
THE CANONICAL COMPLEX OF THE WEAK ORDER

DORIANN ALBERTIN AND VINCENT PILAUD

Abstract. We define and study the canonical complex of a finite semidistributive lattice L. It is
the simplicial complex on the join or meet irreducible elements of L which encodes each interval

of L by recording the canonical join representation of its bottom element and the canonical
meet representation of its top element. This complex behaves properly with respect to lattice

quotients of L, in the sense that the canonical complex of a quotient of L is the subcomplex

of the canonical complex of L induced by the join or meet irreducibles of L uncontracted in
the quotient. We then describe combinatorially the canonical complex of the weak order on

permutations in terms of semi-crossing arc bidiagrams, formed by the superimposition of two

non-crossing arc diagrams of N. Reading. We provide explicit direct bijections between the
semi-crossing arc bidiagrams and the weak order interval posets of G. Châtel, V. Pilaud and

V. Pons. Finally, we provide an algorithm to describe the Kreweras maps in any lattice quotient

of the weak order in terms of semi-crossing arc bidiagrams.

Figure 1. The canonical complex of the weak order on S4 labeled by arcs.
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1. Introduction

A finite lattice L is join semidistributive when any element admits a canonical join representa-
tion (see e.g. [FN95] for a classical reference on lattices). This enables us to define the canonical
join complex of L [Rea15, Bar19], whose vertices are the join irreducible elements of L and whose
simplices are the canonical join representations in L. When L is both join and meet semidis-
tributive, it thus admits both a canonical join complex and a canonical meet complex which are
actually isomorphic flag simplicial complexes [Bar19].

In the first part of this paper, we define the canonical complex of a finite semidistributive
lattice L, a larger flag simplicial complex where the canonical join complex and the canonical
meet complex naturally live and interact. More precisely, its vertex set is the disjoint union of
the set of join irreducible elements of L with the set of meet irreducible elements of L, and its
simplices are the disjoint unions J tM of a canonical join representation J in L with a canonical
meet representation M in L such that

∨
J ≤

∧
M . In other words, each interval [x, y] in L

contributes to a simplex of the canonical complex given by the disjoint union of the canonical
join representation of x with the canonical meet representation of y. This provides a model for
the intervals of L which is compatible with lattice quotients. Namely, the canonical complex of
a quotient L/≡ is the subcomplex of the canonical complex of L induced by the join and meet
irreducibles of L uncontracted by the congruence ≡.

In the second part of this paper, we study the combinatorics of the canonical complex of the
weak order. N. Reading showed in [Rea15] that join irreducible permutations correspond to certain
arcs wiggling around the horizontal axis, and that canonical join representations of permutations
correspond to non-crossing arc diagrams. We show that the elements of the canonical complex
can be interpreted as semi-crossing arc bidiagrams, defined as pairs δ∨ t δ∧ of non-crossing arc
diagrams where only certain types of crossings are allowed between an arc of δ∨ and an arc of δ∧.
It thus follows that the canonical complex of any quotient of the weak order is isomorphic to a
subcomplex of the semi-crossing complex induced by arcs contained in an upper ideal of the subarc
order. We then provide explicit direct bijections between the semi-crossing arc bidiagrams and
the weak order interval posets of G. Châtel, V. Pilaud and V. Pons [CPP19], which are both in
bijection with the intervals of the weak order. Finally, we provide an algorithm to describe the
Kreweras maps in any lattice quotient of the weak order in terms of semi-crossing arc bidiagrams,
generalizing the classical Kreweras complement on non-crossing partitions.
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2. The canonical complex of a finite semidistributive lattice

This section deals with canonical meet and join representations in a finite semidistributive lattice
and its quotients. We start with a recollection on join semidistributive lattices, their canonical join
representations, their canonical join complexes, their Kreweras maps, and their lattice congruences
(Section 2.1). We then define the canonical complex of a semidistributive lattice L which encodes
the intervals of L and contains both the canonical join complex and the canonical meet complex
of L (Section 2.2).

2.1. Recollection on lattices. We start by a quick recollection on semidistributive lattices, canon-
ical representations, canonical complexes, Kreweras maps and lattice congruences. All the ma-
terial covered here is classical, we refer for instance to [FN95, Rea16, Rea15, Bar19]. Following
[Bar19, Exm. 10], we illustrate this section with the case of distributive lattices.

2.1.1. Join representations and semidistributive lattices. Consider a finite lattice (L,≤,∨,∧) where
∨ is the join and ∧ is the meet. We see ∨ and ∧ as internal binary operators on L and try to
factorize the elements of L in some canonical way. It is first important to understand the irreducible
elements for ∨ and ∧.

Definition 1. An element x ∈ L is called join (resp. meet) irreducible if it covers (resp. is covered
by) a unique element denoted x? (resp. x?). We denote by J I(L) (resp. MI(L)) the subposet
of L induced by the set of join (resp. meet) irreducible elements of L.

Definition 2. A join representation of x ∈ L is a subset J ⊆ L such that x =
∨
J . Such a

representation is irredundant if x 6=
∨
J ′ for any strict subset J ′ ( J . The irredundant join

representations in L are antichains of L, and are ordered by containement of the lower sets of their
elements (i.e. J ≤ J ′ if and only if for any y ∈ J there exists y′ ∈ J ′ such that y ≤ y′ in L). The
canonical join representation of x, denoted cjr(x), is the minimal irredundant join representation
of x for this order, when it exists.

Note that when it exists, cjr(x) is an antichain of J I(L). The following statement characterizes
the lattices where canonical join representations exist.

Proposition 3 ([FN95, Thm. 2.24 & Thm. 2.56]). A finite lattice L is join semidistributive when
the following equivalent conditions hold:

(i) x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L,
(ii) for any cover relation xl y in L, the set

K∨(x, y) := {z ∈ L | z 6≤ x but z ≤ y} = {z ∈ L | x ∨ z = y}

has a unique minimal element k∨(x, y) (which is then automatically join irreducible),
(iii) any element of L admits a canonical join representation.

Moreover, the canonical join representation of y ∈ L is cjr(y) = {k∨(x, y) | xl y}.

Note that in a finite join semidistributive lattice L, we can associate to any meet irreducible
element m of L a join irreducible element κ∨(m) := k∨(m,m?) of L. Moreover, the existence of
canonical join representations enable us to consider the following complex, illustrated in Figure 2.
It was initially defined in [Rea15], where a combinatorial model was provided for the weak order
(see Section 3.1), and studied in [Bar19] for arbitrary finite semidistributive lattices.

