ⊆ M . Therefore, we have ǫa,j ∈ M ∩ γa,j and, again by closure, 〈ǫa,j | a ∈
[Aη]

n−1, j ∈ ja〉 ∈ M .
In H(θ), the ordinal µM witnesses the truth of the statement asserting the exis-

tence of an ordinal β such that:

• sup(Aη) < β < µ;
• g(a⌢〈β〉) = g(a⌢〈µM 〉) for all a ∈ [Aη]

n−1;
• tp(〈ua⌢〈β〉 | a ∈ [Aη]

n−1〉) = tp(〈ua⌢〈µM 〉 | a ∈ [Aη]
n−1〉);

• ua⌢〈β〉[ia] = wa for all a ∈ [Aη]
n−1;

• ua⌢〈β〉(j) is in the interval (ǫa,j, γa,j) for all a ∈ [Aη]
n−1 and all j ∈ ja.

All of the parameters in the above statement are in M (note, for instance, that, in
the second item, a⌢〈µM 〉 is not in M , but 〈g(a⌢〈µM 〉) | a ∈ [Aη]

n−1〉 is). There-
fore, by elementarity, we can choose αη ∈ M satisfying the statement. It is evident
that this choice of αη satisfies the requirements of the construction. In particular,
notice that, as a consequence of clause (1a) of Remark 3.4 and the fact that αη sat-
isfies the third bullet point above, we have otp(ua⌢〈αη〉) = otp(ua⌢〈µM 〉) = ρa for

all a ∈ [Aη]
n−1. Also, the last bullet point above ensures that, for all a ∈ [Aη]

n−1,
all α ∈ Aη \ (max(a) + 1), and all j ∈ ja, we have ua⌢〈αη〉(j) /∈ ua⌢〈α〉. Therefore,
this completes the construction and the proof of the claim. �

Let A be as given by Claim 3.9. Define a function g∗ on [A]n−1 by letting
g∗(a) := 〈g(a⌢〈µM 〉), ρa, ia, ja〉 for all a ∈ [A]n−1. Since we know that

• g : [µ]n → ν;
• ρa < κ; and
• ia, ja ⊆ ρa;
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it follows that g∗ can be coded as a function from [A]n−1 to max{ν, 2<κ} which, by
the hypothesis of the theorem, is less than λ. Recalling that µ∗ = σ(λ, n−1) = |A|,
apply the induction hypothesis to g∗ and 〈ua⌢〈µM 〉 | a ∈ [A]n−1〉 to find H0 ⊆ A,
k < ν, ρ < κ, and sets i, j ⊆ ρ such that the following statements all hold:

• otp(H0) = λ;
• g(a⌢〈µM 〉) = k for all a ∈ [H0]

n−1;
• 〈ρa, ia, ja〉 = 〈ρ, i, j〉 for all a ∈ [H0]

n−1;
• 〈ua⌢〈µM 〉 | a ∈ [H0]

n−1〉 is a uniform (n − 1)-dimensional ∆-system, as
witnessed by ρ and by sets sm ⊆ ρ for each m ⊆ n− 1;

• 〈ua⌢〈µM 〉 | a ∈ [H0]
n−1〉 satisfies the “moreover” clause in the statement of

the theorem.

We will thin out H0 to a further unbounded subset H ⊆ H0 before the end of the
proof. For now, let us begin verifying clauses (1) and (2) in the statement of the
theorem, noting that what we verify for H0 will remain true after further thinning
out.

We first take care of clause (1) of the theorem, simultaneously showing that
otp(b) = ρ for all b ∈ [H0]

n. To this end, fix b ∈ [H0]
n. Then b is of the form a⌢〈β〉

for some β ∈ H0 and a ∈ [H0 ∩β]n−1. Since A satisfies Clause (1) of Claim 3.9 and
H0 ⊆ A, we have g(a⌢〈β〉) = g(a⌢〈µM 〉), and otp(ua⌢〈β〉) = otp(ua⌢〈µM 〉) = ρa.
Then, by our choice ofH0, k, and ρ, we have g(a⌢〈µM 〉) = k and ρa = ρ. Therefore,
g(b) = k and otp(ub) = ρ, as desired.

We now turn our attention to clause (2). The value of ρ that we isolated above
is the order type that will eventually witness that 〈ub | b ∈ [H ]n〉 is a uniform
n-dimensional ∆-system; indeed, by the previous paragraph we have otp(ub) = ρ
for all b ∈ [H0]

n. We next specify the values for 〈rm | m ⊆ n〉 that will witness
that 〈ub | b ∈ [H ]n〉 is a uniform n-dimensional ∆-system. For each m ⊆ n, let
m− := m ∩ (n − 1). If n − 1 ∈ m, then set rm := s

m
− . If n − 1 /∈ m, then set

rm := s
m

− ∩ i. Note that, in either case, we do indeed have rm ⊆ ρ.

Claim 3.10. For all m0,m1 ⊆ n, we have rm0∩m1 = rm0 ∩ rm1 .

Proof. This follows immediately from the fact that s
m

−

0 ∩m
−

1
= s

m
−

0
∩ s

m
−

1
for all

m0,m1 ⊆ n. �

It remains to verify clause (2) of Definition 2.5, i.e., if a, b ∈ [H ]n are aligned
and r(a, b) = m, then ua and ub are aligned, and r(ua, ub) = rm. We split this
verification into two cases, depending on whether or not n− 1 is in m.

Claim 3.11. Suppose that b0, b1 ∈ [H0]
n are aligned and n − 1 ∈ m = r(b0, b1).

Then ub0 and ub1 are aligned and r(ub0 , ub1) = rm.

Proof. Since n − 1 ∈ m, we have rm = s
m

− . It also follows from the fact that
n − 1 ∈ m that there is β ∈ H0 such that b0 and b1 are of the form a0

⌢〈β〉
and a1

⌢〈β〉 respectively, where a0, a1 ∈ [H0 ∩ β]n−1 are aligned and r(a0, a1) =
m−. By our choice of H0 and s

m
− , it follows that ua0

⌢〈µM 〉 and ua1
⌢〈µM 〉 are

aligned and r(ua0
⌢〈µM 〉, ua1

⌢〈µM 〉) = s
m

− . The fact that A satisfies Clause (3) of
Claim 3.9 then implies that tp(ub0 , ub1) = tp(ua0

⌢〈µM 〉, ua1
⌢〈µM 〉), and therefore,

recalling Remark 3.4, that ub0 and ub1 are aligned, with r(ub0 , ub1) = s
m

− = rm,
as desired. �

We next deal with the case in which m ⊆ n− 1. This will take a bit more work.
We first establish the following claim.
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Claim 3.12. Suppose that b0, b1 ∈ [H0]
n, m ⊆ n − 1, and b0[m] = b1[m]. Then

ub0 [rm] = ub1 [rm].

