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A POINT-FREE APPROACH TO CANONICAL EXTENSIONS OF

BOOLEAN ALGEBRAS AND BOUNDED ARCHIMEDEAN ℓ-ALGEBRAS

G. BEZHANISHVILI, L. CARAI, AND P. MORANDI

Abstract. In [13] an elegant choice-free construction of a canonical extension of a boolean

algebra B was given as the boolean algebra of regular open subsets of the Alexandroff

topology on the poset of proper filters of B. We make this construction point-free by

replacing the Alexandroff space of proper filters of B with the free frame L generated by

the bounded meet-semilattice of all filters of B (ordered by reverse inclusion) and prove

that the booleanization of L is a canonical extension of B. Our main result generalizes this

approach to the category baℓ of bounded archimedean ℓ-algebras, thus yielding a point-free

construction of canonical extensions in baℓ. We conclude by showing that the algebra of

normal functions on the Alexandroff space of proper archimedean ℓ-ideals of A is a canonical

extension of A ∈ baℓ, thus providing a generalization of the result of [13] to baℓ.
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1. Introduction

The theory of canonical extensions originates from the pioneering work of Jónsson and

Tarski [32]. Originally it was defined for boolean algebras with operators, but was later

generalized to distributive lattices with operators [20, 21], lattices with operators [18], and

even to posets with operators [22, 19].

One of the most convenient (albeit neither choice-free nor point-free) ways to describe

a canonical extension of a boolean algebra B is using Stone duality. If X is the Stone

space of B, then B is isomorphic to the boolean algebra Clop(X) of clopen subsets of X ,
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and the pair (℘(X), e) is a canonical extension of B where ℘(X) is the powerset of X and

e : Clop(X) → ℘(X) is the identity embedding.

This approach generalizes naturally from Stone spaces to compact Hausdorff spaces. Let

X be compact Hausdorff and C(X) the ring of continuous (necessarily bounded) real-valued

functions on X . In [11] a canonical extension of C(X) was described as the pair (B(X), e)

where B(X) is the ring of all bounded real-valued functions on X and e : C(X) → B(X) is

the identity embedding. More generally, if A is a bounded archimedean ℓ-algebra, by Gelfand

duality A embeds into C(X), where X is the compact Hausdorff space of maximal ℓ-ideals

of X , and the pair (B(X), ζ) is a canonical extension of A, where ζ : A→ C(X) ⊆ B(X) is

the embedding of A into C(X) (see Sections 3 and 5 for details).

This approach to canonical extensions is neither choice-free nor point-free. An elegant

choice-free approach to canonical extensions of boolean algebras was developed in [13] where

a canonical extension of a boolean algebra B was constructed as the boolean algebra of

regular open sets of the Alexandroff space of proper filters of B (ordered by inclusion). Our

first aim is to make the construction of [13] point-free. For this we utilize the well-known fact

that the free frame on a meet-semilattice M with top is isomorphic to the downsets of M

(see, e.g., [35, Prop. IV.2.3]). For a boolean algebra B, let Filt(B) be the co-frame of filters

ordered by reverse inclusion. We view Filt(B) as a bounded meet-semilattice, and show that

the free frame L on Filt(B) is isomorphic to the Alexandroff space of proper filters of B

ordered by inclusion (see Corollary 2.7). From this we derive that the booleanization B(L )

of L is a canonical extension of B (see Theorem 2.9).

Our second aim is to generalize this point-free approach to the category baℓ of bounded

archimedean ℓ-algebras. The interest in this category stems from the fact that baℓ provides

an algebraic counterpart of the category KHaus of compact Hausdorff spaces. Indeed, by

Gelfand duality, there is a dual adjunction between KHaus and baℓ, which restricts to a dual

equivalence between KHaus and the full subcategory ubaℓ of baℓ consisting of uniformly

complete algebras in baℓ (see, e.g., [8]). Generalizing our point-free approach to baℓ requires

additional machinery. Let A ∈ baℓ. Following the work of Banaschewski [2, 3], we work

with archimedean ℓ-ideals of A (see Section 4). Let Arch(A) be the frame of archimedean

ℓ-ideals ordered by inclusion. Assuming the Axiom of Choice (AC), Arch(A) is isomorphic

to the frame of opens of the space of maximal ℓ-ideals of A (see Remark 4.5).

Viewing Arch(A) as a bounded meet-semilattice, let L be the free frame generated by

Arch(A), and let B(L ) be the free boolean extension of L (see, e.g., [1, Sec. V.4]). We

employ the concepts of Specker algebra and Dedekind completion (see Section 3 for details),

which play an important role in the study of baℓ. We associate with B(L ) the Specker

algebra R[B(L )] and prove that the Dedekind completion D(R[B(L )]) of R[B(L )] is a

canonical extension of A (see Theorem 5.15). This is our main result and yields a point-

free construction of canonical extensions in baℓ. Its proof requires a number of technical

calculations about archimedean ℓ-ideals. In order to not break the flow, we move these

calculations to an appendix.

Finally, we show that the algebra of normal real-valued functions on the Alexandroff space

of proper archimedean ℓ-ideals ordered by inclusion is a canonical extension of A ∈ baℓ (see
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Theorem 6.7). On the one hand, this provides a generalization of the construction of [13].

On the other hand, assuming (AC), this algebra of normal functions is isomorphic to the

algebra of bounded real-valued functions on the set of maximal ℓ-ideals of A, thus yielding

the result of [11].

2. Canonical extensions of boolean algebras point-free

In this section we show how to give a point-free description of canonical extensions of

boolean algebras. Let BA be the category of boolean algebras and boolean homomorphisms.

The next definition is well known (see, e.g., [18, Sec. 2]).

Definition 2.1. Let B be a boolean algebra, C a complete boolean algebra, and e : B → C

a BA-monomorphism.

(1) We call e compact if whenever S, T ⊆ B with
∧

e[S] ≤
∨

e[T ], there are finite S0 ⊆ S

and T0 ⊆ T with
∧

S0 ≤
∨

T0.

(2) We call e dense if each element of C is a join of meets from e[B].

(3) We say that the pair (C, e) is a canonical extension of B if e is dense and compact.

Remark 2.2. It is straightforward to see that the compactness condition is equivalent to

each of the following two conditions.

(1) If T ⊆ B with
∨

e[T ] = 1, then there is a finite T0 ⊆ T with
∨

T0 = 1.

(2) If S ⊆ B with
∧

e[S] = 0, then there is a finite S0 ⊆ S with
∧

S0 = 0.

In fact, (1) is the original definition of compactness in [32]. We will use (2) in the proof of

Theorem 2.9.

Jónsson and Tarski [32] utilized Stone duality to show that each boolean algebra has a

canonical extension, which is unique up to isomorphism. This requires the use of (AC). An

elegant choice-free description of canonical extensions of boolean algebras was given in [13].

Let B ∈ BA and let X be the set of proper filters of B, ordered by inclusion. View X as

an Alexandroff space where opens are the upsets of X (so U is open provided x ∈ U and

x ≤ y imply y ∈ U). Let RO(X) be the boolean algebra of regular open subsets of X . Define

e : B → RO(X) by e(b) = {x ∈ X | b ∈ x}. Then (RO(X), e) is a canonical extension of B

[13, Thm. 8.27].

We give a point-free description of the construction in [13]. To do so we recall some basic

notions from point-free topology. We refer the reader to [35] for the details.

A frame or locale is a complete distributive lattice L satisfying the infinite distributive

law a ∧
∨

S =
∨

{a ∧ s | s ∈ S} for each a ∈ L and S ⊆ L. A frame homomorphism is a

map f : L → M between two frames that preserves finite meets and arbitrary joins. For a

frame L and a ∈ L, let a∗ :=
∨

{s ∈ L | a ∧ s = 0} be the pseudocomplement of a. The set

B(L) := {a∗∗ | a ∈ L} is called the booleanization of L. It is a complete boolean algebra,

where infinite joins and meets are calculated by

⊔

S =
(

∨

S
)∗∗

and

⊔

S =
∧

S.
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The well inside relation ≺ is defined on a frame L by a ≺ b if a∗ ∨ b = 1. Then L is regular

if a =
∨

{s ∈ L | s ≺ a} for each a ∈ L. Also, L is compact if whenever S ⊆ L with
∨

S = 1,

there is a finite S0 ⊆ S with
∨

S0 = 1.

Definition 2.3. Let B ∈ BA. We denote by Filt(B) the set of filters of B, ordered by reverse

inclusion.

Remark 2.4. As we will see below, we are using reverse inclusion on Filt(B) in order for

the map B → Filt(B) which sends b to ↑b to be order preserving.

Let SLat1 be the category of meet-semilattices with top with meet-semilattice morphisms

preserving the top. The free frame on M ∈ SLat1 is isomorphic to the frame of downsets

Dn(M) of M (see, e.g., [35, Prop. IV.2.3]), where we recall that D is a downset if whenever

x ≤ y and y ∈ D, we have x ∈ D. Let SLat1
0
be the category of meet-semilattices with top

and bottom, with meet-semilattice morphisms preserving both the top and bottom.

Proposition 2.5. Let M ∈ SLat1
0
. Then Dn(M \{0}) is isomorphic to the free frame on M .

Proof. Define i : M → Dn(M \ {0}) by i(m) = ↓m \ {0}. It is straightforward to see that

i is a SLat1
0
-morphism. Let L be a frame and f : M → L a SLat1

0
-morphism. Define ϕ :

Dn(M \{0}) → L by ϕ(D) =
∨

{f(m) | m ∈ D}. We show that ϕ is a frame homomorphism

satisfying ϕ ◦ i = f , and that ϕ is uniquely determined by these properties.