Definition 4. The canonical join complex CJ C(L) of a finite join semidistributive lattice L is the
simplicial complex on J I(L) whose faces are the canonical join representations of the elements of L.

The meet semidistributivity, the mapsK∧, k∧ and κ∧, the canonical meet representation cmr(x)
and the canonical meet complex CMC(L) are all defined dually. A lattice L is semidistributive if it
is both meet and join semidistributive. In this case, the maps κ∨ and κ∧ define inverse bijections
betweenMI(L) and J I(L), and the complexes CJ C(L) and CMC(L) behave particularly nicely.
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Figure 2. Some semidistributive lattices and their canonical join (red) and meet (blue) com-
plexes. The letters label all join or meet irreducible elements, and we denote by x∨ (resp. x∧) the
element x when it is considered as a join (resp. meet) irreducible. Note that we always consistently
color joinands in red and meetands in blue. The bottom two lattices are distributive while the top
two are only semidistributive.

Proposition 5 ([Bar19, Thm. 2 & Coro. 5]). If L is a finite semidistributive lattice, then

(i) CJ C(L) and CMC(L) are flag simplicial complexes (i.e. their minimal non-faces are edges,
or equivalently they are the clique complexes of their graphs),

(ii) the maps κ∨ and κ∧ induce inverse isomorphisms between CMC(L) and CJ C(L).

In fact, it was proved in [Bar19, Thm. 2] that CJ C(L) is flag if and only if L is semidistributive.
We will not use the “only if” direction in this paper.

Example 6 (Distributive lattices). The name semidistributivity actually comes from the well un-
derstood class of distributive lattices. A lattice L is distributive if x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
for any x, y, z ∈ L. Note that the dual condition x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for any x, y, z ∈ L
is actually equivalent to the primal one. The fundamental theorem for distributive lattices affirms
that L is distributive if and only if it is isomorphic to the lattice of lower sets of its join irreducible
poset P . In other words, any antichain of join irreducible elements in P forms a canonical join
representation in L. To be more precise, consider, for an antichain A of P , the two lower sets

jA := {x ∈ P | x ≤ y for some y ∈ A} and mA := {x ∈ P | x 6≥ y for all y ∈ A} .

Said differently, A is the set of maximal elements of jA and the set of minimal elements of P rmA.
For y ∈ P , we abbreviate j{y} into jy and m{y} into my. Then
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• the join (resp. meet) irreducibles of L are precisely the lower sets jy (resp. my) for y ∈ P ,
• the map κ∨ (resp. κ∧) is given by κ∨(my) = jy (resp. κ∧(jy) = my),
• the canonical join representation of jA and the canonical meet representation of mA are

cjr(jA) =
{
jy
∣∣ y ∈ A} and cmr(mA) =

{
my

∣∣ y ∈ A}.
• the canonical join and meet complexes CJ C(L) and CMC(L) are both (isomorphic to) the

clique complex on the incomparability graph of P .

See [Bar19, Exm. 10].

2.1.2. Kreweras maps. In a semidistributive lattice L, each element has both a canonical join rep-
resentation and a canonical meet representation. It is natural to consider the maps that exchange
the canonical join representation with the canonical meet representation of the same element.

Definition 7. The Kreweras maps η∨ : CMC(L) → CJC(L) and η∧ : CJ C(L) → CMC(L) are
defined by

η∨(M) := cjr
(∧

M
)

and η∧(J) := cmr
(∨

J
)
.

Note that some authors call Kreweras maps the compositions η∨ ◦κ∧ : CJ C(L)→ CJC(L) and
η∧ ◦ κ∨ : CMC(L) → CMC(L), see for instance [Bar19]. As will be discussed in Example 52, the
Kreweras maps for the Tamari lattice are closely related to the classical Kreweras complement on
non-crossing partitions. For the moment, we recall that the Kreweras maps for the distributive
lattices are related to rowmotion.

Example 8 (Distributive lattices). With the notations of Example 6, for an antichain A in P , we
denote by row∨(A) the set of maximal elements of mA and by row∧(A) the set of minimal elements
of P r jA. In other words, we have mA = jrow∨(A) and jA = mrow∧(A). Hence, by Example 6, the
Kreweras maps η∨ and η∧ are given by

η∨({my | y ∈ A}) = {jy | y ∈ row∨(A)} and η∧({jy | y ∈ A}) = {my | y ∈ row∧(A)} .
See [Bar19, Rem. 32].

2.1.3. Lattice congruences. We now discuss quotients of the lattice L, considered as an algebraic
structure with two internal binary operators ∨ and ∧. We thus need equivalence relations on L
that respects ∨ and ∧.

Definition 9. A congruence ≡ on L is an equivalence relation on L such that x ≡ x′ and y ≡ y′

implies x ∨ y ≡ x′ ∨ y′ and x ∧ y ≡ x′ ∧ y′. Equivalently, the equivalence classes are intervals, and
the maps π≡↓ and π↑≡ sending an element to the minimum and maximum elements in its congruence
class are order preserving.

Definition 10. The lattice quotient L/≡ is the lattice structure on the congruence classes, where
for any two congruence classes X and Y ,

• the order is given by X ≤ Y if and only if x ≤ y for some representatives x ∈ X and y ∈ Y ,
• the join X ∨ Y (resp. meet X ∧ Y ) is the congruence class of x ∨ y (resp. x ∧ y) for any

representatives x ∈ X and y ∈ Y .

Note that the lattice quotient L/≡ is isomorphic to the subposet of L induced by the minimal (or
maximal) elements in their congruence classes. This subposet is a join (resp. meet) subsemilattice
of L but may fail to be a sublattice of L. We now consider all congruences of L.

Definition 11. The congruence lattice con(L) is the set of all congruences of L ordered by refine-
ment.

The congruence lattice con(L) is a distributive lattice where the meet is the intersection of
relations and the join is the transitive closure of union of relations. For any join irreducible
element j ∈ J I(L), we denote by con(j) the unique minimal congruence of L that contracts j,
that is with j? ≡ j. It turns out that con(j) is join irreducible in con(L) and that all join irreducible
congruences in con(L) are of this form. Hence, any congruence of L is completely determined by
the set of join irreducible elements of L that it contracts. We denote by UJ I(≡) the set of join
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irreducible elements of L uncontracted by ≡. Not all subsets of join irreducible elements of L
are of the form UJ I(≡) for some congruence ≡ of L. The possible subsets are governed by the
following relation.

Definition 12. For j, j′ ∈ J I(L), we say that j forces j′, and write j < j′, if con(j) ≥ con(j′), that
is if any congruence contracting j also contracts j′.