Proof. Since m ⊆ n − 1, we have m− = m and rm = sm ∩ i. We also know
that b0 and b1 are of the form a0

⌢〈α〉 and a1
⌢〈β〉, respectively, where α, β ∈ H0,

a0, a1 ∈ [H0]
n−1, and a0[m] = a1[m]. By Proposition 2.6(1) applied to 〈ua⌢〈µM 〉 |

a ∈ [H0]
n−1〉, m, a0, and a1, we know that ua0

⌢〈µM 〉[sm] = ua1
⌢〈µM 〉[sm]. Now

fix i ∈ rm. Since i ∈ sm, it follows that ua0
⌢〈µM 〉(i) = ua1

⌢〈µM 〉(i). Since i ∈ i,
the fact that A satisfies Clause (1c) of Claim 3.9 implies that ub0(i) = ua0

⌢〈µM 〉(i)
and ub1(i) = ua1

⌢〈µM 〉(i). Together, this implies that ub0(i) = ub1(i), and hence
ub0 [rm] = ub1 [rm]. �

As an immediate consequence of Claim 3.12, if b0, b1 ∈ [H0]
n are aligned and

r(b0, b1) = m ⊆ n − 1, then ub0 [rm] = ub1 [rm]. Showing that ub0 and ub1 are
disjoint outside of ub0 [rm] will take some more work and possibly a thinning out
of H0. For m < n and a ∈ [H0]

m, choose any b ∈ [H0]
n with a = b[m] (i.e., b is

an end-extension of a), and define ua := ub[rm]. By Claim 3.12, this definition is
independent of our choice of b.

For the following claim, recall our convention that max(∅) = −1.

Claim 3.13. Suppose that m < n and a ∈ [H0]
m. Then

〈ua⌢〈β〉 | β ∈ H0 \ (max(a) + 1)〉

is a ∆-system with root ua.

Proof. Suppose first that m = n− 1, in which case rm = i. Fix (α, β) ∈ [H0]
2 with

α > max(a), and consider ua⌢〈α〉 ∩ ua⌢〈β〉. By Claim 3.12, we have ua⌢〈α〉[i] =
ua⌢〈β〉[i]. Furthermore, for all j ∈ j, the fact that A satisfies Clause (2) of Claim
3.9 implies that ua⌢〈β〉(j) /∈ ua⌢〈α〉. It follows that

ua⌢〈α〉 ∩ ua⌢〈β〉 = ua⌢〈α〉[i] = ua,

as desired.
Next, suppose that m < n − 1. Fix (β0, β1) ∈ [H0]

2 with β0 > max(a), and
consider ua⌢〈β0〉 ∩ ua⌢〈β1〉. Fix c ∈ [H0]

n−m−1 with min(c) > β1 and set bℓ :=
a⌢〈βℓ〉⌢c for ℓ < 2. Note that bℓ ∈ [H0]

n, that ua⌢〈βℓ〉 = ubℓ [rm+1], and that
ua = ubℓ [rm]. Observe also that b0 and b1 are aligned and that r(b0, b1) = n \ {m},
so, by Claim 3.11, we have ub0 ∩ ub1 = ub0 [rn\{m}] = ub1 [rn\{m}]. Putting this
together, we obtain

ua⌢〈β0〉 ∩ ua⌢〈β1〉 = ub0 [rm+1] ∩ ub1 [rm+1]

= ub0 [rm+1] ∩ ub1 [rm+1] ∩ ub0 [rn\{m}] ∩ ub1 [rn\{m}]

= ub0 [rm] ∩ ub1 [rm]

= ua,

where the passage from the second to the third line in the above sequence of equa-
tions follows from Claim 3.10 and the observation that (m+1)∩(n\{m}) = m. �

We are now ready to thin out H0 to our final set H witnessing the conclusion of
the theorem. We will recursively construct an increasing sequence 〈βξ | ξ < λ〉 of
ordinals from H0 and then define H := {βξ | ξ < λ}.

Begin by letting β0 := min(H0). Next, suppose that 0 < ζ < λ and 〈βξ | ξ < ζ〉
has been defined. Let Bζ := {βξ | ξ < ζ}. Suppose that a0 ∈ [Bζ ]

<n and a1 ∈
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[Bζ ]
≤n. By Claim 3.13, the sequence 〈ua0

⌢〈β〉\ua0 | β ∈ H0\(sup(Bζ)+1)〉 consists
of pairwise disjoint sets. Since |ua1 | < κ, it follows that, letting Ca0,a1 be the set
of β ∈ H0 \ (sup(Bζ) + 1) such that ua0

⌢〈β〉 \ ua0 has nonempty intersection with
ua1 , we have |Ca0,a1 | < κ. Since the number of such pairs (a0, a1) is less than λ, we
can find β ∈ H0 \ (sup(Bζ) + 1) such that, for all a0 ∈ [Bζ ]

<n and all a1 ∈ [Bζ ]
≤n,

we have β /∈ Ca0,a1 . Let βζ be the least such β, and continue to the next step of
the construction.

To verify that 〈ub | b ∈ [H ]n〉 is a uniform n-dimensional ∆-system as witnessed
by ρ and 〈rm | m ⊆ n〉, we must show that, for all b0, b1 ∈ [H ]n, if b0 and b1 are
aligned and m = r(b0, b1), then ub0 and ub1 are aligned with r(ub0 , ub1) = rm. To
this end, fix b0, b1 ∈ [H ]n such that b0 and b1 are aligned, and let m = r(b0, b1). If
n− 1 ∈ m, then the desired conclusion already follows from Claim 3.11, so assume
that n− 1 /∈ m.

Without loss of generality, assume that max(b0) < max(b1). By Claim 3.12, we
know that ub0 [rm] = ub1 [rm]. It will therefore suffice to show that, for all i < ρ, if
ub1(i) ∈ ub0 , then i ∈ rm.

To this end, fix i < ρ such that γ := ub1(i) ∈ ub0 . Let m
∗ < n be least such that

b1(m
∗) > max(b0). Notice that this m∗ exists, since max(b1) > max(b0).

Claim 3.14. γ ∈ ub1[m∗].

Proof. We will prove by induction on ℓ ≤ n−m∗ that γ ∈ ub1[n−ℓ]. First, if ℓ = 0,
then b1[n − ℓ] = b1[n] = b1, and, by assumption, we have γ ∈ ub1 . Next, suppose
that ℓ < n−m∗ and we have proven that γ ∈ ub1[n−ℓ]. Then b1(n−ℓ−1) > max(b0),
so, by our thinning out of H0 to H , we know that ub1[n−ℓ] \ ub1[n−ℓ−1] is disjoint
from ub0 . Since γ ∈ ub0 , it follows that γ ∈ ub1[n−ℓ−1]. �

Claim 3.15. γ ∈ ub0[n−1].