M D(M \ {0})

L

i

f
ϕ

First, ϕ(∅) =
∨

∅ = 0 and ϕ(M \ {0}) = f(1) = 1. Next, let D1, D2 be downsets of

M \ {0}. We have

ϕ(D1) ∧ ϕ(D2) =
∨

{f(m) | m ∈ D1} ∧
∨

{f(n) | n ∈ D2}

=
∨

{f(m) ∧ f(n) | m ∈ D1, n ∈ D2}

=
∨

{f(m ∧ n) | m ∈ D1, n ∈ D2}

=
∨

{f(p) | p ∈ D1 ∩D2} = ϕ(D1 ∩D2).

Also, let {Dγ | γ ∈ Γ} be a family of downsets. Then

ϕ
(

⋃

{Dγ | γ ∈ Γ}
)

=
∨

{

f(m) | m ∈
⋃

Dγ

}

=
∨

{

∨

{f(m) | m ∈ Dγ} | γ ∈ Γ
}

=
∨

{ϕ(Dγ) | γ ∈ Γ}.

Therefore, ϕ is a frame homomorphism. It is clear from the definition that ϕ(i(m)) = f(m)

for each m ∈ M , so ϕ ◦ i = f . Finally, since D =
⋃

{i(m) | m ∈ D}, it follows that ϕ is

uniquely determined by the equation ϕ ◦ i = f . Thus, Dn(M \ {0}) is, up to isomorphism,

the free frame on M ∈ SLat1
0
. �
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Remark 2.6. Let M ∈ SLat1
0
and let (L , i) be the free frame on M . Since i preserves finite

meets, every element of L is a join of elements from i[M ].

Corollary 2.7. Let B ∈ BA. The frame of upsets of proper filters of B, ordered by reverse

inclusion, is isomorphic the free frame on Filt(B) ∈ SLat1
0
.

Proof. By Proposition 2.5, the free frame on Filt(B) is isomorphic to the frame of all downsets

of Filt(B) \ {B}, which is isomorphic to the frame of upsets of X . �

Let B ∈ BA and let L be the free frame on the bounded meet-semilattice Filt(B) with

the associated map i : Filt(B) → L . Define e : B → L by e(b) = i(↑b).

Lemma 2.8. If b ∈ B, then i(↑b)∗ = i(↑¬b). Consequently, i(↑b) ∈ B(L ).

Proof. Since i is a SLat1
0
-morphism and the order on Filt(B) is reverse inclusion,

i(↑b) ∧ i(↑¬b) = i(↑b ∨ ↑¬b) = i(↑(b ∧ ¬b)) = i(B).

Because B is the bottom of Filt(B), we obtain that i(↑b) ∧ i(↑¬b) = 0. Let x ∈ L with

i(↑b)∧x = 0. To show x ≤ i(↑¬b), by Remark 2.6, x is a join from i[Filt(B)]. Since the order

on Filt(B) is reverse inclusion, it suffices to show that if F is a filter of B, then i(↑b)∧i(F ) = 0

implies ↑¬b ⊆ F . If i(↑b) ∧ i(F ) = 0, then i(↑b ∨ F ) = 0, so ↑b ∨ F = B as i is one-to-one.

Therefore, there is a ∈ F with a ∧ b = 0. Thus, a ≤ ¬b, and hence ↑¬b ⊆ F , as desired.

This shows that i(↑b)∗ = i(↑¬b). From this we see that i(↑b)∗∗ = i(↑¬b)∗ = i(↑¬¬b) = i(↑b),

so i(↑b) ∈ B(L ). �

Theorem 2.9. For B ∈ BA, the pair (B(L ), e) is a canonical extension of B.

Proof. By Lemma 2.8, e(b) ∈ B(L ), so e : B → B(L ) is well defined. If b 6= c, then

↑b 6= ↑c, so i(↑b) 6= i(↑c). Therefore, e is one-to-one. To see that e is a BA-morphism, let

b, c ∈ B. Then

e(b ∧ c) = i(↑(b ∧ c)) = i(↑b ∨ ↑c) = i(↑b) ∧ i(↑c) = e(b) ∧ e(c),

so e preserves meet. Also, by Lemma 2.8, e(¬b) = i(↑¬b) = i(↑b)∗ = e(b)∗. Thus, e preserves

negation, and hence is a BA-morphism.

We next show that e is dense. Since every element of B(L ) is a join from i[Filt(B)],

it is enough to show that if F is a filter of B, then i(F ) is a meet from e[B]. We show

that i(F ) =
∧

{e(b) | b ∈ F}. First, if b ∈ F , then ↑b ⊆ F , so i(F ) ≤ i(↑b) = e(b).

Therefore, i(F ) ≤
∧

{e(b) | b ∈ F}. For the reverse inequality, suppose that G is a filter with

i(G) ≤
∧

{e(b) | b ∈ F}. Then i(G) ≤ i(↑b), so ↑b ⊆ G, and hence b ∈ G for each b ∈ F .

This implies that F ⊆ G, and so i(G) ≤ i(F ). Therefore, if x ∈ L with x ≤
∧

{e(b) | b ∈ F},

then x ≤ i(F ), showing that i(F ) =
∧

{e(b) | b ∈ F}. Thus, i(F ) is a meet from e[B], and

so each element of L is a join of meets from e[B]. Consequently, e is dense.

Finally, we show that e is compact. Let S ⊆ B with
∧

e[S] = 0. Then

0 =
∧

e[S] =
∧

{i(↑s) | s ∈ S}.

Let F be the filter generated by S. Then ↑s ⊆ F , and hence i(F ) ≤ i(↑s) for each s ∈ S.

This forces i(F ) = 0, so F = B. Therefore, there are s1, . . . , sn ∈ S with s1 ∧ · · · ∧ sn = 0.

Thus, e is compact by Remark 2.2, and hence (B(L ), e) is a canonical extension of B. �
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We can now derive the result of [13]. By Corollary 2.7, the Alexandroff topology Up(X)

on X is isomorphic to L . Consequently, RO(X) ∼= B(L ). Moreover, define f : Filt(B) →

Up(X) by f(F ) = {G ∈ X | F ⊆ G}. It is easy to see that f is a SLat1
0
-morphism, so induces

a frame homomorphism ϕ : L → Up(X) satisfying ϕ ◦ i = f .

Filt(B) L

Up(X)

i

f
ϕ

If b ∈ B, then

ϕ(e(b)) = ϕ(i(↑b)) = f(↑b) = {G ∈ X | ↑b ⊆ G} = {G ∈ X | b ∈ G},

which is the map defined in [13]. This yields an explicit isomorphism between our construc-

tion and that in [13].

3. Bounded archimedean ℓ-algebras

In this section we recall several basic facts about bounded archimedean ℓ-algebras. We

assume the reader’s familiarity with ℓ-rings (lattice-ordered rings) and ℓ-algebras (lattice-

ordered algebras). We use [14, Ch. XIII and onwards] as our main reference for ℓ-rings and

[28, 8] as our main references for ℓ-algebras. All rings are assumed to be commutative and

unital (have multiplicative identity 1).

Definition 3.1.

(1) An ℓ-algebra A is bounded if for each a ∈ A there is an integer n ≥ 1 such that

a ≤ n · 1 (that is, 1 is a strong order unit).

(2) An ℓ-algebra A is archimedean if for each a, b ∈ A, whenever n · a ≤ b for each n ≥ 1,

then a ≤ 0.

(3) A baℓ-algebra is a bounded archimedean ℓ-algebra and a baℓ-morphism is a uni-

tal ℓ-algebra homomorphism. Let baℓ be the category of baℓ-algebras and baℓ-

morphisms.

Let A ∈ baℓ. If A 6= 0, then we view R as an ℓ-subalgebra of A by identifying r ∈ R with

r · 1 ∈ A.

Definition 3.2. Let A ∈ baℓ and a ∈ A.

(1) Define the positive and negative parts of a by

a+ = a ∨ 0 and a− = (−a) ∨ 0 = −(a ∧ 0).

(2) Define the absolute value of a by

|a| = a ∨ (−a).

(3) Define the norm of a ∈ A by

||a|| = inf{r ∈ R : |a| ≤ r}.
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We call A uniformly complete if the norm is complete. Let ubaℓ be the full subcategory of

baℓ consisting of uniformly complete objects.

Theorem 3.3 (Gelfand duality [23, 37]). There is a dual adjunction between baℓ and KHaus

which restricts to a dual equivalence between KHaus and ubaℓ.

ubaℓ baℓ

KHaus

(−)∗(−)∗

The contravariant functors (−)∗ : KHaus → baℓ and (−)∗ : baℓ → KHaus establishing the

dual adjunction of Theorem 3.3 are defined as follows. For a compact Hausdorff space X let

X∗ be the ring C(X) of (necessarily bounded) continuous real-valued functions on X . For

a continuous map ϕ : X → Y let ϕ∗ : C(Y ) → C(X) be defined by ϕ∗(f) = f ◦ ϕ for each

f ∈ C(Y ). Then (−)∗ : KHaus → baℓ is a well-defined contravariant functor.

For A ∈ baℓ, we recall that an ideal I of A is an ℓ-ideal if |a| ≤ |b| and b ∈ I imply a ∈ I,

and that ℓ-ideals are exactly the kernels of ℓ-algebra homomorphisms. Let YA be the space

of maximal ℓ-ideals of A, whose closed sets are exactly sets of the form

Zℓ(I) = {M ∈ YA | I ⊆M},

where I is an ℓ-ideal of A. The space YA is often referred to as the Yosida space of A, and it

is well known that YA ∈ KHaus. Let A∗ = YA and for a baℓ-morphism α let α∗ = α−1. Then

(−)∗ : baℓ → KHaus is a well-defined contravariant functor, and the functors (−)∗ and (−)∗

yield a dual adjunction between baℓ and KHaus.