The forcing relation is a preorder 4 (i.e. a transitive and reflexive, but not necessarily antisym-
metric, relation) on J I(L), whose upper sets correspond to the congruences of L.

Proposition 13 ([Rea16, Prop. 9-5.16]). The following conditions are equivalent for J ⊆ JI(L):

• J is an upper set of the forcing preorder (i.e. j < j′ and j ∈ J implies j′ ∈ J).
• J = UJ I(≡) for some congruence ≡ of L.

As already mentioned, the set UJ I(≡) characterizes ≡. It moreover enables to understand the
elements of L which are minimal in their congruence classes and their canonical join and meet
representations as follows.

Proposition 14 ([Rea16, Prop. 9-5.29]). Let ≡ be a congruence of a finite join semidistributive
lattice L. Then

• an element x ∈ L is minimal in its congruence class if and only if cjr(x) ⊆ UJI(≡),
• the quotient L/≡ is join semidistributive and the canonical joinands of a congruence class X

in L/≡ are the congruence classes of the canonical joinands of the minimal element in X.

Proposition 14 translates as follows to the canonical join complex CJ C(L).

Proposition 15. Let ≡ be a congruence on a finite join semidistributive lattice L. Then the canon-
ical join complex CJ C(L/≡) of the quotient L/≡ is isomorphic to the subcomplex CJ C(≡) of the
canonical join complex CJ C(L) of L induced by UJ I(≡).

We will need the following statement relating the canonical join representation of an element x
of L with the canonical join representation of the minimal element π≡↓ (x) in its equivalence class.
We provide a proof here as we have not found this statement explicitly in the literature.

Proposition 16. Let ≡ be a congruence of a finite join semidistributive lattice L. For any x ∈ L,
the lower ideal of L generated by cjr(x) contains cjr

(
π≡↓ (x)

)
.

Proof. The proof works by induction on the size of the interval [π≡↓ (x), x]. The statement is im-
mediate if π≡↓ (x) = x. Otherwise, there exists j ∈ cjr(x)rUJ I(≡). Let y :=

∨(
cjr(x)4{j, j?}

)
,

where 4 denotes the symmetric difference. Since j ≡ j?, we have x ≡ y and thus π≡↓ (x) = π≡↓ (y).
Since y has a join representation strictly contained in the lower ideal of L generated by cjr(x), we
have y < x so that [π≡↓ (y), y] is strictly contained in [π≡↓ (x), x]. By induction hypothesis, we thus
obtain that cjr

(
π≡↓ (y)

)
is contained in the lower ideal of L generated by cjr(y). Moreover, observe

that J :=
(
cjr(x) r {j}

)
∪ cjr(j?) is a join representation for y, so that cjr(y) is contained in the

lower ideal of L generated by J , which is itself contained in the lower ideal of L generated by cjr(x)
(since any element of cjr(j?) is lower than j? and thus than j). We conclude that cjr

(
π≡↓ (x)

)
is

indeed in the lower ideal of L generated by cjr(x). �

Note that this property is quite specific to π≡↓ (x). Namely, a relation x ≤ y does not imply any
inclusion between the lower ideals of L generated by cjr(x) and cjr(y) in general (see e.g. Figure 2).
Proposition 16 ensures that we can look for cjr

(
π≡↓ (x)

)
among the antichains of join irreducible

elements of L uncontracted by ≡ and below a join irreducible element of cjr(x). Unfortunately,
it remains difficult in general to describe cjr

(
π≡↓ (x)

)
because not all such antichains define a

canonical join representation of L.
Dual statements hold using meets instead of joins, and we denote by UMI(≡) the meet irre-

ducible elements of L uncontracted by ≡, and by CMC(≡) the subcomplex of CMC(L) induced
by UMI(≡) for a congruence ≡ on L. Due to Proposition 15, we will always work with the
subcomplexes CJ C(≡) and CMC(≡) rather than with the complexes CJ C(L/≡) and CMC(L/≡).
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When the lattice L is semidistributive, the two sets UJ I(≡) and UMI(≡) and the two sub-
complexes CJ C(≡) and CMC(≡) are connected by the maps κ∨ and κ∧. We provide a proof here
as we have not found this statement explicitly in the literature.

Proposition 17. Let ≡ be a congruence on a finite semidistributive lattice L. Then we have
UJ I(≡) = κ∨

(
UMI(≡)

)
and UMI(≡) = κ∧

(
UJ I(≡)

)
. Hence, the maps κ∨ and κ∧ induce

inverse isomorphisms between the subcomplexes CMC(≡) and CJ C(≡).

Proof. Let m ∈ MI(L) and j = κ∨(m). By definition, we have m ∨ j = m? and m ∨ j? = m.
Hence, j ≡ j? implies that m = m ∨ j? ≡ m ∨ j = m?. In other words, κ∨

(
UMI(≡)

)
⊆ UJI(≡).

By symmetry, we have κ∧
(
UJ I(≡)

)
⊆ UMI(≡). Since κ∨ and κ∧ are reversed bijections, this

yields equalities. The last sentence of the statement thus follows from Proposition 5 (ii). �

Example 18 (Distributive lattices). In a distributive lattice L, there is no forcing at all. Hence,
any subset of join irreducible elements of L defines a congruence of L. In other words, with the
notations of Example 6, any subset Y of P defines a congruence ≡Y with

UJ I(≡Y ) = {jy | y ∈ Y } and UMI(≡Y ) = {my | y ∈ Y } .

The lattice quotient L/≡ is again distributive and isomorphic to the lattice of lower ideals of the
restriction of the poset P to Y .

2.2. The canonical complex. We now define another complex that connects the canonical join
complex CJ C(L) to the canonical meet complex CMC(L) using intervals of L. This complex is
illustrated in Figure 3.

Definition 19. The canonical complex CC(L) of a finite semidistributive lattice L is the simplicial
complex whose

• ground set is the disjoint union J I(L)tMI(L) of the sets of join irreducible and of meet
irreducible elements of L, and

• faces are the disjoint unions J tM where J ∈ CJ C(L) is a canonical join representation,
M ∈ CMC(L) is a canonical meet representation, and

∨
J ≤

∧
M .

To avoid any confusion, let us insist here that when an element x ∈ L is both join irreducible
and meet irreducible, then it appears twice in CC(L) and may appear twice in some faces of CC(L),
once as a join irreducible element and once as a meet irreducible element. We will thus always
write the faces of CC(L) explicitly as disjoint unions. In our pictures, we denote by x∨ (resp. x∧)
and color red (resp. blue) the element x ∈ L considered as a join (resp. meet) irreducible.