Proof. Because b0 and b1 are aligned and max(b1) > max(b0), we know that
max(b0) /∈ b1. Since m

∗ was least with b1(m
∗) > max(b0), it follows that max(b0) >

max(b1[m
∗]). Therefore, by our thinning out ofH0 to H , we know that ub0 \ub0[n−1]

is disjoint from ub1[m∗]. Since γ ∈ ub1[m∗] by the previous claim, it follows that
γ ∈ ub0[n−1]. �

For ℓ < 2, let aℓ = bℓ[n− 1] and βℓ = bℓ(n− 1). By the two previous claims and
our choice of β0 and β1, we know that

γ ∈ ub0[n−1] ∩ ub1[m∗] = ub0 [rn−1] ∩ ub1 [rm∗ ]

⊆ ub0 [i] ∩ ub1 [i]

= ua0
⌢〈µM 〉[i] ∩ ua1

⌢〈µM 〉[i].

In particular, we have i ∈ i and, since ub1 [i] = ua1
⌢〈µM 〉[i], we also know that

ua1
⌢〈µM 〉(i) = γ.
Since b0 and b1 are aligned, we know that a0 and a1 are aligned, and, since

n− 1 /∈ m, we also have r(a0, a1) = m. Therefore, by our choice of H0, it follows
that ua0

⌢〈µM 〉 and ua1
⌢〈µM 〉 are aligned and r(ua0

⌢〈µM 〉, ua1
⌢〈µM 〉) = sm. Since

γ ∈ ua0
⌢〈µM 〉 ∩ ua1

⌢〈µM 〉, it follows that i ∈ sm. But since i ∈ i and rm = sm ∩ i,
it follows that i ∈ rm, which finishes the proof of clause (2).

We finally turn our attention to the “moreover” clause. To this end, fix m < n
and a, b ∈ [H ]n such that a and b are aligned above m and a(m) = b(m). Fix α ∈ H
such that α is m-possible for both a and b. We must show that tpint(ua, ub) =
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tpint(uam 7→α
, ubm 7→α

). Let a− = a[n− 1] and b− = b[n− 1], and let a+ := a−⌢〈µM 〉
and b+ := b−⌢〈µM 〉.

Suppose first that m = n − 1, so a(n − 1) = b(n − 1). By the fact that
A satisfies Clause (3) of Claim 3.9, we know that tp(ua, ub) = tp(ua+ , ub+) =
tp(uam 7→α

, ubm 7→α
), and hence tpint(ua, ub) = tpint(uam 7→α

, ubm 7→α
).

Suppose next that m < n− 1. By the fact that 〈ua⌢〈µM 〉 | a ∈ [H ]n−1〉 satisfies
the “moreover” clause in the statement of the theorem, we know that

tpint(ua+ , ub+) = tpint

(

ua
+
m 7→α

, ub
+
m 7→α

)

.(∗)

Suppose in addition that a(n − 1) = b(n − 1). Then, again by the fact that A
satisfies Clause (3) of Claim 3.9, we know that

tp(ua, ub) = tp(ua+ , ub+) and tp (uam 7→α
, ubm 7→α

) = tp
(

ua
+
m 7→α

, ub
+
m 7→α

)

.

Putting this together yields tpint(ua, ub) = tpint(uam 7→α
, ubm 7→α

), as desired.
The remaining case is that in which a(n − 1) 6= b(n − 1). We show that

tpint(ua, ub) ⊆ tpint(uam 7→α
, ubm 7→α

). A symmetric argument will yield the reverse
inclusion. To this end, fix (i, j) ∈ tpint(ua, ub). Thus, we have ua(i) = ub(j) = γ
for some ordinal γ. Since a and b are aligned above m, a(m) = b(m), and
a(n−1) 6= b(n−1), it follows that b(n−1) /∈ a and a(n−1) /∈ b. An argument exactly
as in the proofs of Claims 3.14 and 3.15 then shows that γ ∈ ua−∩ub− = ua[i]∩ub[i],
and hence we have i, j ∈ i.

Since i, j ∈ i, the fact that A satisfies Clause (1c) of Claim 3.9 implies that
ua(i) = ua+(i) and ub(j) = ub+(j), and hence (i, j) ∈ tpint(ua+ , ub+). By equation

(∗) above, we have (i, j) ∈ tpint

(

ua
+
m 7→α

, ub
+
m 7→α

)

. Again by the facts that A satisfies

Clause (1c) of Claim 3.9 and that i, j ∈ i, we have uam 7→α
(i) = ua

+
m 7→α

(i) and

ubm 7→α
(j) = ub

+
m 7→α

(j), so (i, j) ∈ tpint(uam 7→α
, ubm 7→α

), thus finishing the proof. �

The following corollary gives an important special case, obtained from setting
κ = ℵ0 and λ = ℵ1 in Theorem 3.8.

Corollary 3.16. Suppose that 1 ≤ n < ω, and let µ := i
+
n−1. If 〈ub | b ∈ [µ]n〉

is a family of finite sets of ordinals and g : [µ]n → ω is a function, then there
is H ∈ [µ]ℵ1 such that 〈ub | b ∈ [H ]n〉 is a uniform n-dimensional ∆-system and
g ↾ [H ]n is constant. �

We end this section with a discussion of the optimality of Theorem 3.8. It can
be argued that, if κ < λ ≤ µ are infinite cardinals, 1 ≤ n < ω, and µ → (λ)2n2<κ ,
then any sequence 〈ua | a ∈ [µ]n〉 consisting of elements of [On]<κ can be thinned
out to a uniform n-dimensional ∆-system of size λ (see [3] for such an argument).

In general, µ → (λ)2n2<κ is a stronger assertion than µ ≥ σ(λ, n), which is our
assumption in Theorem 3.8, so this argument yields weaker results than those of
Theorem 3.8. However, if λ is weakly compact, then we have λ → (λ)2n2<κ for all
1 ≤ n < ω and all κ < λ, so we obtain the following corollary.

Corollary 3.17. Suppose that 1 ≤ n < ω and that κ < λ are infinite cardinals, with
λ being weakly compact. Suppose also that 〈ua | a ∈ [λ]n〉 is a sequence consisting of
elements of [On]<κ. Then there is H ∈ [λ]λ such that 〈ua | a ∈ [H ]n〉 is a uniform
n-dimensional ∆-system. �
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If λ is not weakly compact, though, then our result is optimal in the sense that
the value of µ cannot be decreased. This is true even disregarding clause (1) or
the “moreover clause” of Theorem 3.8 and focusing only on the higher-dimensional
∆-systems (and not even requiring that the ∆-systems be uniform), for essentially
the same reason that the Erdős-Rado theorem is optimal.

Proposition 3.18. Suppose that 1 ≤ n < ω and λ is a regular uncountable cardinal
that is not weakly compact, and suppose that µ < σ(λ, n). Then there is a sequence
〈ua | a ∈ [µ]n〉 consisting of finite sets of ordinals such that there is no H ∈ [µ]λ

for which 〈ua | a ∈ [H ]n〉 is an n-dimensional ∆-system.

Proof. If n = 1, then we have µ < λ, so the result is trivial. So assume that n > 1.
Since λ is uncountable, regular, and not weakly compact, [8, Corollary 21.5] implies
that 2<λ 6→ (λ)22. Therefore, by successive applications of [7, Lemma 5A], which
is the lemma establishing the optimality of the Erdős-Rado theorem, we have, for

all m < ω, im(2<λ) 6→ (λ)2+m
2 . By Remark 3.2(2), σ(λ, n) =

(

in−2(2
<λ)

)+
.