Moreover, for X ∈ KHaus we have that εX : X → YC(X) is a homeomorphism where

εX(x) = {f ∈ C(X) | f(x) = 0}.

Furthermore, for A ∈ baℓ define ζA : A → C(YA) by ζA(a)(M) = r where r is the unique

real number satisfying a +M = r +M . Then ζA is a monomorphism in baℓ separating

points of YA. Thus, by the Stone-Weierstrass theorem, we have:

Theorem 3.4.

(1) The uniform completion of A ∈ baℓ is ζA : A→ C(YA). Therefore, if A is uniformly

complete, then ζA is an isomorphism.

(2) ubaℓ is a reflective subcategory of baℓ, and the reflector ζ : baℓ → ubaℓ assigns to

each A ∈ baℓ its uniform completion C(YA) ∈ ubaℓ.

Consequently, the dual adjunction restricts to a dual equivalence between ubaℓ and KHaus,

yielding Gelfand duality.

For the results in Section 5 we recall the definition of Dedekind algebras, Dedekind com-

pletions, and Specker algebras (see, e.g., [8, 9]).

Definition 3.5. Let A ∈ baℓ.

(1) A is Dedekind complete if every subset of A bounded above has a least upper bound

(and hence every subset of A bounded below has a greatest lower bound).
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(2) A is a Dedekind baℓ-algebra if A is Dedekind complete.

(3) Let dbaℓ be the full subcategory of baℓ consisting of Dedekind baℓ-algebras.

If A ∈ baℓ, then there is a unique up to isomorphism Dedekind baℓ-algebra D(A) ∈ baℓ

such that A embeds into D(A) and the image is join dense in D(A). This result was proved

by Nakano [34, Sec. 31] in the setting of vector lattices and by Johnson [30, p. 493] in the

setting of f -rings. It was adapted to baℓ in [9].

Definition 3.6. For A ∈ baℓ, we call D(A) the Dedekind completion of A. Throughout this

paper we will identify A with its image in D(A).

The following theorem provides a characterization of Dedekind completions in baℓ (see,

e.g., [9, Thm. 3.1]).

Theorem 3.7. Let A ∈ baℓ and D ∈ dbaℓ. If α : A → D is a baℓ-monomorphism such

that every element of D is a join from α[A], then there is a baℓ-isomorphism ϕ : D(A) → D

with ϕ|A = α.

Let A ∈ baℓ. Since A is a commutative ring, it is well known that the set Id(A) of

idempotents of A is a boolean algebra under the operations

e ∨ f = e + f − ef, e ∧ f = ef, ¬e = 1− e.

The ordering on the boolean algebra Id(A) is the restriction of the ordering on A, and hence

e ∈ Id(A) implies that 0 ≤ e ≤ 1.

Definition 3.8. [8, Sec. 5] We call A ∈ baℓ a Specker baℓ-algebra if A is generated by

Id(A).

Remark 3.9. For the history of the notion of a Specker algebra see, e.g., [12].

Specker algebras can be characterized by the following construction, the origins of which

go back to Bergman [5] and Rota [36].

Definition 3.10. [7, Def. 2.4] Let B be a Boolean algebra. We denote by R[B] the quotient

ring R[{xe | e ∈ B}]/IB of the polynomial ring over R in variables indexed by the elements

of B modulo the ideal IB generated by the following elements, as e, f range over B:

xe∧f − xexf , xe∨f − (xe + xf − xexf ), x¬e − (1− xe), x0.

For e ∈ B we abuse notation and identify xe with its image in R[B]. Considering the

generators of IB, for all e, f ∈ B, we have that

xe∧f = xexf , xe∨f = xe + xf − xexf , x¬e = 1− xe, x0 = 0.

Theorem 3.11. Let A ∈ baℓ.

(1) [7, Lem. 3.2(4)] The map sending e ∈ B to xe ∈ R[B] is a BA-isomorphism from B

to Id(R[B]).

(2) [7, Lem. 2.5] For B ∈ BA and a BA-morphism τ : B → Id(A), there is a unique

baℓ-morphism σ : R[B] → A such that σ(xb) = τ(b) for each b ∈ B.
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(3) [7, Thm. 2.7] A is a Specker baℓ-algebra iff A ∼= R[B] for some B ∈ BA.

Remark 3.12. Associating Id(A) with each A ∈ baℓ extends to a covariant functor Id :

baℓ → BA. Definition 3.10 gives rise to a covariant functor Sp : BA → baℓ which is

left adjoint to Id. The functors Id and Sp yield an equivalence between BA and the full

subcategory of baℓ consisting of Specker baℓ-algebras (see [7, Sec. 3] for details).

We will use the following two facts about Id(A). The proof of the first one can be found

in [6, Lem. 4.9(6)], and we give a short proof of the second.

Remark 3.13. Let A ∈ baℓ.

(1) Let 0 6= e, f ∈ Id(A) and 0 < r, s ∈ R. If re ≤ sf , then r ≤ s and e ≤ f .

(2) If e ∈ Id(A) and 0 ≤ a ∈ A with 1 = e ∨ a, then ¬e ≤ a. Indeed, since ¬e is an

idempotent, 0 ≤ ¬e ≤ 1, so

¬e = ¬e ∧ (e ∨ a) = (¬e ∧ e) ∨ (¬e ∧ a) = 0 ∨ (¬e ∧ a) = ¬e ∧ a

because 0 ≤ a. Thus, ¬e ≤ a.

In the next remark we collect together some elementary facts about R[B]. We will use

them frequently in our proofs.

Remark 3.14. Let e, f ∈ B.

(1) xe ∨ xf = xe∨f and xe ∧ xf = xe∧f .

(2) If e ∧ f = 0, then xe + xf = xe ∨ xf .

(3) xe ∨ x¬e = 1 and xe ∧ x¬e = 0.

(4) xe = xe∧¬f + xe∧f .

In addition, if a ∈ R[B], we may write a = r1xb1 + · · ·+ rnxbn for some ri ∈ R and bi ∈ B

with bi ∧ bj = 0 whenever i 6= j (see, e.g., [8, Lem. 5.4]).

We conclude this section by the following remark in which we collect together some well-

known identities that hold in baℓ-algebras. They will be used throughout the paper. Most

can be found in [14, Ch. XIII, XV, XVII], for (2), (6), and (8) see [33, Secs. 12, 13], and for

(10) see [30, Lem. 1].

Remark 3.15. Let A ∈ baℓ, a, b ∈ A, and C,D ⊆ A.

(1) If
∨

C exists in A, then
∨

{a + c | c ∈ C} exists and is equal to a +
∨

C. The dual

property for meets also holds.

(2) A is a distributive lattice. Furthermore, if
∨

C exists in A, then
∨

{a ∧ c | c ∈ C}

exists and is equal to a ∧
∨

C. The dual property for meets also holds.

(3) −(a ∨ b) = (−a) ∧ (−b) and −(a ∧ b) = (−a) ∨ (−b).

(4) a− = (−a)+.

(5) a = a+ − a− and |a| = a+ + a−.

(6) (a+ b)+ ≤ a+ + b+ and (a + b)− ≤ a− + b−.

(7) a+ ∧ a− = 0 = a+a−.

(8) If
∨

C exists in A and 0 ≤ r ∈ R, then
∨

{rc | c ∈ C} exists and is equal to r
∨

C.

The dual property for meets also holds.
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(9) If a ∧ b = 0, then ra ∧ sb = 0 for any 0 ≤ r, s ∈ R.

(10) If C,D consist of nonnegative elements and the joins
∨

C,
∨

D exist in A, then

(
∨

C) (
∨

D) =
∨

{cd | c ∈ C, d ∈ D}. The dual property for meets also holds.

(11) If α is a baℓ-morphism, then α(|a|) = |α(a)|.

4. Archimedean ℓ-ideals

In this section we discuss archimedean ℓ-ideals in baℓ-algebras. This notion will be our

main tool in the rest of the paper. Let A ∈ baℓ and I be an ℓ-ideal of A. It is well known

and easy to check that A/I is a bounded ℓ-algebra, but A/I may not be archimedean in

general.

Definition 4.1. Let A ∈ baℓ. We call an ℓ-ideal I of A archimedean if A/I is archimedean.

Let Arch(A) be the set of archimedean ℓ-ideals of A, ordered by inclusion.

Remark 4.2. Let A ∈ baℓ.

(1) If I is an ℓ-ideal of A, then A/I is archimedean iff A/I ∈ baℓ. Thus, I is archimedean

iff A/I ∈ baℓ.

(2) If M is a maximal ℓ-ideal of A, then it is well known (see, e.g., [28, Cor. 27]) that

A/M ∼= R. Thus, every maximal ℓ-ideal is archimedean.

(3) Assuming (AC), an ℓ-ideal I of A ∈ baℓ is archimedean iff I =
⋂

{M ∈ YA | I ⊆M}

(see, e.g., [8, p. 440]).

Remark 4.3. In [2] Banaschewski studied the ℓ-ideals in f -rings that are closed in the norm

topology. If A is a baℓ-algebra, then it turns out that an ℓ-ideal I of A is archimedean iff it

is closed in the norm topology. We skip the proof since this fact does not play an important

role in the rest of the paper.

The next result is a consequence of Banaschewski’s more general result.

Theorem 4.4. [2, App. 2] If A ∈ baℓ, then Arch(A) is a compact regular frame.

Remark 4.5. Since Arch(A) is compact regular, using (AC) it follows from [29] that Arch(A)

is isomorphic to the frame of open subsets of a compact Hausdorff space (see also [4] or [31,

Sec. III.1]). In fact, Arch(A) is isomorphic to the frame of open subsets of the Yosida space

YA via the map that sends I ∈ Arch(A) to the open set Zℓ(I)
c. This is an analogue of the

well-known fact that for a commutative ring R, there is a bijection between the frame of

radical ideals of R and the frame of open subsets of the prime spectrum of R with the Zariski

topology.