Our first observation is that, while the canonical join and meet complexes CJ C(L) and CMC(L)
encode the individual elements of L, the canonical complex CC(L) encodes the intervals of L.

Definition 20. The canonical representation of an interval [x, y] of a semidistributive lattice L is
the disjoint union cjr(x) t cmr(y).

Proposition 21. For a finite semidistributive lattice L, the faces of the canonical complex CC(L)
are precisely the canonical representations of the intervals of L.

Proof. An interval [x, y] of L corresponds to a face cjr(x)tcmr(y) of CC(L) since cjr(x) ∈ CJ C(L),
cmr(y) ∈ CMC(L) and

∨
cjr(x) = x ≤ y =

∧
cmr(y). Conversely, a face J t M of CC(L)

corresponds to the interval [
∨
J,
∧
M ] of L. �

We next observe that CC(L) contains both CJ C(L) and CMC(L) as induced subcomplexes.

Proposition 22. For a finite semidistributive lattice L, the canonical join (resp. meet) complex
CJ C(L) (resp. CMC(L)) is the subcomplex of the canonical complex CC(L) induced by the join
(resp. meet) irreducible elements J I(L) (resp. MI(L)).

Proof. We have J ∈ CJ C(L) ⇐⇒ J t∅ ∈ CC(L) and M ∈ CMC(L) ⇐⇒ ∅ tM ∈ CC(L). �

Our next statement is the analogue of Proposition 5 (i).
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Figure 3. The canonical complexes of the semidistributive lattices of Figure 2. The corresponding
join (resp. meet) canonical complexes of Figure 2 are highlighted in red (resp. blue). Since the
canonical complexes are flag by Propositions 5 and 23, it is sufficient to represent their graphs. The
letters label all join or meet irreducible elements, and we denote by x∨ (resp. x∧) the element x
when it is considered as a join (resp. meet) irreducible. The vertices of the canonical complex are
positioned so that the map κ of Remark 25 acts by central symmetry.

Proposition 23. For a finite semidistributive lattice L, the canonical complex CC(L) is a flag sim-
plicial complex.

Proof. Consider J ⊆ J ′ and M ⊆ M ′ such that J ′ t M ′ ∈ CC(L). Then J ∈ CJ C(L) since
J ′ ∈ CJ C(L) and M ∈ CMC(L) since M ′ ∈ CMC(L) (since CJ C(L) and CMC(L) are simplicial
complexes), and

∨
J ≤

∨
J ′ ≤

∧
M ′ ≤

∧
M . Hence J tM ∈ CC(L) so that CC(L) is indeed a

simplicial complex.
Consider J ⊆ JI(L) andM ⊆MI(L) such that any two elements of JtM form a face of CC(L).

Then J ∈ CJ C(L) and M ∈ CMC(L) (since CJ C(L) and CMC(L) are flag by Proposition 5 (i)),
and

∨
J ≤

∧
M since j ≤ m for any j ∈ J and m ∈M . �

Our next statement says that CC(L) is not only a simplicial complex, it is actually naturally
embedded on the boundary of a cross-polytope.

Proposition 24. For any j ∈ J I(L), the pair {j, κ∧(j)} is not in CC(L). Hence, for any labeling
λ : J I(L)→ [|J I(L)|], the map sending j to eλ(j) and κ∧(j) to −eλ(j) defines an embedding
of CC(L) to the boundary of the |J I(L)|-dimensional cross-polytope.

Proof. By definition, j 6≤ κ∧(j) so that {j, κ∧(j)} is not in CC(L). The second sentence thus
follows from Proposition 23. �
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Remark 25. Denote by κ the map on J I(L)tMI(L) defined by κ(m) :=κ∨(m) for m ∈MI(L)
and κ(j) :=κ∧(j) for j ∈ J I(L). It corresponds to the central symmetry on the corresponding
cross-polytope. By Proposition 5 (ii), the two subcomplexes CJ C(L) and CMC(L) are symmetric
under the action of κ. However, the full canonical complex CC(L) is not invariant under the action
of κ. See Figure 3 for examples.

Example 26. The canonical complex of the boolean lattice on [n] is isomorphic to the boundary
of the n-dimensional cross-polytope.

Finally, analogously to Proposition 15, the canonical complex is compatible with lattice con-
gruences of L.

Proposition 27. For any congruence ≡ of a finite semidistributive lattice L, the canonical com-
plex CC(L/≡) of the quotient L/≡ is isomorphic to the subcomplex CC(≡) of the canonical com-
plex CC(L) of L induced by the disjoint union UJ I(≡)tUMI(≡) of the join and meet irreducible
elements of L uncontracted by ≡.

Proof. This immediately follows from Proposition 15 and its dual version. �

Example 28 (Distributive lattices). With the notations of Example 6, we have jy ⊆ mz ⇐⇒ y 6≥ z.
Hence, the canonical complex CC(L) is the clique complex of the graph whose vertex set is made
of two copies P∨ and P∧ of P and whose edge set is the union of two copies I∨ and I∧ of the
incomparability graph of P with the edges {y∨, z∧} for y 6≥ z in P .

3. Semi-crossing arc bidiagrams

In this section, we apply the lattice theoretic results presented in Section 2 to the classical
weak order on permutations. We first recall that the canonical join and meet representations of
the weak order can be encoded as non-crossing arc diagrams as defined by N. Reading in [Rea15]
(Section 3.1). We then briefly study the restriction of the weak order on join or meet irreducibles
in terms of arcs (Section 3.2). We then describe the intervals and the canonical complex of the
weak order in terms of semi-crossing arc diagrams (Section 3.3). We then provide direct bijec-
tions between the semi-crossing arc bidiagrams and the weak order interval posets of [CPP19]
(Section 3.4). Finally, we provide an algorithm to compute the Kreweras maps in any lattice quo-
tient of the weak order, generalizing the classical Kreweras complement on non-crossing partitions
(Section 3.5).

3.1. Non-crossing arc diagrams. We consider the following classical order on the set Sn of per-
mutations of [n] := {1, . . . , n}, illustrated in Figure 4.

Definition 29. An inversion of a permutation σ ∈ Sn is a pair (u, v) with 1 ≤ u < v ≤ n
and σ−1(u) > σ−1(v) (in other words, u is smaller than v but u appears after v in σ). The (right)
weak order of size n is the order on permutations of Sn defined by inclusion of their inversion sets.

Note that a cover relation in the weak order corresponds to the swap of two values σi and σi+1

at consecutive positions. The swap is increasing in the weak order if i is an ascent i.e. σi < σi+1,
and decreasing if i is a descent i.e. σi > σi+1.