Therefore, we have µ ≤ in−2(2
<λ), so there is a function c : [µ]n → 2 that is not

constant on [H ]n for any H ∈ [µ]λ. For each a ∈ [µ]n, simply let ua := c(a). Now
suppose that H ∈ [µ]λ, and suppose for sake of contradiction that 〈ua | a ∈ [H ]n〉
is an n-dimensional ∆-system, as witnessed by roots 〈Rm

a | m ⊆ n, a ∈ [H ]|m|〉.
Using the fact that c is not constant on [H ′]n for any unbounded H ′ ⊆ H , we can fix
three sets a0 < a1 < a2 in [H ]n such that c(a0) = 0 and c(a1) = c(a2) = 1. By the

definition of an n-dimensional ∆-system, we should have ua0∩ua1 = R∅
∅ = ua1∩ua2 .

However, we actually have ua0 ∩ ua1 = ∅ and ua1 ∩ ua2 = 1, which is our desired
contradiction. �

Before turning to the optimality of the value of κ in Theorem 3.8, we pause to
summarize the results of this section thus far in a corollary connecting Theorem
3.8 and Proposition 3.18 with the Erdős-Rado theorem.

Corollary 3.19. Suppose that 1 ≤ n < ω and that λ and µ are infinite regular
cardinals such that λ is uncountable but not weakly compact. Then the following
are equivalent:

(1) µ ≥ σ(λ, n);
(2) µ → (λ)n2 ;
(3) µ → (λ+ (n− 1))nν for every ν < λ;
(4) for every sequence 〈ub | b ∈ [µ]n〉 such that each ub is a finite set, there is

H ∈ [µ]λ such that 〈ub | b ∈ [H ]n〉 is an n-dimensional ∆-system;
(5) the conclusion of Theorem 3.8 holds for n, λ, and µ, and for any choice of

κ, ν, g : [µ]n → ν, and 〈ub | b ∈ [µ]n〉 such that
(a) ν < λ;
(b) λ is <κ-inaccessible; and
(c) ub ∈ [On]<κ for every b ∈ [µ]n.

Proof. (1) ⇒ (3) is the Erdős-Rado theorem, or the pigeonhole principle if n = 1 (it
can also be extracted from our proof of Theorem 3.8), and (3) ⇒ (2) is immediate.
(1) ⇒ (5) is Theorem 3.8, and (5) ⇒ (4) follows by setting κ = ℵ0 in Theorem
3.8 and invoking Proposition 2.6(2). (4) ⇒ (2) is precisely the second half of the
proof of Proposition 3.18. Finally, (2) ⇒ (1) follows from the optimality of the
Erdős-Rado theorem (the argument in the first half of the proof of Proposition
3.18). �
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We now turn to the optimality of κ in Theorem 3.8; in other words, we investigate
the necessity of the requirement that λ be <κ-inaccessible in the statement of the
theorem. It turns out that the optimality of κ is slightly more complicated than
the optimality of µ, since even if λ is not <κ-inaccessible, it could be the case that
σ(λ, n) = σ(λ∗, n) for some λ∗ > λ such that λ∗ is <κ-inaccessible. For example,
suppose that 2ℵ0 = ℵ2 and 2ℵ1 = 2ℵ2 = ℵ3. Then σ(ℵ2, n) = σ(ℵ3, n) for all n ≥ 2.
Also, ℵ3 is <ℵ1-inaccessible, so Theorem 3.8 holds for λ = ℵ3 and κ = ν = ℵ1

(and any value of n). This immediately implies that the conclusion of Theorem
3.8 holds for λ = ℵ2, κ = ν = ℵ1, and 2 ≤ n < ω, despite the fact that ℵ2 is not
<ℵ1-inaccessible. We can show however, that this is essentially the only way in
which the value of κ in Theorem 3.8 can fail to be optimal.

Proposition 3.20. Suppose that 1 ≤ n < ω and κ < λ are infinite cardinals
such that λ is regular and not <κ-inaccessible. Let λ∗ = (λ<κ)+, and suppose that
µ < σ(λ∗, n). Then there is a sequence 〈ua | a ∈ [µ]n〉 consisting of elements of
[λ]<κ such that there is no H ∈ [µ]λ for which 〈ua | a ∈ [H ]n〉 is an n-dimensional
∆-system.

Proof. Fix a cardinal ν < λ such that ν ≥ κ and ν<κ ≥ λ. Next, fix an injective
sequence 〈xη | η < λ〉 of elements of [ν]<κ such that, for all distinct η, ξ < λ, neither
of xη nor xξ is a subset of the other. One way to see that this can be done is the
following. Let 〈κi | i < θ〉 be such that

• if κ is a successor cardinal, then θ = 1 and κ0 is its immediate predecessor
(so ν<κ = νκ0); or

• if κ is a limit cardinal, then θ = cf(κ) and 〈κi | i < θ〉 is a strictly increasing
sequence of cardinals converging to κ.

Now let 〈fη | η < λ〉 be an injective sequence of elements of
⋃

i<θ
κiν. Partition

ν into pairwise disjoint pieces 〈Ai | i < θ〉, each of size ν and, for each i < θ, let
πi : κi × ν → Ai be a bijection. Now, viewing elements of κiν as subsets of κi × ν,
for each η < λ, let iη be the unique i < θ such that fη ∈ κiν, and let xη := πiη“fη.
Then 〈xη | η < λ〉 is as desired. Similarly, fix an injective sequence 〈yα | α < λ<κ〉
of elements of [λ \ ν]<κ such that, for all α < β < λ<κ, neither of yα nor yβ is a
subset of the other. For all α < λ<κ, let ηα = sup(yα). Since λ is regular, we have
ηα < λ.

Suppose first that n = 1. Then σ(λ∗, 1) = λ∗ = (λ<κ)+, so we can assume that
µ = λ<κ. For all α < µ, let uα := yα ∪ xηα

. Fix H ∈ [µ]λ, and suppose for sake
of contradiction that 〈uα | α ∈ H〉 is a ∆-system, with root r. Let r− := r ∩ ν
and r+ := r \ ν. Note that, for all distinct α, β ∈ H , we have yα ∩ yβ = r+ and
xηα

∩ xηβ
= r−.

There are now two cases to consider, depending on whether or not {ηα | α ∈ H}
is unbounded in λ. Suppose first that η∗ := sup{ηα | α ∈ H} is less than λ. Then
〈yα \ r+ | α ∈ H〉 is an injective sequence of pairwise disjoint nonempty subsets of
η∗ + 1, contradicting the fact that |H | = λ > η∗ + 1. Suppose next that η∗ = λ.
Then {xηα

\ r− | α ∈ H} is a set of size λ consisting of pairwise disjoint nonempty
subsets of ν, contradicting the fact that λ > ν.