It is straightforward to see that the intersection of a family of archimedean ℓ-ideals is

archimedean. Thus, we can define the concept of the archimedean hull, which Banaschewski

[3] referred to as the archimedean kernel.

Definition 4.6. Let A ∈ baℓ. The archimedean hull of S ⊆ A is the intersection of all

archimedean ℓ-ideals of A containing S. We denote the archimedean hull of S by 〈S〉.
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Banaschewski [3, p. 321] showed that if A is an f -ring and I is an ℓ-ideal of A, then the

archimedean hull of I is constructed as follows. Let

k(I) = {a ∈ A | (n|a| − b)+ ∈ I for some b ≥ 0 and for all n ≥ 1}.

It is straightforward to see that k(I) is an ℓ-ideal containing I. Set k1(I) = k(I). For each

ordinal γ set kγ+1(I) = k(kγ(I)). If γ is a limit ordinal, define kγ(I) =
⋃

{kδ(I) | δ < γ}.

Then there is a least γ with kγ(I) = kγ+1(I), and the archimedean hull 〈I〉 of I is kγ(I).

We conclude this section by showing that when A ∈ baℓ (and hence 1 is a strong order-

unit), the construction of the archimedean hull simplifies. For this we need the following

remark.

Remark 4.7.

(1) If A is a bounded ℓ-algebra, then it is archimedean iff for each a ∈ A, whenever

na ≤ 1 for each n ≥ 1, then a ≤ 0. To see that this condition implies that A is

archimedean, suppose na ≤ b for each a, b ∈ A and n ≥ 1. Since A is bounded, there

is m ≥ 1 with b ≤ m. Therefore, (nm)a ≤ b ≤ m, so na ≤ 1 for all n ≥ 1. This

forces a ≤ 0, and hence A is archimedean.

(2) Let A ∈ baℓ and I be an ℓ-ideal of A. For a ∈ A, we have:

a+ I ≥ 0 + I iff a− ∈ I and a+ I ≤ 0 + I iff a+ ∈ I (see, e.g., [10, Rem. 2.11]).

Proposition 4.8. Let A ∈ baℓ and I be an ℓ-ideal of A. Then

〈I〉 = {x ∈ A | (n|x| − 1)+ ∈ I for all n ≥ 1}.

Proof. Set K = {x ∈ A | (n|x| − 1)+ ∈ I for all n ≥ 1}. It is straightforward to see that

K is an ℓ-ideal of A containing I. To see that A/K is archimedean, by Remark 4.7(1), it is

enough to show that if a ∈ A with n(a +K) ≤ 1 +K for each n ≥ 1, then a +K ≤ 0 +K.

Since na + K ≤ 1 + K we get na+ + K ≤ 1 + K. By Remark 4.7(2) this implies that

(na+−1)+ ∈ K for each n ≥ 1. To show a+K ≤ 0+K it is sufficient to show that a+ ∈ K.

Thus, we may replace a by a+ to assume 0 ≤ a. Since (na − 1)+ ∈ K for each n ≥ 1, we

have (m(na− 1)+ − 1)+ ∈ I for each n,m ≥ 1. Using several properties from Remark 3.15,

we have

(m(na− 1)+ − 1)+ = (((mna−m) ∨ 0)− 1) ∨ 0

= ((mna− (m+ 1)) ∨ −1) ∨ 0

= (mna− (m+ 1)) ∨ 0

= (mna− (m+ 1))+,

and so (mna− (m+1))+ ∈ I for each m,n ≥ 1. Set n = m+1. Then (m+1)(ma−1)+ ∈ I,

so (ma − 1)+ ∈ I because m + 1 is a unit in A. Since this is true for each m ≥ 1, we get

a ∈ K, so a+K = 0+K. Therefore, A/K is archimedean, and hence K is an archimedean

ℓ-ideal of A.

Suppose J ⊇ I is an archimedean ℓ-ideal. If a ∈ K, then (n|a|−1)+ ∈ J for each n ≥ 1, so

(n|a|−1)+J ≤ 0+J , and hence n|a|+J ≤ 1+J for each n ≥ 1. Since A/J is archimedean,
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|a| + J = 0 + J , so |a| ∈ J , and hence a ∈ J . Therefore, K ⊆ J , and thus K is the least

archimedean ℓ-ideal containing I, completing the proof. �

5. Canonical extensions in baℓ point-free

Canonical extensions of baℓ-algebras were introduced in [11], where it was shown that a

canonical extension of A ∈ baℓ is isomorphic to (B(YA), ζA). The proof that (B(YA), ζA)

is a canonical extension of A ∈ baℓ is neither choice-free nor point-free. However, the

uniqueness part of the proof is point-free. In this section we give a point-free proof of the

existence as well, generalizing our results from Section 2. The arguments are considerably

more complicated than those of Section 2 and require a careful study of various properties

of archimedean ℓ-ideals. To make the section easier to read we collect all these properties

together in an appendix.

Definition 5.1. [11, Def. 1.6] Let A be a baℓ-algebra, D a Dedekind baℓ-algebra and

ζ : A→ D a baℓ-monomorphism.

(1) We call ζ compact if whenever S, T ⊆ A and ε > 0 with
∧

ζ [S] + ε ≤
∨

ζ [T ], there

are finite S0 ⊆ S and T0 ⊆ T with
∧

S0 ≤
∨

T0.

(2) We call ζ dense if each element of D is a join of meets from ζ [A].

(3) We say that the pair (D, ζ) is a canonical extension of A if ζ is dense and compact.

Remark 5.2.

(1) In [11] canonical extensions were defined for the category of bounded archimedean

vector lattices, but the same definition works for baℓ.

(2) By [11, Lem. 2.4], ζ : A→ D is compact iff for each T ⊆ A and ε > 0, if ε ≤
∨

ζ [T ],

then there is a finite T0 ⊆ T with 0 ≤
∨

T0.

Let A ∈ baℓ. By [11, Thm. 1.8(2)], (B(YA), ζA) is a canonical extension of A. To motivate

our new approach, we give a point-free description of B(YA). Let Dist be the category of

bounded distributive lattices. It is well known that the forgetful functor U : BA → Dist has

a left adjoint B : Dist → BA. For each L ∈ Dist, the Boolean algebra B(L) together with

the canonical embedding i : L → B(L) is usually referred to as the free Boolean extension

of L. It is characterized by the following universal mapping property: If λ : L → C is a

bounded lattice homomorphism into a boolean algebra, then there is a unique BA-morphism

τ : B(L) → C with τ ◦ i = λ (see, e.g., [1, Sec. V.4]).

L B(L)

C

i

λ
τ

Let L = Arch(A). Viewing L as a bounded distributive lattice, let (B, i) be the free

boolean extension of L. Assuming (AC), L is isomorphic to the frame O(YA) of open sets

of YA (see Remark 4.5) and B is isomorphic to the algebra Con(YA) of constructible sets of

YA (see, e.g., [1, Sec. V.4]), where Con(YA) is the boolean subalgebra of ℘(YA) generated

by O(YA). The isomorphism λ : L → O(YA) sends I to Zℓ(I)
c := {M ∈ YA | I 6⊆ M}
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(see Remark 4.5). Since O(YA) is a sublattice of ℘(YA), we view λ as a bounded lattice

homomorphism into the boolean algebra ℘(YA). As ℘(YA) is isomorphic to Id(B(YA)) by

sending U ⊆ YA to the characteristic function χU , the universal mapping property mentioned

above yields a BA-morphism τ : B → Id(B(YA)) with τ(i(I)) = χZℓ(I)c . By Theorem 3.11(1),

there is a baℓ-morphism σ : R[B] → B(YA) extending τ . Since each 0 ≤ f ∈ B(YA) is equal

to
∨

{f(M)χ{M} |M ∈ YA}, each element of B(YA) is a join from R[B] by Remark 3.15(1).

Thus, by Theorem 3.7, there is an isomorphism θ : D(R[B]) → B(YA) satisfying θ(xI) =

σ(xI) = χZℓ(I)c for each I ∈ Arch(A). Let α = θ−1 ◦ ζA.

L B R[B] D(R[B])

A

O(YA) Id(B(YA)) B(YA)

i

λ τ
σ θ

α

ζA

Figure 1. The isomorphism θ : D(R[B]) → B(YA)

If 0 ≤ a ∈ A, we claim that

ζA(a) =
∨

{rχC | C closed in YA and rχC ≤ ζA(a)}.

It is obvious that ζA(a) is above the join. Let M ∈ YA and set ζA(a)(M) = r. Then

rχ{M}(M) = r and rχ{M} ≤ ζA(a) since 0 ≤ a. From this it follows that the equation above

is true.

To make this description of ζA(a) point-free, let C be closed in YA and I ∈ Arch(A) with

Zℓ(I) = C. We show that rχC ≤ ζA(a) for some r ≥ 0 iff (a− r)− ∈ I.

First suppose rχC ≤ ζA(a) for some r ≥ 0. If M ∈ C, then r ≤ ζA(a)(M), so a +M ≥

r+M , which means (a− r)− ∈M (see Remark 4.7(2)). Since this is true for all M ∈ C, we

have (a− r)− ∈
⋂

Zℓ(I) = I (see Remark 4.2(3)).

Conversely, let (a − r)− ∈ I and M ∈ C. Then I ⊆ M , so (a − r)− ∈ M which gives

a+M ≥ r +M , so r ≤ ζA(a)(M). Since 0 ≤ a, this yields rχC ≤ ζA(a). Consequently,

ζA(a) =
∨

{rχC | C closed in YA and rχC ≤ ζA(a)}

=
∨

{rχZℓ(I) | I ∈ Arch(A) and (a− r)− ∈ I}.