It is classical that the weak order is a semidistributive lattice (the lattice property was proved
in [GR63, Bjö84], the semidistributivity in [LCdPB94]). We now describe its join (resp. meet)
irreducible elements and its canonical join (resp. meet) representations in terms of the arcs and
non-crossing arc diagrams introduced by N. Reading in [Rea15].

Definition 30 ([Rea15]). An arc is a quadruple (a, b, A,B) where 1 ≤ a < b ≤ n and A tB = ]a, b[
forms a partition of ]a, b[ := {a+1, . . . , b−1}. Two arcs α := (a, b, A,B) and α′ := (a′, b′, A′, B′) cross
if there exist u 6= v such that u ∈ (A′ ∪ {a′, b′}) ∩ (B ∪ {a, b}) and v ∈ (A ∪ {a, b}) ∩ (B′ ∪ {a′, b′}).
A non-crossing arc diagram (or NCAD for short) is a collection of pairwise non-crossing arcs. The
non-crossing complex is the clique complex of the non-crossing relation on all arcs.
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21

12

321

312

132

123

213

231

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 2413 3142 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 4. Hasse diagrams of the right weak orders of size 2, 3, and 4.

Remark 31. Visually, an arc (a, b, A,B) is represented by an x-monotone curve wiggling around
the horizontal axis, starting at a and ending at b, and passing above points of A and below points
of B. Two arcs cross if they cross in their interiors or start at the same point or end at the same
point (but they do not cross if one ends where the other starts). See Figure 5 for illustrations of
arcs and of non-crossing arc diagrams.

Observe that the join (resp. meet) irreducible elements of the weak order are precisely the
permutations with exactly one descent (resp. ascent). Hence, we associate to an arc α := (a, b, A,B)
with A := {a1 < · · · < ak} and B := {b1 < · · · < b`}

• a join irreducible permutation σ∨(α) := [1, . . . , (a−1), a1, . . . , ak, b, a, b1, . . . , b`, (b+1), . . . , n],
• a meet irreducible permutation σ∧(α) := [n, . . . , (b+1), ak, . . . , a1, a, b, b`, . . . , b1, (a−1), . . . , 1],

where we use the one-line notation of permutations σ = [σ1, . . . , σn].
Consider now a permutation σ ∈ Sn represented by its permutation table formed by dots at

coordinates (σi, i) for i ∈ [n]. Draw segments between consecutive dots (σi, i) and (σi+1, i + 1),
colored red for a descent σi > σi+1 and blue for an ascent σi < σi+1. Finally, flatten the picture
vertically to the horizontal line, allowing segments to bend but not to pass points. The resulting
picture is the superimposition of a set δ∨(σ) of red arcs and a set δ∧(σ) of blue arcs. See Figure 5.
More formally, δ∨(σ) := {α∨(σ, i) | σi > σi+1} and δ∧(σ) := {α∧(σ, i) | σi < σi+1} where

α∨(σ, i) := (σi+1, σi, {σj | j < i and σi > σj > σi+1} , {σj | j > i+ 1 and σi > σj > σi+1}),
and α∧(σ, i) := (σi, σi+1, {σj | j < i and σi < σj < σi+1} , {σj | j > i+ 1 and σi < σj < σi+1}).

Proposition 32 ([Rea15]). The map δ∨ (resp. δ∧) is a bijection between the set of permuta-
tions of Sn and the set of non-crossing arc diagrams of size n. Moreover, the canonical join
(resp. meet) representation of a permutation σ ∈ Sn is given by cjr(σ) = {σ∨(α∨) | α∨ ∈ δ∨(σ)}
(resp. cmr(σ) = {σ∧(α∧) | α∧ ∈ δ∧(σ)}). Hence, the canonical join (resp. meet) complex of the
weak order is isomorphic to the non-crossing complex.

By construction, the non-crossing arc diagrams are adapted to the maps κ∨ and κ∧ and to
quotients of the weak order. First, our next statement says that the maps κ∨ and κ∨ only change
the colors of the arcs. We provide a proof as we have not found it explicitly in [Rea15].

Proposition 33. κ∨(σ∧(α)) = σ∨(α) and κ∧(σ∨(α)) = σ∧(α) for any arc α.

Proof. Let α := (a, b, A,B), let σ :=σ∧(α) = [n, . . . , (b+1), ak, . . . , a1, a, b, b`, . . . , b1, (a−1), . . . , 1]
and let σ? = [n, . . . , (b + 1), ak, . . . , a1, b, a, b`, . . . , b1, (a − 1), . . . , 1] denote the only element
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7
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76421 3 5

Figure 5. NCADs and SCABs of the permutations 2537146, 2531746, 2513746, and 2513476.
The first line represents the table (σ(i), i) of a permutation σ with ascents in blue and descents in
red, the second line is the join diagram δ∨(σ), the third line is the meet diagram δ∧(σ), and the
fourth line is the superimposition δ∨(σ) t δ∧(σ).

covering σ. Any permutation τ with τ 6≤ σ but τ ≤ σ? must have all elements of A be-
fore b before a before all elements of B. Therefore, the minimal such permutation is clearly
σ∨(α) = [1, . . . , (a− 1), a1, . . . , ak, b, a, b1, . . . , b`, (b+ 1), . . . , n]. �

Proposition 34 ([Rea15]). For any arcs α := (a, b, A,B) and α′ := (a′, b′, A′, B′), the join irre-
ducible σ∨(α) forces the join irreducible σ∨(α′) if and only if α is a subarc of α′, meaning
that a′ ≤ a < b ≤ b′ and A ⊆ A′ while B ⊆ B′. Hence, to each upper ideal I of the subarc
order corresponds a lattice congruence ≡I of the weak order, and the canonical join (resp. meet)
complex of the quotient of the weak order by ≡I is isomorphic to the non-crossing complex on I.

Remark 35. Visually, α is a subarc of α′ if the endpoints of α are weakly in between the endpoints
of α′, and α follows α′ between its endpoints. The subarc order on arcs of size 3 to 5 is represented
in Figure 6.

Example 36. The prototypical congruence of the weak order is the sylvester congruence≡sylv [LR98,
HNT05], which can be defined equivalently as

• the fiber of the binary search tree insertion (inserting a permutation from right to left),
• the congruence where each class is the set of linear extensions of a binary tree (labeled in

inorder and oriented toward its root),
• the transitive closure of the rewriting rule UacV bW ≡ UcaV bW for 1 ≤ a < b < c ≤ n,
• the congruence corresponding to the upper ideal of the subarc order given by all up

arcs (a, b, ]a, b[,∅) (or equivalently, generated by the long up arc (1, n, ]1, n[,∅).