Now suppose that n > 1. Then, by Remark 3.2(1), we know that σ(λ∗, n) =
(in−1(λ

<κ))+, so we can assume that µ = in−1(λ
<κ). For any infinite cardinal

χ, the coloring d : [χ2]2 → χ defined by letting d(f, g) be the least ξ < χ for
which f(ξ) 6= g(ξ) for all distinct f, g ∈ χ2 witnesses the negative partition relation
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2χ 6→ (3)2χ. Therefore, setting χ = λ<κ and repeatedly applying [7, Lemma 5A],

we have µ 6→ (ℵ0)
n
λ<κ . Let c : [µ]n → λ<κ witness this negative partition relation.

Now define 〈ua | a ∈ [µ]n〉 by letting ua := yc(a) ∪ xηc(a)
for all a ∈ [µ]n. Fix

H ∈ [µ]λ, and suppose for sake of contradiction that 〈ua | a ∈ [H ]n〉 is an n-
dimensional ∆-system, as witnessed by roots 〈Rm

a | m ⊆ n, a ∈ [H ]|m|〉. Let

r := R∅
∅, r

− := r ∩ ν, and r+ := r \ ν. Since c witnesses µ 6→ (ℵ0)
n
λ<κ , we can

find disjoint sets a0, a1 ∈ [H ]n such that c(a0) 6= c(a1). Now arbitrarily fix a set
aγ ∈ [H ]n for each 2 ≤ γ < λ in such a way that 〈aγ | γ < λ〉 is an injective
sequence of pairwise disjoint sets. By the definition of 〈ua | a ∈ [H ]n〉 and our
choice of r, r+, and r−, we know that, for all γ < δ < λ, we have uaγ

∩ uaδ
= r,

and hence yc(aγ) ∩ yc(aδ) = r+ and xηc(aγ )
∩ xηc(aδ )

= r−.

There are now two possibilities. First, suppose that there are γ < δ < λ for which
uaγ

= uaδ
. Then we can find ℓ < 2 for which uaℓ

6= uaγ
(and hence uaγ

6⊆ uaℓ
).

But now we are in the same situation as in the proof of Proposition 3.18: we must
have uaγ

∩ uaδ
= r = uaℓ

∩ uaγ
, but uaγ

∩ uaδ
= uaγ

, and since uaγ
6⊆ uaℓ

, we have
uaℓ

∩ uaγ
6= uaγ

, which is a contradiction.
The other possibility is that the sets 〈uaγ

| γ < λ〉 are all pairwise disjoint. There
are now two subcases, depending on whether or not η∗ := sup{ηc(aγ) | γ < λ} is
equal to λ. If η∗ < λ, then 〈uaγ

\ r | γ < λ〉 is an injective sequence of pairwise
disjoint nonempty subsets of max{η∗ + 1, ν}. If η∗ = λ, then {xηc(aγ )

\ r− | γ < λ}
is a set of size λ consisting of pairwise disjoint nonempty subsets of ν. In either
case, we contradict the fact that λ > max{η∗ + 1, ν}. �

If κ < λ are both regular infinite cardinals and λ is not <κ-inaccessible, then
(λ<κ)+ is the least <κ-inaccessible cardinal greater than or equal to λ (it can fail
to be <κ-inaccessible if κ is singular). We can therefore combine the results of this
section in the following equivalence.

Corollary 3.21. Suppose that 1 ≤ n < ω and κ < λ are infinite regular cardinals.
Let λ∗ be the least <κ-inaccessible cardinal greater than or equal to λ, and suppose
that µ is an infinite cardinal. Then the following are equivalent.

(1) µ ≥ σ(λ∗, n);
(2) the conclusion of Theorem 3.8 holds for n, κ, λ, and µ with any choice of

ν < λ, g : [µ]n → ν, and 〈ub | b ∈ [µ]n〉 with each ub in [On]<κ;
(3) for every sequence 〈ua | a ∈ [µ]n〉 such that each ua is a set of cardinality

less than κ, there is H ∈ [µ]λ such that 〈ua | a ∈ [H ]n〉 is an n-dimensional
∆-system.

Proof. (1) ⇒ (2) follows from Theorem 3.8, and (2) ⇒ (3) is immediate. If λ is
<κ-inaccessible, then λ∗ = λ, in which case (3) ⇒ (1) follows from Proposition
3.18. If λ is not <κ-inaccessible, then (3) ⇒ (1) follows from Proposition 3.20 and
the observation that λ∗ = (λ<κ)+ in this case. �

4. Chain conditions

One of the primary uses of the classical ∆-system lemma is in proving that certain
forcing notions satisfy chain conditions. For example, one of the first applications
that many people learn is in the proof that the forcing notion to add any number
of Cohen reals is κ-Knaster for every regular uncountable κ:
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Lemma 4.1. Let χ be any infinite cardinal, and let P = Add(ω, χ) be the forcing
to add χ-many Cohen reals. Suppose that κ is a regular uncountable cardinal and
〈pα | α < κ〉 is a sequence of conditions from P. Then there is an unbounded A ⊆ κ
such that 〈pα | α ∈ A〉 consists of pairwise compatible conditions.

During forcing constructions involving higher-dimensional combinatorial state-
ments, one frequently encounters sequences of conditions indexed not by single
ordinals but by n-element sets of ordinals for some n > 1. One would then like to
find a large set such that the restriction of the sequence to that set satisfies certain
uniformities analogous to the uniformities exhibited by 〈pα | α ∈ A〉 in Lemma
4.1. A first, näıve attempt at formulating a statement to this effect, similar to our
overly optimistic first attempt to define higher-dimensional ∆-systems at the start
of Section 2, might look vaguely as follows:

Let χ be an infinite cardinal and 1 ≤ n < ω, and let P be the
forcing to add χ-many Cohen reals. Then there is a sufficiently
large regular cardinal µ ≤ χ such that, for every sequence 〈pa | a ∈
[µ]n〉 of conditions in P, there is a “large” set H ⊆ µ such that
〈pa | a ∈ [H ]n〉 consists of pairwise compatible conditions.

It is easily seen that such a statement cannot possibly hold if n > 1, however.
Indeed suppose that n = 2 and, for all (α, β) ∈ [µ]2, define a condition pαβ ∈ P

by letting dom(pαβ) := {α, β}, pαβ(α) := 0, and pαβ(β) := 1 (we are thinking of
conditions in P as being finite partial functions from χ to 2). Then pαβ ⊥ pβγ for all
(α, β, γ) ∈ [µ]3, so we could not even find a set H of size 3 as in the above statement.
The obvious problem here is that the sets {α, β} and {β, γ} are not aligned, and it
turns out that this is the only obstacle. By requiring the compatibility of pa and
pb only when a and b are aligned, we obtain a consistent statement. For example:

Lemma 4.2. Suppose that λ is a regular uncountable cardinal, 1 ≤ n < ω, and
µ = σ(λ, n), and suppose that P is the forcing notion to add χ-many Cohen reals
for some infinite cardinal χ. Then, for every sequence 〈pa | a ∈ [µ]n〉 of conditions
in P, there is a set H ∈ [µ]λ such that, for all a, b ∈ [H ]n, if a and b are aligned,
then pa ‖ pb.