For a ∈ A arbitrary, let s ∈ R be such that a+ s ≥ 0. Then

ζA(a) = −s + ζA(a+ s)

= −s +
∨

{rχZℓ(I) | I ∈ Arch(A), (a+ s− r)− ∈ I}.

Definition 5.3. Let (B, i) be the free boolean extension of Arch(A). For ease of notation

we assume that Arch(A) ⊆ B, and so i is the identity. Thus, for I ∈ Arch(A) we have that

xI and x¬I are idempotents of R[B].

The discussion above motivates the following point-free definition.
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Definition 5.4. Define α : A→ D(R[B]) by

α(a) = −s+
∨

{rx¬I | I ∈ Arch(A), (a+ s− r)− ∈ I}

where s ∈ R with a + s ≥ 0.

Remark 5.5. Let a ∈ A and s ∈ R with a + s ≥ 0. Then (a + s)− = 0. Thus, for each

I ∈ Arch(A), we have that 0x¬I is part of the join defining α(a). Consequently, we may

assume r ≥ 0 in the definition of α(a).

To show that α is well defined we need to show that the join in Definition 5.4 exists and

that the expression does not depend on the choice of s. Showing that the join exists is

straightforward, but independence of s requires some work. In particular, we will utilize

Lemma A.3 given in the appendix.

Proposition 5.6. α : A→ D(R[B]) is well defined.

Proof. Let a ∈ A and s ∈ R with a+ s ≥ 0. We first show that

{rx¬I | I ∈ Arch(A), (a+ s− r)− ∈ I}

is bounded above, so the join exists in D(R[B]). Let I ∈ Arch(A). If I = A, then x¬I = 0,

so rx¬I = 0. Suppose that I 6= A. If r > ‖a‖+ s+ 1, then a+ s− r ≤ ‖a‖+ s− r < −1, so

(a+ s− r)− > 1. Therefore, (a+ s− r)− /∈ I. Thus, if (a+ s− r)− ∈ I, then r ≤ ‖a‖+ s+1,

and so rx¬I ≤ ‖a‖ + s + 1 as x¬I is an idempotent. From this it follows that the set above

is bounded by ‖a‖+ s+ 1, and hence the join defining α(a) exists.

We next show that α(a) does not depend on s. Let 0 ≤ s, t ∈ R with a+ s, a+ t ≥ 0. Set

f =
∨

{rx¬I | I ∈ Arch(A), (a+s−r)− ∈ I} and g =
∨

{rx¬I | I ∈ Arch(A), (a+t−r)− ∈ I}.

Then f, g ∈ D(R[B]) by the previous paragraph. By Lemma A.3(3) and Remark 3.15(1),

f + t =
∨

{(r + t)x¬I | (a+ s− r)− ∈ I}

=
∨

{ux¬I | (a+ s+ t− u)− ∈ I}

=
∨

{(v + s)x¬I | (a+ t− v)− ∈ I}

= s+ g.

Therefore, −s + f = −t + g, which proves that the formula defining α(a) does not depend

on the choice of s. Thus, α is well defined. �

We next show that α preserves order and addition by a scalar.

Lemma 5.7.

(1) If 0 ≤ a ∈ A, then α(a) =
∨

{rx¬I | 0 ≤ r, I ∈ Arch(A), (a− r)− ∈ I}.

(2) α is order preserving.

(3) If a ∈ A and t ∈ R, then α(a+ t) = α(a) + t.

Proof. (1) Set s = 0 and apply Remark 5.5.

(2) Suppose that a ≤ b. Choose 0 ≤ s with a + s ≥ 0. Then b + s ≥ 0. Therefore,

(a + s− r)− ∈ I implies (b+ s− r)− ∈ I because (b+ s− r)− ≤ (a + s− r)−. From this it

follows that α(a) ≤ α(b).
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(3) Let s1, s2 ∈ R be such that a+ s1 ≥ 0 and t+ s2 ≥ 0. Set s = s1+ s2. By Remark 5.5,

α(a) = −s1 +
∨

{rx¬I | 0 ≤ r, I ∈ Arch(A), (a+ s1 − r)− ∈ I},

so by Lemma A.3(3), we have

α(a) + s2 + t = −s1 +
∨

{(s2 + t+ r)x¬I | (a+ s1 − r)− ∈ I}

= −s1 +
∨

{(s2 + t+ r)x¬I | (a+ s+ t− (s2 + t + r))− ∈ I}

= s2 − s+
∨

{ux¬I | (a+ s+ t− u)− ∈ I}

= s2 + α(a+ t)

since a+ t + s ≥ 0. Thus, α(a+ t) = α(a) + t. �

We are ready to prove that (D(R[B]), α) is a canonical extension of A. This we do in the

next three propositions.

Proposition 5.8. α : A→ D(R[B]) is a baℓ-monomorphism.

Proof. We first show that α is a baℓ-morphism. This we do by showing that α preserves

addition, meet, scalar multiplication, join, and multiplication.

Claim 5.9. α preserves addition.

Proof of the Claim. Let a, b ∈ A. We first assume that 0 ≤ a, b. Because α is order preserving

(see Lemma 5.7(2)) and a, b ≤ a + b, we have that α(a), α(b) ≤ α(a + b). In addition, by

Lemma 5.7(1) (and Remarks 3.15(1,9) and 3.14(2)),

α(a) + α(b) =
∨

{rx¬I | (a− r)− ∈ I}+
∨

{sx¬J | (b− s)− ∈ J}

=
∨

{rx¬I + sx¬J | (a− r)− ∈ I, (b− s)− ∈ J}

=
∨

{rx¬I∧J + sx¬J∧I + (r + s)x¬I∧¬J | (a− r)− ∈ I, (b− s)− ∈ J}

=
∨

{rx¬I∧J ∨ sx¬J∧I ∨ (r + s)x¬(I∨J) | (a− r)− ∈ I, (b− s)− ∈ J}.

We use this to show that α(a) +α(b) ≤ α(a+ b). We have rx¬I∧J ≤ rx¬I ≤ α(a) ≤ α(a+ b)

and sx¬J∧I ≤ sx¬J ≤ α(b) ≤ α(a + b). It remains to show that (r + s)x¬(I∨J) ≤ α(a + b).

This is trivial if I ∨ J = A since then x¬(I∨J) = 0. Otherwise, set K = I ∨ J . We have

(a−r)−, (b−s)− ∈ K, and since 0 ≤ (a+b−(r+s))− ≤ (a−r)−+(b−s)− by Remark 3.15(6),

we see that (a+ b− (r+ s))− ∈ K. Therefore, (r+ s)x¬K ≤ α(a+ b) by Lemma 5.7(1). This

completes the proof that α(a) + α(b) ≤ α(a+ b).

We use Lemma A.6 to show the reverse inequality. Suppose that tx¬I ≤ α(a + b). We

may assume that t = sup{r | rx¬I ≤ α(a + b)}. Then J := I ∨ 〈(a+ b− t)+〉 6= A and

(a + b − t)− ∈ I by Lemmas A.2 and A.7, so (a + b − t)+ − (a + b − t)− ∈ J , and hence

a + b − t ∈ J by Remark 3.15(5). Let s = sup{r | rx¬J ≤ α(a)}. Then sx¬J ≤ α(a),

(a − s)− ∈ J , and K := J ∨ 〈(a− s)+〉 6= A, again by Lemmas A.2 and A.7. We have

a − s ∈ K, so b − (t − s) = (a + b − t) − (a − s) ∈ K. Therefore, (b − (t − s))− ∈ K, so

(t− s)x¬K ≤ α(b) by Lemma 5.7(1). Since J ⊆ K, we have sx¬K ≤ sx¬J ≤ α(a). From this
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we see that tx¬K ≤ α(a)+α(b). Consequently, by Lemma A.6, α(a+ b) ≤ α(a)+α(b). This

shows that α(a+ b) = α(a) + α(b) for 0 ≤ a, b.

To complete the argument, let a, b ∈ A be arbitrary and choose t ∈ R with a+ t, b+ t ≥ 0.

Then α(a+ b+2t) = α(a+ t)+α(b+ t), so α(a+ b)+2t = α(a)+α(b)+2t by Lemma 5.7(3).

Therefore, α(a+ b) = α(a) + α(b). �

Claim 5.10. α preserves meet.

Proof of the Claim. Let a, b ∈ A. Since α is order preserving, α(a∧b) ≤ α(a)∧α(b). Because

α preserves addition (by a scalar), we may assume 0 ≤ a, b. By Lemmas 5.7(1) and A.1(1)

(and Remarks 3.15(2) and 3.14(1)), we have

α(a) ∧ α(b) =
∨

{rx¬I | (a− r)− ∈ I} ∧
∨

{sx¬J | (b− s)− ∈ J}

=
∨

{rx¬I ∧ sx¬J | (a− r)− ∈ I, (b− s)− ∈ J}

=
∨

{min(r, s)x¬I∧¬J | (a− r)− ∈ I, (b− s)− ∈ J}

=
∨

{min(r, s)x¬(I∨J) | (a− r)− ∈ I, (b− s)− ∈ J}.

(1)

Suppose (a− r)− ∈ I, (b− s)− ∈ J , and assume without loss of generality that r ≤ s. Since

(b− r)− ≤ (b− s)−, we have (a− r)−, (b− r)− ∈ I ∨J . Therefore, (a− r)− ∨ (b− r)− ∈ I ∨J

(because ℓ-ideals are closed under ∨). Since

(a− r)− ∨ (b− r)− = [(r − a) ∨ 0] ∨ [(r − b) ∨ 0] = [(r − a) ∨ (r − b)] ∨ 0

= [r + (−a ∨ −b)] ∨ 0 = [r − (a ∧ b)] ∨ 0 = ((a ∧ b)− r)−,

we see that ((a∧ b)− r)− ∈ I ∨J . Therefore, rx¬(I∨J) ≤ α(a∧ b), and hence (1) implies that

α(a) ∧ α(b) ≤ α(a ∧ b). Thus, α(a) ∧ α(b) = α(a ∧ b). �

Claim 5.11. α preserves scalar multiplication and join.