Hence, a permutation is minimal (resp. maximal) in its class if and only if it avoids the pat-
tern 312 (resp. 132). The quotient of the weak order by the sylvester congruence is (isomorphic
to) the classical Tamari lattice [Tam51, HT72], whose elements are the binary trees on n nodes
and whose cover relations are rotations in binary trees. The canonical join representations in the
Tamari lattice correspond to non-crossing sets of up arcs, also known as non-crossing partitions.
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Figure 6. The subarc order on arcs of sizes 3 (top left), 4 (top right), and 5 (bottom).

The sylvester congruence was extended in [Rea06] to Cambrian congruences and in [PP18] to
permutree congruences.

3.2. Weak order on arcs. We now briefly compare join or meet irreducible elements in the weak
order in terms of arcs. For this, we first observe that the inversions of σ∨(α) and σ∧(α) are easily
read on the arc α.

Lemma 37. For any arc α := (a, b, A,B) and any u < v, the pair (u, v) is an inversion of σ∨(α)
(resp. of σ∧(α)) if and only if u ∈ B ∪ {a} and v ∈ A∪ {b} (resp. if u /∈ A∪ {a} or v /∈ B ∪ {b}).

Proof. Immediate from the definition σ∨(α) := [1, . . . , (a−1), a1, . . . , ak, b, a, b1, . . . , b`, (b+1), . . . , n]
and σ∧(α) := [n, . . . , (b+ 1), ak, . . . , a1, a, b, b`, . . . , b1, (a− 1), . . . , 1]. �

Corollary 38. For any two arcs α := (a, b, A,B) and α′ := (a′, b′, A′, B′), we have

(i) σ∨(α) ≤ σ∨(α′) if and only if a ∈ B′ ∪ {a′} and b ∈ A′ ∪ {b′}, and A ⊆ A′ and B ⊆ B′,
(ii) σ∧(α) ≤ σ∧(α′) if and only if a′ ∈ B ∪ {a} and b′ ∈ A ∪ {b}, and A′ ⊆ A and B′ ⊆ B,

(iii) σ∨(α) ≤ σ∧(α′) if and only if there is no u < v such that u ∈ (A′ ∪ {a′}) ∩ (B ∪ {a}) and
v ∈ (A ∪ {b}) ∩ (B′ ∪ {b′}).

Remark 39. Figure 7 shows the weak order on arcs defined by α ≤ α′ if σ∨(α) ≤ σ∨(α′). Visually,
α ≤ α′ if α is a subarc of α′ which starts weakly below α′ and ends weakly above α′. Note
that α := (a, b, A,B) covers at most two arcs, namely (minB, b,A ∩ ] min b, b[, B r minB) and
(a,maxA,Ar maxA,B ∩ ]a,maxA[) when they are defined. Similar remarks hold for the order
defined by σ∧(α) instead of σ∨(α).

Remark 40. As illustrated in Figure 7, the weak order on join irreducible of Sn has interesting
enumerative properties. Let us just mention here that it has

• 2n − n− 1 elements (permutations with a single descent, or arcs) [OEI10, A000295],
• 2n+1−n2−n−2 cover relations (in bijection with arcs of size n+1 crossing the horizontal

axis, or with subsets of [n+ 1] crossing their complement) [OEI10, A324172],
• n(n+ 1)2n−2 intervals (including the singletons) [OEI10, A001788].

http://oeis.org/A000295
http://oeis.org/A324172
http://oeis.org/A001788
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Figure 7. The weak orders of size 3 (top left), 4 (top right), and 5 (bottom) restricted to their
join irreducibles represented by the corresponding arcs.

3.3. Semi-crossing arc bidiagrams. We now describe the canonical complex of the weak order as
defined in Section 2.2 in terms of the following combinatorial objects, illustrated in Figure 8.

Definition 41. A semi-crossing arc bidiagram (or SCAB for short) is a disjoint union δ∨tδ∧ of non-
crossing arc diagrams such that for any α∨ := (a∨, b∨, A∨, B∨) ∈ δ∨ and α∧ := (a∧, b∧, A∧, B∧) ∈ δ∧,
there is no u < v with u ∈ (A∧ ∪ {a∧}) ∩ (B∨ ∪ {a∨}) and v ∈ (A∨ ∪ {b∨}) ∩ (B∧ ∪ {b∧}). The
semi-crossing complex is the simplicial complex whose ground set contains two copies α∨ and α∧
of each arc α and whose simplices are all semi-crossing arc bidiagrams.

Remark 42. Visually, a semi-crossing arc bidiagram δ∨ t δ∧ is a collection of arcs such that

• no two arcs of δ∨ (resp. of δ∧) cross in their interiors, or start or end at the same points,
• no two arcs α∨ ∈ δ∨ and α∧ ∈ δ∧ cross in their interiors with α∨ going up and α∧ going

down at the crossing, or start at the same point with α∨ leaving above α∧, or end at the
same point with α∨ arriving below α∧ at this point.

Remark 43. Before going further, we report in Table 1 on the number of semi-crossing arc bidia-
grams δ∨ t δ∧ according to the cardinalities |δ∨| and |δ∧| for n = 2 to 6.

In these tables, observe that

• the first row (resp. column) corresponds to the intervals [σ,w◦] (resp. [e, σ]) for the per-
mutations σ of [n] with k ascents (resp. descents) and are thus counted by the Eulerian
numbers [OEI10, A008292],

• the last row (resp. column) corresponds to the single interval [w◦, w◦] (resp. [e, e]).

Figure 8. SCABs of the intervals [2531746, 2531746], [2531746, 2537146], [2513476, 2537146] and
[5264137, 6574231].

http://oeis.org/A008292
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0 1
0 1 1
1 1 0

0 1 2
0 1 4 1
1 4 6 0
2 1 0 0

0 1 2 3
0 1 11 11 1
1 11 54 24 0
2 11 24 2 0
3 1 0 0 0

0 1 2 3 4
0 1 26 66 26 1
1 26 300 420 80 0
2 66 420 320 20 0
3 26 80 20 0 0
4 1 0 0 0 0

0 1 2 3 4 5
0 1 57 302 302 57 1
1 57 1340 4145 2505 240 0
2 302 4145 8270 3035 120 0
3 302 2505 3035 562 5 0
4 57 240 120 5 0 0
5 1 0 0 0 0 0

Table 1. The number of semi-crossing arc bidiagrams δ∨ t δ∧ according to the cardinalities |δ∨|
and |δ∧| for n = 2 to 6.