Proof. Fix a sequence 〈pa | a ∈ [µ]n〉 consisting of conditions in P. For each a ∈ [µ]n,
let ua := dom(pa) and ka := otp(ua), and let p̄a : ka → 2 denote the condition
isomorphic to pa, i.e., p̄a(i) = pa(ua(i)) for all i < ka. Now apply Theorem 3.8
to 〈ua | a ∈ [µ]n〉 and the function a 7→ p̄a to find an H ∈ [µ]λ, a k < ω, and a
function p̄ : k → 2 such that 〈ua | a ∈ [H ]n〉 is a uniform n-dimensional ∆-system
and p̄a = p̄ for all a ∈ [H ]n.

We claim that pa ‖ pb for all aligned a, b ∈ [H ]n. To this end, fix a, b ∈ [H ]n

such that a and b are aligned. The only way we could have pa ⊥ pb is if there
is α ∈ ua ∩ ub such that pa(α) 6= pb(α). Since 〈ua | a ∈ [H ]n〉 is a uniform n-
dimensional ∆-system, we know that ua and ub are aligned. Moreover, we know
that p̄a = p̄b = p̄. Therefore, if α ∈ ua ∩ ub, then there is i < k such that
α = ua(i) = ub(i). But then pa(α) = p̄(i) = pb(α). Therefore, we have pa ‖ pb. �

Remark 4.3. If λ is weakly compact, then, by Corollary 3.17, Lemma 4.2 still
holds with µ = λ rather than µ = σ(λ, n).
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5. An application to polarized partition relations

In this section, we give a relatively simple application illustrating a typical use
of Theorem 3.8 in a forcing argument. The following definition was introduced by
Todorčević.

Definition 5.1 ([20, Remark 9.3.3]). Let 1 ≤ n < ω. Then Θn is the least cardinal
θ such that, for every function f : θn → ω, there is a sequence 〈Ai | i < n〉 of
infinite subsets of θ such that f ↾

∏

i<n Ai is constant.

We clearly have Θ1 = ℵ1. The next proposition establishes lower bounds for Θn

for n > 1.

Proposition 5.2. Suppose that 1 ≤ n < ω, κ is a cardinal, and Θn > κ. Then
Θn+1 > κ+.

Proof. Since Θn > κ, we can fix a function g : κn → ω such that g is not constant
on any product of n infinite subsets of κ. For each β < κ+, fix an injective function
eβ : β → κ. Then the function gβ : βn → ω defined by letting

gβ(〈α0, . . . , αn−1〉) := g(〈eβ(α0), . . . , eβ(αn−1)〉)

for all 〈α0, . . . , αn−1〉 ∈ βn has the property that gβ is not constant on any product
of n infinite subsets of β.

We now define a function f : (κ+)n+1 → (n+2)×ω that will not be constant on
any product of (n+1) infinite subsets of κ+. This can easily be coded as a function
into ω, so this suffices to prove the proposition.

Given ~α = 〈α0, . . . , αn〉 ∈ (κ+)n+1 and i ≤ n, let ~αi denote the sequence formed
by removing αi from ~α, i.e., ~αi := 〈α0, . . . , αi−1, αi+1, . . . , αn〉. Let us now define
f(~α). If there are i < j ≤ n such that αi = αj , then let f(~α) := (n + 1, 0).
Otherwise, let i ≤ n be such that αj < αi for all j ∈ (n + 1) \ {i}, and let
f(~α) := (i, gαi

(~αi)).
Suppose for sake of contradiction that 〈Ai | i ≤ n〉 is a sequence of infinite

subsets of κ+ such that f ↾
∏

i≤n Ai is constant, taking value (m, k). First note

that we can always find a sequence ~α ∈
∏

i≤n Ai whose coordinates are all distinct,
so it cannot be the case that m = n+1. Thus, m ≤ n, so, by our definition of f , it
follows that Aj < Am for all j ∈ (n+1)\{m}. Fix β ∈ Am, and define 〈A∗

j | j < n〉
by letting A∗

j := Aj for j < m and A∗
j := Aj+1 for m ≤ j < n. Then each A∗

j is

an infinite subset of β and, by our definition of f , it follows that gβ ↾
∏

j<n A∗
j is

constant, taking value k, contradicting our assumptions about gβ. �

In particular, we immediately obtain the following corollary, answering a part of
Question 9.3.4 from [20].

Corollary 5.3. Θn ≥ ℵn for all 1 ≤ n < ω. �

It follows easily from the Erdős-Rado theorem that Θn ≤ i
+
n−1 for all 1 ≤

n < ω. In particular, if GCH holds, then Θn = ℵn for all 1 ≤ n < ω. We now
apply Theorem 3.8 to prove that adding any number of Cohen reals preserves the
inequality Θn ≤ (i+

n−1)
V . In fact, we will prove that a slightly stronger partition

relation, which easily implies Θn ≤ (i+
n−1)

V , holds after forcing to add the Cohen
reals.
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Theorem 5.4. Suppose that 1 ≤ n < ω and χ is an infinite cardinal. Let µ = i
+
n−1,

and let P be the forcing to add χ-many Cohen reals. Then the following statement
holds in V P:

For every function c : [µ]n → ω, there is a sequence 〈Am | m < n〉
such that

• for all m < n, Am is a subset of µ of order type ω + 1;
• for all m < m′ < n, we have Am < Am′ ;
• c ↾

∏

m<nAm is constant.

Proof. We think of conditions in P as being finite partial functions from χ to 2,
ordered by reverse inclusion. Given a condition p ∈ P, let p̄ denote the function
from |dom(p)| to 2 defined by letting p̄(i) := p(dom(p)(i)) for all i < |dom(p)|.

Since the conclusion of the theorem is trivial if n = 1, we may assume that
n > 1. Fix a condition p ∈ P and a P-name ċ forced by p to be a function from
[µ]n to ω. For each b ∈ [µ]n, find a condition qb ≤ p and a color kb < ω such that
qb 
 “ċ(b) = kb”. Let ub := dom(qb), and define a function g : [µ]n → <ω2 × ω by
letting g(b) := 〈q̄b, kb〉 for all b ∈ [µ]n. Apply Theorem 3.8 to find H ∈ [µ]ℵ1 such
that 〈ub | b ∈ [H ]n〉 is a uniform n-dimensional ∆-system and g ↾ [H ]n is constant,
taking value 〈q̄, k〉. By taking an initial segment if necessary, assume that we in
fact have otp(H) = ω1. Note that, if b and b′ are aligned elements of [H ]n, then qb
and qb′ are compatible in P.

Let ρ := |q̄|, and let 〈rm ⊆ ρ | m ⊆ n〉 witness the fact that 〈ub | b ∈ [H ]n〉 is a
uniform n-dimensional ∆-system. For each m < n and each a ∈ [H ]m, define ua by
letting b be any element of [H ]n such that b[m] = a and then letting ua := ub[rm]
(we are thinking of m as an initial subset of n here). Then set qa := qb ↾ ua.
By Proposition 2.6 and the fact that q̄b = q̄ for all b ∈ [H ]n, it follows that our
definition of ua and qa is independent of our choice of b.