Proof of the Claim. Since α is a group homomorphism, to show that it preserves scalar

multiplication it suffices to show α(sa) = sα(a) for each a ∈ A and 0 < s ∈ R. Moreover,

by Lemma 5.7(3), it suffices to assume 0 ≤ a. Since (sa − r)− ∈ I iff (a − r/s)− ∈ I, by

Lemma 5.7(1) and Remark 3.15(8), we have

α(sa) =
∨

{rx¬I | (sa− r)− ∈ I} =
∨

{rx¬I | (a− r/s)− ∈ I}

= s
∨

{(r/s)x¬I | (a− r/s)− ∈ I} = sα(a).

Since α preserves meet and scalar multiplication, it preserves join by Remark 3.15(3). �

Claim 5.12. α preserves multiplication.
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Proof of the Claim. First suppose that 0 ≤ a, b. By Lemma 5.7(1) and Remarks 3.15(10)

and 3.14(1), we have

α(a)α(b) =
∨

{rx¬I | 0 ≤ r, (a− r)− ∈ I} ·
∨

{sx¬J | 0 ≤ s, (b− s)− ∈ J}

=
∨

{rsx¬Ix¬J | (a− r)− ∈ I, (b− s)− ∈ J}

=
∨

{rsx¬(I∨J) | (a− r)− ∈ I, (b− s)− ∈ J}.

Also α(ab) =
∨

{tx¬K | (ab − t)− ∈ K}. To see that α(a)α(b) ≤ α(ab), it suffices to show

that rsx¬(I∨J) ≤ α(ab), where 0 ≤ r, s, (a− r)− ∈ I, and (b− s)− ∈ J . Set K = I ∨J . Then

(a− r)−, (b− s)− ∈ K. Therefore, r+K ≤ a+K and s+K ≤ b+K. Because 0 ≤ r, s, we

have

rs+K = (r +K)(s +K) ≤ (a+K)(b+K) = ab+K.

This gives (ab − rs)− ∈ K. Thus, rsx¬(I∨J) = rsx¬K ≤ α(ab) by Lemma 5.7(1). Conse-

quently, α(a)α(b) ≤ α(ab).

For the reverse inequality, we use Lemma A.6 and argue as in the proof of Claim 5.9.

Let I ∈ Arch(A) and 0 ≤ t with tx¬I ≤ α(ab). Then (ab − t)− ∈ I by Lemma A.7(2).

We may assume that t = sup{r | (ab − r)− ∈ I} by Lemma A.7(1). Therefore, J :=

I∨〈(ab − t)+〉 6= A by Lemma A.7(3). Set r = sup{p | (a−p)− ∈ J}. Then (a−r)− ∈ J and

K := J ∨〈(a− r)+〉 6= A. We have ab− t ∈ J and a−r ∈ K. Therefore, ab− t, (a−r)b ∈ K.

Thus, rb − t ∈ K. If r = 0, then t ∈ K, which implies t = 0 since K 6= A and nonzero

real numbers are units in A. It is then clear that tx¬K ≤ α(a)α(b) since 0 ≤ α(a)α(b). If

r 6= 0, then b− t/r ∈ K. Therefore, (t/r)x¬K ≤ α(b) and rx¬K ≤ α(a), so tx¬K ≤ α(a)α(b)

since x¬K is an idempotent. Thus, by Lemma A.6, α(ab) ≤ α(a)α(b). This shows that

α(ab) = α(a)α(b) for 0 ≤ a, b.

For a, b arbitrary, since a = a+ − a− and b = b+ − b− (see Remark 3.15(5)), we have

ab = (a+ − a−)(b+ − b−) = (a+b+ + a−b−)− (a+b− + a−b+)

By the previous case and Claim 5.9,

α(ab) = α(a+b+ + a−b−)− α(a+b− + a−b+)

= (α(a+b+) + α(a−b−))− (α(a+b−) + α(a−b+))

= (α(a+)α(b+) + α(a−)α(b−))− (α(a+)α(b−) + α(a−)α(b+))

= (α(a+)− α(a−))(α(b+)− α(b−)) = α(a+ − a−)α(b+ − b−)

= α(a)α(b).

�

This completes the proof that α is a baℓ-morphism. It is left to show that α is a monomor-

phism. This we do by showing that α(a) 6= 0 for a 6= 0. Because α(|a|) = |α(a)| (see Re-

mark 3.15(11)) and a 6= 0 iff |a| 6= 0, it suffices to assume a ≥ 0. Since a 6= 0, we have ‖a‖ > 0.

Choose r ∈ R with 0 < r ≤ ‖a‖ and set I = 〈(a− r)−〉. We claim that I 6= A. To see this,

if I = A, by Lemma A.2(2) there is n with 1 ≤ n(a− r)−, so 1/n ≤ (a− r)− = (r − a) ∨ 0.
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Therefore, 1/n ≤ r − a by Lemma A.1(2). This implies a ≤ r − 1/n < r, which contradicts

the inequality r ≤ ‖a‖ since ‖a‖ is the smallest real number above a. Thus, ¬I 6= 0, so

x¬I 6= 0, and hence 0 < rx¬I ≤ α(a). This shows that α(a) 6= 0. �

Proposition 5.13. α : A→ D(R[B]) is dense.

Proof. We first show that x¬I is a meet from α[A] for each I ∈ Arch(A). By Lemma 5.7(1),

if (a− 1)− ∈ I, then x¬I ≤ α(a), so

x¬I ≤
∧

{α(a) | (a− 1)− ∈ I} =: f.

In the inequality above we may assume that 0 ≤ a ≤ 1 since x¬I is an idempotent, so

0 ≤ x¬I and x¬I ≤ α(a) implies that x¬I ≤ α(a) ∧ 1 = α(a ∧ 1). Therefore, we have

0 ≤ f ≤ 1. If I ⊆ J , then x¬J ≤ x¬I . Because 0 ≤ f , it is a join of elements of the

form rx¬J by Lemma A.3(2). To show f = x¬I we show that if rx¬J ≤ f with r > 0,

then J ⊇ I and r ≤ 1, so rx¬J ≤ x¬I . First, if rx¬J ≤ f , then rx¬J ≤ 1, so r ≤ 1

by Remark 3.13(1). Next, suppose that I 6⊆ J . Then there is K 6= A with J ⊆ K and

K + I = A by Lemma A.2(2). Therefore, there are 0 ≤ a, b with a ∈ K, b ∈ I, and 1 = a+ b

by Lemma A.5(1). So (a− 1)− = b ∈ I, and hence x¬I ≤ α(a). Suppose that there is r > 0

with (a − r)− ∈ J . Then A = 〈a, (a− r)−〉 by Lemma A.5(1). This is impossible since

K 6= A but a, (a− r)− ∈ K. This implies that r ≤ 0. This contradiction shows that x¬I = f

and hence is a meet from α[A].

If 0 ≤ f ∈ D(R[B]), then f is a join of nonnegative elements from R[B]. If 0 ≤ c ∈ R[B],

we can write c as a sum of terms of the form rxb with 0 ≤ r ∈ R and b ∈ B, and so f is

a join of such terms by Remark 3.14. Since each b can be written as a join of terms of the

form ¬I ∧ J with I, J ∈ Arch(A), we see that f is a join of elements of the form rx¬I∧J .

Therefore, by Lemma A.3(1), f is a join of elements of the form rx¬I . Thus, f is a join of

meets from α[A]. For f arbitrary, if f + n ≥ 0, then f + n is a join of meets from α[A], and

so f is also a join of meets from α[A] by Remark 3.15(1). Consequently, α is dense. �

Proposition 5.14. α : A→ D(R[B]) is compact.

Proof. Let 0 < ε ∈ R and T ⊆ A with ε ≤
∨

α[T ]. By Remark 5.2(2), it suffices to show

that there is a finite T0 ⊆ T with
∨

T0 ≥ 0. Set T ′ = {(a + ε) ∨ 0 | a ∈ T}. Since

α((a+ ε)∨ 0) ≥ α(a+ ε) = α(a) + ε, we have 2ε ≤
∨

α[T ′] by Remark 3.15(1). As 0 ≤ b for

each b ∈ T ′, Lemma 5.7(1) implies

2ε ≤
∨

{rx¬I | (b− r)− ∈ I, b ∈ T ′}.

We next consider the archimedean ℓ-ideal L =
∨

{〈(b− ε)+〉 | b ∈ T ′} and show that L = A.

If not, then x¬L 6= 0, so using Remarks 3.14(1) and 3.15(10), we have

2εx¬L ≤ x¬L ·
∨

{rx¬I | (b− r)− ∈ I, b ∈ T ′}

=
∨

{rx¬Lx¬I | (b− r)− ∈ I, b ∈ T ′}

=
∨

{rx¬(I∨L) | (b− r)− ∈ I, b ∈ T ′}.

(2)
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Observe that if I ∨ L = A, then x¬(I∨L) = 0. Suppose that r ≤ 3ε/2 for all r, b, I in the join

above with I ∨L 6= A. Because x¬(I∨L) ≤ x¬L for each I, the join above is then bounded by

(3ε/2)x¬L, a contradiction to the inequality (2). Therefore, there are r, b, I in the join above

with I ∨L 6= A and r > 3ε/2. Since (b−3ε/2)− ≤ (b−r)−, we have (b−3ε/2)− ∈ I ⊆ I ∨L,

and (b− ε)+ ∈ L ⊆ I ∨ L by definition of L. Therefore, I ∨ L = A by Lemma A.5(1). This

contradiction yields L = A.