We now connect the semi-crossing arc bidiagrams with the canonical complex of the weak order
using Corollary 38.

Proposition 44. The map [σ, τ ] 7→ δ∨(σ) t δ∧(τ) is a bijection between the intervals of the weak
order on Sn and the semi-crossing arc bidiagrams. Hence, the canonical complex of the weak order
is isomorphic to the semi-crossing complex.

Proof. By Proposition 32, the maps σ 7→ δ∨(σ) and τ 7→ δ∧(τ) are both bijections from per-
mutations to non-crossing arc diagrams. Moreover, σ ≤ τ if and only if each canonical joinand
of σ is smaller than each canonical meetand of τ , which is equivalent to each arc of δ∨(σ) being
semi-crossing each arc of δ∧(τ) by Corollary 38 (iii). Hence, [σ, τ ] 7→ δ∨(σ) t δ∧(τ) is a bijection
from intervals to semi-crossing arc bidiagrams. Finally, δ∨(σ)tδ∧(τ) corresponds to the canonical
representation of [σ, τ ] since δ∨(σ) corresponds to the canonical join representation of σ and δ∧(τ)
corresponds to the canonical meet representation of τ . �

For instance, the canonical complexes of the weak orders on S3 and S4 are illustrated in
Figures 1 and 9. As usual, since the canonical complex is flag by Proposition 23, we only represent
its graph. The central symmetry corresponds to the map κ of Remark 25, which just corresponds
to the exchange of color of the arcs by Proposition 33.

Figure 9. The weak order on S3 with permutations labeled by semi-crossing arc bidiagrams,
and the canonical complex of S3 with join and meet irreducible permutations labeled by arcs.
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We now characterize the semi-crossing arc bidiagrams corresponding to singleton intervals. As
illustrated in Figure 5, these semi-crossing arc bidiagrams are certain paths. We thus define the
source s(α) and the target t(α) of an arc α := (a, b, A,B) in a semi-crossing arc bidiagram δ∨ t δ∧
as s(α) = b and t(α) = a if α ∈ δ∨ and s(α) = a, and t(α) = b if α ∈ δ∧.

Proposition 45. The following conditions are equivalent for a semi-crossing arc bidiagram δ∨t δ∧:

(i) δ∨ t δ∧ = δ∨(σ) t δ∧(σ) for a permutation σ ∈ Sn,
(ii) there is an labeling α1 = (a1, b1, A1, B1), . . . , αn−1 = (an−1, bn−1, An−1, Bn−1) of δ∨ t δ∧

such that t(αi) = s(αi+1) and ai /∈ Bj for 1 ≤ i < j ≤ n− 1.

If these conditions hold, then the arcs of δ∨ t δ∧ do not contain crossings in their interiors.

Proof. For (i)⇒ (ii), the arc αi is the arc α∨(σ, i) if σi > σi+1 and α∧(σ, i) if σi < σi+1 described
before Proposition 32. For (ii)⇒ (i), the permutation σ is given by [s(α1), t(α1), . . . , t(αn−1)]. �

Finally, let us insist again here that this combinatorial model for the intervals of the weak order
is adapted to the study of its quotients. The next statement follows from Propositions 33 and 34.

Proposition 46. For any lower ideal I of the subarc order, the canonical complex of the quotient
of the weak order by ≡I is isomorphic to the subcomplex of the semi-crossing complex induced
by {α∨ | α ∈ I} t {α∧ | α ∈ I}.

We conclude with a conjecture motivated by Proposition 45 and checked by computer experi-
ments for all lattice quotients of the weak order on Sn for n ≤ 5.

Conjecture 47. The semi-crossing arc bidiagram corresponding to an inclusion minimal interval
in a lattice quotient of the weak order does not contain any crossing in the interior of its arcs.

3.4. Weak order interval posets. Following a classical result of A. Björner and M. Wachs [BW91,
Thm. 6.8], G. Châtel, V. Pilaud and V. Pons already studied in [CPP19] a family of posets in
bijection with the intervals of the weak order. For a poset / on [n] and 1 ≤ u < v ≤ n, we say
that the relation u / v is increasing and that the relation v / u is decreasing (and we write u . v for
decreasing relations).

Proposition 48 ([BW91, Thm. 6.8] & [CPP19, Prop. 26]). The following conditions are equivalent
for a poset / on [n]:

• the linear extensions of / form an interval [σ, τ ] of the weak order,
• there are σ ≤ τ in the weak order such that the increasing relations of / are the non-

inversions of τ and the decreasing relations are the inversions of σ,
• a / c implies a / b or b / c, and a . c implies a . b or b . c for all 1 ≤ a < b < c ≤ n.

Such a poset is called a weak order interval poset (or WOIP for short).

Although they are specific to the weak order and do not behave well with respect to its quotients,
the WOIPs are combinatorial objects in bijection with intervals of the weak order, and thus with
SCABs. It is thus relevant to provide direct explicit bijections between SCABs and WOIPs, which
are illustrated in Figure 10. We need the following definitions, illustrated in Figure 10.

From SCABs to WOIPs. For any arc α := (a, b, A,B), we denote by /α the set of increasing re-
lations u /α v (by .α the set of decreasing relations u .α v) where u < v with u ∈ A ∪ {a}
and v ∈ B ∪ {b}. For a NCAD δ, we denote by /δ (resp. .δ) the transitive closure of the union
of the increasing relations {/α∨ | α∨ ∈ δ∨} (resp. of the decreasing relations {.α∧ | α∧ ∈ δ∧}).
Finally, to a SCAB δ∨ t δ∧ we associate the WOIP .δ∨ t /δ∧ (see Proposition 49).

From WOIPs to SCABs. Fix a WOIP .t/ where . denote the decreasing relations and / denote the
increasing relations. We say that an increasing (resp. decreasing) cover relation a /· b (resp. a .· b)
is maximal if there is no cover relation a′ /· b (resp. a′ .· b) with a′ < a or a /· b′ (resp. a .· b′)
with b < b′. To a maximal decreasing (resp. increasing) cover relation a .· b (resp. a /· b), we asso-
ciate the arcα(a .· b) := (a, b, ]a, b[∩〈a〉↓, ]a, b[∩〈b〉↑) (resp.α(a /· b) := (a, b, ]a, b[ ∩ 〈b〉↓, ]a, b[ ∩ 〈a〉↑)),
where 〈x〉↓ and 〈x〉↑ denote the lower and upper ideals of / generated by x. We denote by δ(.)
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(resp. δ(/)) the set of arcs α(a .· b) (resp. α(a /· b)) for all maximal decreasing (resp. increas-
ing) cover relations of /. Finally, to the WOIP . t /, we associate the SCAB δ(.) t δ(/) (see
Proposition 49).