By the arguments of Claim 3.13, we know that, for every m < n and every
a ∈ [H ]m, the sequence 〈ua⌢〈β〉 | β ∈ H \ (max(a) + 1)〉 is a 1-dimensional ∆-
system, with root ua. Since qb ≤ p for all b ∈ [H ]n, it follows that dom(p) ⊆ u∅

and q∅ ≤ p. We will show that q∅ forces the existence of a sequence 〈Am | m < n〉
in V P such that

• each Am is a subset of µ of order type ω + 1;
• Am < Am′ for all m < m′ < n;
• the realization of ċ is constant when restricted to

∏

m<nAm, with value k.

Since p was arbitrary, this suffices to prove the theorem. We first need the following
claim.

Claim 5.5. Suppose that m < n, a ∈ [H ]m, and γ ∈ H \ (max(a) + 1). Then the
set Da,γ := {qa⌢〈β〉 | β ∈ H \ γ} is predense below qa in P.

Proof. Fix a condition r ≤ qa. We will find an element of Da,γ compatible with r.
Since 〈ua⌢〈β〉 | β ∈ H \ γ〉 is an infinite 1-dimensional ∆-system with root ua, and
since dom(r) is finite, we can find β ∈ H \ γ such that ua⌢〈β〉 \ ua is disjoint from
dom(r). But then qa⌢〈β〉 ↾ dom(r) = qa, so, since r ≤ qa, it follows that r ∪ qa⌢〈β〉

is a condition in P, so qa⌢〈β〉 is an element of Da,γ compatible with r. �

Now suppose that G is P-generic over V with q∅ ∈ G, and let c be the realization
of ċ in V [G]. By applying Claim 5.5 n times, working in V [G], we can recursively
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choose an increasing sequence 〈δm | m < n〉 of elements of H such that, letting
d = {δm | m < n}, we have

• qd ∈ G;
• H ∩ δ0 is infinite;
• for all m < n− 1, H ∩ (δm+1 \ (δm + 1)) is infinite.

Let A∗
0 denote the set of the first ω-many elements of H ∩ δ0 and, for all m < n− 1,

let A∗
m+1 denote the set of the first ω-many elements of H ∩ (δm+1 \ (δm + 1)).

We now construct an n× ω matrix 〈αm,ℓ | m < n, ℓ < ω〉 such that

• for all m < n, 〈αm,ℓ | ℓ < ω〉 is an increasing sequence of elements of A∗
m;

• letting Am = {αm,ℓ | ℓ < ω} ∪ {δm} for each m < n, we have qb ∈ G for all
b ∈

∏

m<n Am.

The construction is by recursion on the anti-lexicographical order on n×ω, i.e., we
set (m, ℓ) < (m′, ℓ′) if ℓ < ℓ′ or (ℓ = ℓ′ and m < m′). During the construction, at
stage (m, ℓ), for all m′ < n, we will let Am′ ↾ (m, ℓ) denote the set {αm′,ℓ′ | ℓ′ ≤ ℓ}∪
{δm′} if m′ < m and {αm′,ℓ′ | ℓ′ < ℓ} ∪ {δm′} if m ≤ m′. In other words, Am′ ↾

(m, ℓ) is simply the portion of Am′ that we have specified before stage (m, ℓ) of the
construction. Our recursion hypothesis will be the assumption that, when we reach
stage (m, ℓ), for all b ∈

∏

m′<n Am′ ↾ (m, ℓ), we have qb ∈ G. It will then follow
that q∗m,ℓ :=

⋃

{qb | b ∈
∏

m′<n Am′ ↾ (m, ℓ)} is also an element of G.

To begin the construction, note that, for all m′ < n, we have Am′ ↾ (0, 0) =
{δm′}, so q∗0,0 = qd ∈ G. Thus, our recursion hypothesis is initially satisfied. Now
suppose that (m, ℓ) ∈ n× ω and we have defined 〈αm′,ℓ′ | (m′, ℓ′) < (m, ℓ)〉 so that
the resulting condition q∗m,ℓ is in G. Temporarily move back to V , noting that each

Am′ ↾ (m, ℓ) is finite and hence in V , and A∗
m is also in V , as it is definable from

H (and δm−1, if m > 0).
Let B0 :=

∏

m′<m(Am′ ↾ (m, ℓ)) and B1 :=
∏

m<m′<n(Am′ ↾ (m, ℓ)). If ℓ > 0,
then let γ := αm,ℓ−1 + 1; if ℓ = 0, then let γ := 0. For each α ∈ A∗

m \ γ, let
q∗α :=

⋃

{qb0⌢〈α〉⌢b1 | b0 ∈ B0, b1 ∈ B1}. Notice that, if b0, b′0 ∈ B0 and b1, b
′
1 ∈ B1,

then b0
⌢〈α〉⌢b1 and b′0

⌢〈α〉⌢b′1 are aligned, and hence qb0⌢〈α〉⌢b1 and qb′0⌢〈α〉⌢b′1
are compatible. It follows that q∗α is a condition in P.

Claim 5.6. The set E := {q∗α | α ∈ A∗
m \ γ} is predense below q∗m,ℓ in P.

Proof. Fix r ≤ q∗m,ℓ. We will find an element of E compatible with r. Let m =

n \ {m}. For each (b0, b1) ∈ B0 ×B1, the sequence 〈ub0⌢〈α〉⌢b1 | α ∈ A∗
m \ γ〉 forms

a 1-dimensional ∆-system whose root is equal to ub0⌢〈α〉⌢b1 [rm] for all α ∈ A∗
m \γ.

Since A∗
m \ γ is infinite and since dom(r), B0, and B1 are all finite, we can find

α ∈ A∗
m\γ such that, for all (b0, b1) ∈ B0×B1, the set ub0⌢〈α〉⌢b1 \(ub0⌢〈α〉⌢b1 [rm])

is disjoint from dom(r).
We claim that q∗α and r are compatible. To see this, it suffices to show that

qb0⌢〈α〉⌢b1 and r are compatible for every (b0, b1) ∈ B0 × B1. Thus, fix (b0, b1) ∈
B0 × B1. We know that ub0⌢〈α〉⌢b1 ∩ dom(r) ⊆ ub0⌢〈α〉⌢b1 [rm]. Since b0

⌢〈α〉⌢b1
and b0

⌢〈δm〉⌢b1 are aligned with r(b0
⌢〈α〉⌢b1, b0

⌢〈δm〉⌢b1) = m, we also know
that qb0⌢〈α〉⌢b1 ‖ qb0⌢〈δm〉⌢b1 and ub0⌢〈α〉⌢b1 [rm] = ub0⌢〈δm〉⌢b1 [rm]. Then

qb0⌢〈α〉⌢b1 ↾ (ub0⌢〈α〉⌢b1 [rm]) = qb0⌢〈δm〉⌢b1 ↾ (ub0⌢〈δm〉⌢b1 [rm]).