Since Arch(A) is a compact frame (see Theorem 4.4), there are b1, . . . , bn ∈ T ′ with

〈(b1 − ε)+〉 ∨ · · · ∨ 〈(bn − ε)+〉 = A. For each i there is ai ∈ T with bi = (ai + ε) ∨ 0.

Then, using Remark 3.15(1), we have

(bi − ε)+ = [((ai + ε) ∨ 0)− ε] ∨ 0 = (ai ∨ −ε) ∨ 0 = ai ∨ 0 = a+i

for each i. Therefore, 〈a+1 〉 ∨ · · · ∨ 〈a+n 〉 = A. Set c = a1 ∨ · · · ∨ an. Then a
+
i ≤ c+ for each i,

so 〈c+〉 = A. Thus, there is m ≥ 1 with 1 ≤ mc+, and hence 1/m ≤ c+. By Lemma A.1(2),

1/m ≤ c which yields 0 ≤ 1/m ≤ a1 ∨ · · · ∨ an. This shows that α is compact. �

Propositions 5.8, 5.13, and 5.14 yield our main result.

Theorem 5.15. For each A ∈ baℓ, the pair (D(R[B]), α) is a canonical extension of A.

6. Canonical extensions and normal functions

In the previous section we gave a point-free description of a canonical extension of A ∈

baℓ as the pair (D(R[B]), α). In this section we show that D(R[B]) can be described

as the algebra N(X) of (bounded) normal real-valued functions on the space X of proper

archimedean ℓ-ideals of A. The idempotents of N(X) are exactly the characteristic functions

of regular opens of X . Thus, we obtain a generalization of a result of [13] that a canonical

extension of a boolean algebra B is isomorphic to the boolean algebra of regular open subsets

of the space of proper filters of B. Assuming (AC), we show that N(X) is isomorphic to the

algebra of bounded real-valued functions on the Yosida space of A, thus obtaining a result

of [11]. We conclude the paper by drawing a connection between our results and those in

point-free topology describing normal functions on an arbitrary frame [24, 26, 27, 25].

For a topological space X , we recall that B(X) is the set of all bounded real-valued func-

tions on X . It is straightforward to see that under pointwise operations B(X) ∈ dbaℓ.

Recall that f ∈ B(X) is lower semicontinuous if f−1(r,∞) is open, and f is upper semicon-

tinuous if f−1(−∞, r) is open for each r ∈ R (see, e.g., [15, p. 361]). For each x ∈ X , let Nx

be the collection of open neighborhoods of x. For each f ∈ B(X) define

f∗(x) = sup{inf f [U ] | U ∈ Nx}

f ∗(x) = inf{sup f [U ] | U ∈ Nx}.

It is well known that f is lower semicontinuous iff f = f∗ and f is upper semicontinuous iff

f = f ∗ (see, e.g., [15, p. 360-362]).

Since we will be interested in the poset and the corresponding Alexandroff space of proper

archimedean ℓ-ideals, we will utilize the following lemma.

Lemma 6.1. Let X be an Alexandroff space and f ∈ B(X).
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(1) f is lower semicontinuous iff f is order preserving.

(2) f is upper semicontinuous iff f is order reversing.

Proof. We only prove (1) as (2) is proved similarly. First suppose that f is order preserving.

Let s ∈ R. Since (s,∞) is an upset in R and f is order preserving, f−1(s,∞) is an upset in

X . Therefore, f−1(s,∞) is open in X . Thus, f is lower semicontinuous.

Conversely, suppose that f is lower semicontinuous. Let x, y ∈ X with x ≤ y. If f(x) = s,

then for each r < s, we have x ∈ f−1(r,∞), which is an open subset of X since f is lower

semicontinuous. Therefore, y ∈ f−1(r,∞). Thus, for each r ∈ R we have r < f(x) implies

r < f(y). This forces f(x) ≤ f(y), and hence f is order preserving. �

Remark 6.2. It is well known that a map between Alexandroff spaces is continuous iff it

is order preserving. Therefore, f ∈ B(X) is lower semicontinuous iff f is continuous with

respect to the Alexandroff topology on R, and f is upper semicontinous iff f is continuous

with respect to the topology of downsets of R.

The following definition is motivated by Dilworth [17].

Definition 6.3. Let X be a topological space and f ∈ B(X). We call f# := (f ∗)∗ the

normalization of f and we call f normal if f = f#. Let

N(X) = {f ∈ B(X) | f = f#}.

Theorem 6.4. N(X) ∈ dbaℓ and the operations on N(X) are normalizations of the corre-

sponding operations on B(X).

Proof. It follows from [17] that N(X) is a Dedekind complete lattice where bounded joins

and meets are normalizations of pointwise bounded joins and meets. By [16], N(X) is a

lattice-ordered vector space, where addition and scalar multiplication are normalizations

of pointwise addition and scalar multiplication. Finally, by [10, Sec. 8], N(X) ∈ baℓ,

where multiplication is the normalization of pointwise multiplication. Thus, N(X) ∈ dbaℓ.

We point out that in [17, 16] X is assumed to be completely regular and in [10] compact

Hausdorff, but the same proofs work for an arbitrary topological space. �

We next show that idempotents of N(X) correspond to regular opens of X .

Lemma 6.5. For a topological space X, the idempotents of N(X) are precisely the charac-

teristic functions χU for U a regular open subset of X. Consequently, Id(N(X)) ∼= RO(X).

Proof. Let e ∈ N(X) be an idempotent. Then e = 2e∧ 1 since (2e∧ 1)− e = e∧ (1− e) = 0.

Since positive scalar multiplication and meet inN(X) are pointwise (see, e.g., [16, Thm. 5.1]),

the equation e = 2e ∧ 1 yields that e(x) ∈ {0, 1} for each x ∈ X . Therefore, e is a

characteristic function. If e = χU for U ⊆ X , then it is straightforward to see that e∗ = χcl(U)

and e∗ = χint(U). Thus, e# = χint cl(U), and so e = e# iff U is regular open in X . It is then

straightforward to check that the map U 7→ χU is an order preserving and order reflecting

bijection, and hence a boolean isomorphism between RO(X) and Id(N(X)). �



A POINT-FREE APPROACH TO CANONICAL EXTENSIONS 21

For a poset X and S ⊆ X , we use the standard notation

↑S = {x ∈ S | s ≤ x for some s ∈ S}

↓S = {x ∈ S | x ≤ s for some s ∈ S}.

If S = {x} is a singleton, we write ↑x for ↑S and ↓x for ↓S. The closure and interior

operators of the Alexandroff topology on X are given by

cl(S) = ↓S and int(S) = {x ∈ X | ↑x ⊆ S}.

Lemma 6.6. Let A ∈ baℓ, X = Arch(A) \ {A}, and I ∈ X. Then ↑I and UI := {J ∈ X |

J ∨ I = A} are regular open subsets of X, and UI is the complement of ↑I in RO(X).

Proof. Since ↑I is an upset, hence open in X , the inclusion ↑I ⊆ int cl(↑I) is clear. For the

reverse inclusion, suppose that J /∈ ↑I. By Lemma A.5(2), there is K ⊇ J with K + I = A.

Therefore, K /∈ ↓↑I, so ↑J 6⊆ ↓↑I = cl(↑I), showing that J /∈ int cl(↑I). Thus, ↑I ∈ RO(X).

Since UI is an upset, the inclusion UI ⊆ int cl(UI) is clear. Suppose that J /∈ UI . Then

K := J ∨ I 6= A. If K ⊆ L with L ∨ I = A, then L = A since I ⊆ K ⊆ L. Therefore,

↑K 6⊆ ↓UI , so ↑J 6⊆ cl(UI), and hence J 6∈ int cl(UI). This shows UI = int cl(UI), so

UI ∈ RO(X).

Finally, to see that UI is the complement of ↑I in RO(X), it is clear that ↑I ∩UI = ∅. Let

V ∈ RO(X) with ↑I ∩ V = ∅. If J ∈ V , then I 6⊆ J . Therefore, by Lemma A.5(2), there is

K ∈ X with J ⊆ K and K + I = A, so K ∨ I = A as K + I ⊆ K ∨ I. Thus, K ∈ UI , and

hence J ∈ ↓UI . This shows that V ⊆ ↓UI , so V ⊆ int cl(UI) = UI . Consequently, UI is the

complement of ↑I in RO(X). �

From now on we will assume that X is the set of proper archimedean ℓ-ideals of A ∈ baℓ

ordered by inclusion. The proof of the next theorem is choice-free.

Theorem 6.7. There is a baℓ-isomorphism ϕ : D(R[B]) → N(X) such that ϕ(xI) = χUI

for each I ∈ X.

Proof. We first define λ : Arch(A) → Id(N(X)) by setting λ(I) = χUI
. By Lemmas 6.5 and

6.6, χUI
∈ Id(N(X)), so λ is well defined. We show that λ is a bounded lattice homomor-

phism. It is clear that U0 = ∅ and UA = X . We show that UI∩J = UI ∩ UJ . It is obvious

that I ⊆ J implies UI ⊆ UJ . Therefore, UI∩J ⊆ UI ∩ UJ . For the reverse inclusion, suppose

that K ∈ UI ∩ UJ . Then K ∨ I = K ∨ J = A, so (K ∨ I) ∩ (K ∨ J) = A. Since Arch(A)

is a frame, K ∨ (I ∩ J) = A, and so K ∈ UI∩J . We next show that UI∨J = UI ∨ UJ . The

inclusion UI ∨UJ ⊆ UI∨J is obvious. For the reverse inclusion, suppose that K ∈ UI∨J . Then

K ∨ (I ∨ J) = A. Let L ∈ X with K ⊆ L. If L ∨ I = A, then L ∈ UI . If not, then as

(L ∨ I) ∨ J = A, we have L ∨ I ∈ UJ so L ∈ ↓UJ . Therefore, in any case, L ∈ ↓UI ∪ ↓UJ ,

and so

K ∈ int(↓UI ∪ ↓UJ) = int(↓(UI ∪ UJ)) = int cl(UI ∪ UJ) = UI ∨ UJ .