Proposition 49. The maps δ∨ t δ∧ 7→ .δ∨ t /δ∧ and . t / 7→ δ(.) t δ(/) are inverse bijections
between SCABs and WOIPs.

Proof. Consider an interval [σ, τ ] of the weak order corresponding to a SCAB δ∨ t δ∧. For any
arc α∨, the decreasing relations of .α∨ are precisely the inversions of σ∨(α∨) by Lemma 37. Hence,
the decreasing relations of .δ∨ are precisely the inversions of σ =

∨
{σ∨(α∨) | α∨ ∈ δ∨} (since the

inversion set of a join is the transitive closure of the union of the inversion sets of the joinands). Sim-
ilarly, the increasing relations of /δ∧ are precisely the non-inversions of τ =

∧
{σ∧(α∧) | α∧ ∈ δ∧}.

Hence .δ∨ t/δ∧ is indeed the WOIP of the interval [σ, τ ] by Proposition 48 (ii). Finally, to see that
the two maps are inverse to each other, we just need to observe that the relations a/δ∧ b created
out of the extremities of the arcs (a, b, A,B) of δ∧ are precisely the maximal cover relations of /δ∧
(and similarly for .δ∨). �

3.5. Kreweras maps in quotients of the weak order. We finally describe the Kreweras maps defined
in Section 2.1.2 in all quotients of the weak order in terms of semi-crossing arc bidiagrams. For
this, we first connect the canonical join representation of a permutation to the canonical join
representation of the minimal element in its class for a given congruence, as illustrated in Figure 12.
In the following proposition, we call weak order on arcs the order α ≤ α′ if σ∨(α) ≤ σ∨(α′) (see
Section 3.2 and Figure 7).

Proposition 50. Consider an upper ideal I of the subarc order and a permutation σ. Let X be the
intersection of I with the lower ideal generated by the non-crossing arc diagram δ∨(σ) in the weak
order on arcs. Let Y be the set of arcs (a, b, A,B) of X such that there is a < p < b such that both
arcs (a, p,A ∩ ]a, p[, B ∩ ]a, p[) and (p, b, A ∩ ]p, b[, B ∩ ]p, b[) belong to X. Then the non-crossing
arc diagram δ∨

(
π≡I

↓ (σ)
)

is the set of maximal elements of X r Y in the weak order on arcs.

Proof. By Propositions 14 and 16, δ∨
(
π≡I

↓ (σ)
)

is a non-crossing arc diagram contained in X.
Among all options, we need to choose the non-crossing arc diagram with maximal join. This
implies that the arcs of Y cannot appear in δ∨

(
π≡I

↓ (σ)
)

since

σ∨(a, b, A,B) ≤ σ∨(a, p,A ∩ ]a, p[, B ∩ ]a, p[) ∨ σ∨(p, b, A ∩ ]p, b[, B ∩ ]p, b[)

for any arc (a, b, A,B) and any a < p < b by Lemma 37. We finally claim that any two in-
comparable elements in X r Y cannot cross. Hence, the maximal elements of X r Y form a
non-crossing arc diagram, which must therefore be δ∨

(
π≡I

↓ (σ)
)
. To prove the claim, consider two

arcs α := (a, b, A,B) and α′ := (a′, b′, A′, B′) in X which are incomparable and crossing. Assume for
instance that there are u < v such that u ∈ (A ∪ {a}) ∩ (B′ ∪ {a′}) and v ∈ (A′ ∪ {b′}) ∩ (B ∪ {b}).
We can moreover assume that α and α′ agree on ]u, v[, meaning that A ∩ ]u, v[ = A′ ∩ ]u, v[
and B ∩ ]u, v[ = B′ ∩ ]u, v[. Since α and α′ are incomparable, this implies that u 6= a or v 6= b.

Figure 10. The bijection between SCABs (top) and WOIPs (bottom). We represent a WOIP /
with arcs joining a < b from above (resp. below) in blue (resp. red) when a / b (resp. a . b).
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Moreover, if u 6= a and v 6= b, then there is a crossing between any arc larger than α and any arc
larger than α′ in the weak order on arcs, so that α and α′ cannot both belong to X. We conclude
that either u 6= a or v 6= b, so that precisely one of the arcs

(a, u,A ∩ ]a, u[, B ∩ ]a, u[) and (v, b, A ∩ ]v, b[, B ∩ ]v, b[)

is non-trivial (not reduced to a single point). Moreover, this arc belongs to X since α does, and
the arc (u, v,A ∩ ]u, v[, B ∩ ]u, v[) = (u, v,A′ ∩ ]u, v[, B′ ∩ ]u, v[) belongs to X since α′ does. This
implies that α is in Y as it can be decomposed into exactly two subarcs that belong to X. �

This enables us to compute the Kreweras maps in quotients of the weak order directly on
non-crossing arc diagrams. For this, let us extend the notations of Section 2.1.2 to quotients and
transport them to non-crossing arc diagrams. For an upper ideal I of the subarc order, each
equivalence class of ≡I is an interval [x, y] of the weak order and thus corresponds to two non-
crossing arc diagrams δ∨ := δ∨(x) and δ∧ := δ∧(y). We denote by ηI∨ and ηI∧ the two opposite
maps defined by ηI∨(δ∧) = δ∨ and ηI∧(δ∨) = δ∧. We just write η∨ and η∧ when I is the set of all
arcs. Note that η∨ = δ∨ ◦ δ−1∧ and η∧ = δ∧ ◦ δ−1∨ are easily computed from the descriptions of the
maps δ∨ and δ∧ (see Section 3.1) and of their inverses (see the explicit description in [Rea15]).
Proposition 50 enables to compute ηI∨ and ηI∧ in general.

Corollary 51. Consider an upper ideal I of the subarc order and a non-crossing arc diagram δ∧
with all arcs in I. Then the non-crossing arc diagram ηI∨(δ∧) is obtained from η∨(δ∧) by applying
the algorithm of Proposition 50.

Example 52. When I is the upper ideal of up arcs corresponding to the sylvester congruence,
the description of Corollary 51 can be translated to the classical description of the Kreweras
complement of a non-crossing partition. Namely, the Kreweras complement of a non-crossing
partition is obtained by shifting the points and connecting the points in the same connected
component. See Figure 11.

Figure 11. Classical Kreweras complement on non-crossing partitions.
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