But we have q∗m,ℓ ≤ qb0⌢〈δm〉⌢b1 , since b0
⌢〈δm〉⌢b1 ∈

∏

m′<n Am′ ↾ (m, ℓ). It

follows that r ≤ q∗m,ℓ ≤ qb0⌢〈α〉⌢b1 ↾ dom(r). Therefore, r and qb0⌢〈α〉⌢b1 are
compatible. �
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Returning to V [G], we can find α ∈ A∗
m \ γ such that q∗α ∈ G. But notice that,

if we were to set αm,ℓ := α, then, letting (m, ℓ)+ denote the anti-lexicographic
successor of (m, ℓ), we would have q∗(m,ℓ)+ = q∗m,ℓ ∪ q∗α ∈ G. We can therefore set

αm,ℓ := α while maintaining the recursion hypothesis, and continue to the next
step of the construction.

At the end of the construction, we have built sets 〈Am | m < n〉 such that

• for each m < n, Am is a subset of H and otp(Am) = ω + 1;
• for each m < m′ < n, Am < Am′ ;
• for each b ∈

∏

m<n Am, we have qb ∈ G, and hence c(b) = k.

Therefore, 〈Am | m < n〉 witnesses this instance of the theorem. �

Remark 5.7. With some appropriate bookkeeping, the order type ω + 1 in the
statement of Theorem 5.4 can be replaced by any countable ordinal α.

Corollary 5.8. The statement ”∀n ∈ [1, ω) (Θn = ℵn)” is compatible with an
arbitrarily large value of the continuum. In particular, if V is a model of GCH, χ
is an infinite cardinal, and P is the forcing to add χ-many Cohen reals, then, in
V P, Θn = ℵn for all 1 ≤ n < ω.

Proof. In V , since GCH holds, we have i
+
n−1 = ℵn for all 1 ≤ n < ω. Therefore,

Theorem 5.4 implies that Θn ≤ ℵn in V P for all 1 ≤ n < ω. By Corollary 5.3, it
follows that Θn = ℵn for all 1 ≤ n < ω in V P. �

6. A variation, and monochromatic sumsets of reals

In this section, we discuss an alternative form of higher-dimensional ∆-system
that has appeared in the literature. The following theorem is due to Shelah and
follows from the proof of [16, Lemma 4.1] (cf. also [6, Claim 7.2.a] and [21, Lemma
3.6] for more complete proofs of similar statements).

Theorem 6.1. Suppose that ν ≤ λ ≤ µ are infinite cardinals, 1 ≤ n < ω, and
µ → (λ)2n2ν . Suppose moreover that 〈ua | a ∈ [µ]n〉 is a sequence of elements from
[On]≤ν . Then there is H ∈ [µ]λ and a sequence 〈u∗

a | a ∈ [H ]≤n〉 of elements from
[On]≤ν such that

(1) u∗
a ⊇ ua for all a ∈ [H ]n;

(2) for all a, b ∈ [H ]n, we have tp(u∗
a, ua) = tp(u∗

b , ub);
(3) for all a, b ∈ [H ]≤n, we have u∗

a ∩ u∗
b = u∗

a∩b;
(4) for all a0 ⊆ a1 and b0 ⊆ b1, where a1, b1 ∈ [H ]≤n, if tp(a1, a0) = tp(b1, b0),

then tp(u∗
a1
, u∗

a0
) = tp(u∗

b1
, u∗

b0
).

It is currently unclear whether arguments similar to those in the proof of Theorem
3.8 can be used to obtain the conclusion of Theorem 6.1 from a weaker assumption
on µ, such as µ ≥ σ(λ, n). It is the case, however, that certain results that have
been proven using Theorem 6.1 can be proven by instead using Theorem 3.8. This
can yield some improvements, since Theorem 3.8 places weaker assumptions on the
cardinal µ. We give one example of such a result here.

In [22], Zhang uses Theorem 6.1 to prove that, in the forcing extension obtained
by adding iω-many Cohen reals, we have R →+ (ℵ0)r for every r < ω, i.e., for
every r < ω and every function f : R → r, there is an infinite set X ⊆ R such that
f ↾ (X + X) is constant. We remark that, by a result of Hindman, Leader, and
Strauss [11], if 2ℵ0 < ℵω, then there is r < ω such that R 6→+ (ℵ0)r, so, over a
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model of GCH, it is necessary to add at least iω-many reals to obtain R →+ (ℵ0)r
for every r < ω.

Let us examine, though, the number of reals that must be added to obtain
R →+ (ℵ0)r for some fixed r < ω. Zhang in fact proves that R →+ (ℵ0)2 holds
in ZFC and, for a fixed r > 2, in proving that R →+ (ℵ0)r holds in the forcing
extension, Theorem 6.1 is employed with ν = ℵ0, λ = ℵ1, and n = 2r. Hence, µ can
be taken to be least such that µ → (ℵ1)

4r
2ℵ0

. By the Erdős-Rado theorem, then, we

can take µ = i
+
4r. Zhang’s proof uses the fact that we have added at least µ-many

Cohen reals and therefore shows that, for this fixed value of r > 2, the statement
R →+ (ℵ0)r holds in the forcing extension obtained by adding i

+
4r-many Cohen

reals.
Inspection of Zhang’s proof reveals that Theorem 3.8, with κ = ℵ1, λ = i

+
1 ,

and n = 2r, can be used in place of Theorem 6.1. We can therefore take µ =
σ(i+

1 , 2r) = i
+
2r, obtaining the following corollary:

Corollary 6.2. Suppose that 2 < r < ω and P is the forcing to add at least i+
2r-

many Cohen reals. Then, in V P, we have R →+ (ℵ0)r.

This is an improvement on the bound of i+
4r given by Zhang’s proof, though of

course it does not improve on Zhang’s bound for obtaining R →+ (ℵ0)r simultane-
ously for all r < ω. We omit the adaptation of Zhang’s proof using Theorem 3.8
instead of Theorem 6.1 here, as it would entail introducing a considerable number
of definitions and only involves very minor changes to Zhang’s proof. Instead, we
direct the reader to [22] and [14], in which Zhang’s original proof and the adaptation
using Theorem 3.8 are spelled out in detail.

Data Availability: Data sharing not applicable to this article as no datasets were gen-

erated or analysed during the current study.
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[7] P. Erdős, A. Hajnal, and R. Rado. Partition relations for cardinal numbers. Acta Math. Acad.

Sci. Hungar., 16:93–196, 1965.
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II. In Sets, graphs and numbers (Budapest, 1991), volume 60 of Colloq. Math. Soc. János
Bolyai, pages 637–668. North-Holland, Amsterdam, 1992.

[17] Saharon Shelah. Consistency of positive partition theorems for graphs and models. In Set
theory and its applications (Toronto, ON, 1987), volume 1401 of Lecture Notes in Math.,
pages 167–193. Springer, Berlin, 1989.

[18] Stephen G. Simpson. Model-theoretic proof of a partition theorem. Not. Am. Math. Soc.,
17(6):964, 1970.
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