Thus, λ is a bounded lattice homomorphism, and hence it extends to a BA-morphism τ :

B → Id(N(X)) (see, e.g., [1, Sec. V.4]). By Theorem 3.11(1), there is a baℓ-morphism

σ : R[B] → N(X) with σ(xI) = τ(I) = χUI
.
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To simplify notation, set eI = χ↑I and fI = χUI
. Then eI , fI are complementary idempo-

tents of N(X) by Lemma 6.6. We show that σ is one-to-one. Let a ∈ R[B] with σ(a) = 0.

By Remark 3.14, we may write a = r1xb1 + · · · + rnxbn for some ri ∈ R and bi ∈ B with

bi ∧ bj = 0 whenever i 6= j. From this we see that axbi = rixbi ∈ ker(σ). Therefore, it suffices

to show that σ(rxb) = 0 implies rxb = 0. If r = 0, this is clear, so suppose r 6= 0. Then

xb ∈ ker(σ). Since B is generated by Arch(A), we may write b = (I1∧¬J1)∨ · · ·∨ (In ∧¬Jn)

for some Ik, Jk ∈ Arch(A). Then 0 ≤ xIk∧¬Jk ≤ xb, so each xIk∧¬Jk ∈ ker(σ). Suppose that

σ(xI∧¬J) = 0. We have

0 = σ(xI∧¬J) = σ(xI) ∧ σ(x¬J ) = τ(I) ∧ ¬τ(J) = fI ∧ eJ ,

where the last equality follows from Lemma 6.6. Therefore, eJ ≤ ¬fI = eI , so ↑J ⊆ ↑I. This

yields I ⊆ J , so I ∧ ¬J = 0 in B, and hence xI∧¬J = 0. This shows that σ is one-to-one.

We next show that each element of N(X) is a join from σ[R[B]]. To do this we first show

that each nonnegative element of N(X) is a join of scalar multiples of the eI = χ↑I . Let

0 ≤ f ∈ N(X). We show that f is the join of those reI for r ∈ R with reI ≤ f . Clearly

f is above this join. Let I ∈ X and set r = f(I). Then f(J) ≥ r for each J ∈ ↑I since

f is order preserving. Because 0 ≤ f , this shows reI ≤ f . But (reI)(I) = r. Therefore,
∨

{reI | r ∈ R, reI ≤ f} = f , and so
⊔

{reI | r ∈ R, reI ≤ f} = f , where
⊔

is the

normalization of
∨

(see Theorem 6.4). For an arbitrary f ∈ N(X), there is s ∈ R with

f+s ≥ 0. Thus, f+s is a join from the image of R[B], and hence so is f by Remark 3.15(1).

Consequently, by Theorem 3.7, there is a baℓ-isomorphism ϕ : D(R[B]) → N(X) with

ϕ(xI) = σ(xI) = χUI
. �

Theorem 6.8. Assuming (AC), there is a baℓ-isomorphism ψ : N(X) → B(YA) such that

ψ(f) = f |YA is the restriction of f to YA.

Proof. To see that ψ is a baℓ-morphism, we first observe that if f ∈ B(X) and I ∈ X , then

since ↑I is the least open neighborhood of I in X , we have

f ∗(I) = inf{sup f [U ] | U ∈ NI} = sup{f(J) | I ⊆ J}.

This yields that f ∗(M) = f(M) for each M ∈ YA. A similar calculation gives f∗(I) =

inf{f(J) | I ⊆ J}. Therefore, since f ∗ is order reversing by Lemma 6.1(2),

f#(I) = (f ∗)∗(I) = inf{f ∗(J) | I ⊆ J} = inf{f ∗(M) |M ∈ YA, I ⊆M}

= inf{f(M) |M ∈ YA, I ⊆M}.

Consequently, f#|YA = f |YA.

Denoting the sum in N(X) by ⊕, we have for f, g ∈ N(X)

ψ(f ⊕ g) = ψ((f + g)#) = (f + g)#|YA = (f + g)|YA = f |YA + g|YA = ψ(f) + ψ(g).

A similar calculation shows that ψ preserves the other operations. Thus, ψ is a baℓ-

morphism.

We next show that ψ is onto. Let h ∈ B(YA) and define hu on X by

hu(I) = inf{h(M) | M ∈ YA, I ⊆M}.
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Then hu ∈ B(X) and

(hu)#(I) = inf{hu(M) | M ∈ YA, I ⊆M} = inf{h(M) | M ∈ YA, I ⊆M} = hu(I).

This implies that hu ∈ N(X). By definition of hu we have ψ(hu) = hu|YA = h. Thus, ψ is

onto.

Finally, we show that ψ is one-to-one. Let f, g ∈ N(X) with ψ(f) = ψ(g). Then f |YA =

g|YA and for each I ∈ X we have

f(I) = f#(I) = inf{f(M) |M ∈ YA, I ⊆M} = inf{f |YA(M) |M ∈ YA, I ⊆M}

= inf{g|YA(M) | M ∈ YA, I ⊆M} = inf{g(M) |M ∈ YA, I ⊆M} = g#(I) = g(I),

which yields f = g. Thus, ψ is one-to-one. �

Recalling the isomorphism θ : D(R[B]) → B(YA) in the beginning of Section 5 (see

Figure 1) and putting Theorems 6.7 and 6.8 together, we obtain:

Theorem 6.9. Assuming (AC), for A ∈ baℓ, the algebras D(R[B]), N(X), and B(YA) are

all isomorphic. Moreover, if γ = ϕ ◦ α, then

γ(a)(I) = sup{r ∈ R | (a− r)− ∈ I}

and the following diagram commutes.

D(R[B])

A N(X)

B(YA)

ϕ

θ

ζA

α

γ

ψ

Proof. The isomorphism θ : D(R[B]) → B(YA) satisfies θ(xI) = χZℓ(I)c for each I ∈ Arch(A)

and α = θ−1 ◦ ζA, where Zℓ(I)
c denotes the complement of Zℓ(I) in YA. We show that

θ = ψ ◦ ϕ. Since all three maps are dbaℓ-isomorphisms and so preserve arbitrary joins, it is

enough to show that they agree on R[B]. For the latter it is enough to show that they agree

on each xI for I ∈ X . We have θ(xI) = χZℓ(I)c and ϕ(xI) = χUI
. Since ψ(χUI

) = χUI
|YA,

we then need to show that Zℓ(I)
c = UI ∩ YA. To see this, if M ∈ YA, then M ∈ Zℓ(I)

c

iff I 6⊆ M . Since M is maximal, I 6⊆ M iff M + I = A. But M + I = A iff M ∨ I = A

by Lemma A.2(4). Since M ∨ I = A iff M ∈ UI , it follows that Zℓ(I)
c = UI ∩ YA, which

completes the proof that θ = ψ ◦ ϕ. Thus,

ψ ◦ γ = ψ ◦ ϕ ◦ α = θ ◦ α = ζA,

which shows that the diagram is commutative.
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It is left to show that the formula for γ is valid. Suppose that 0 ≤ a ∈ A. Since ϕ preserves

arbitrary joins, by Lemmas 5.7(1), 6.6, and Theorem 6.7, we have

γ(a) = ϕ(α(a)) =
⊔

{ϕ(rx¬I) | (a− r)− ∈ I}

=
⊔

{rϕ(x¬I) | (a− r)− ∈ I}

=
⊔

{rχ↑I | (a− r)− ∈ I}.

Let f ∈ B(X) be the pointwise join of {rχ↑I | (a−r)
− ∈ I}. Then γ(a) = f# by Theorem 6.4.

We claim that f(J) = sup{r | (a− r)− ∈ J} for each J ∈ X , and that f ∈ N(X). We have

f(J) = sup{rχ↑I(J) | (a− r)− ∈ I}

= sup{r | (a− r)− ∈ I, J ∈ ↑I}

= sup{r | (a− r)− ∈ J}.

To see the last equality, if (a − r)− ∈ I and J ∈ ↑I, then (a − r)− ∈ J . Conversely, if

(a− r)− ∈ J , then setting I = J , we have (a− r)− ∈ I and J ∈ ↑I.

To show that f ∈ N(X), by [17, Thm. 3.2] it is enough to show that f is lower semi-

continuous and f−1(−∞, s) is a union of regular closed sets for each s ∈ R. First, f

is clearly order preserving, so f is lower semicontinuous by Lemma 6.1(1). Next, Let

I ∈ f−1(−∞, s). Set t = f(I) < s, so (a − t)− ∈ I by Lemma A.7(1). In addition,

J := I ∨ 〈(a− t)+〉 6= A by Lemma A.7(3). Let U = ↑J , an open subset of X . We claim

that I ∈ cl(U) ⊆ f−1(−∞, s). Since I ⊆ J , we have I ∈ ↓(↑J) = cl(U). Because f is order

preserving, f−1(−∞, s) is a downset. Therefore, to show that cl(U) ⊆ f−1(−∞, s), it suffices

to show that ↑J ⊆ f−1(−∞, s). Let K ∈ X with J ⊆ K. We have (a − t)− ∈ I ⊆ J , so

(a−t)− ∈ K, and (a−t)+ ∈ J , so (a−t)+ ∈ K. Thus, a−t ∈ K by Remark 3.15(5). Because

(a− t)− ∈ K, we have t ≤ f(K). Let f(K) = r. Then (a − r)− ∈ K by Lemma A.7(1). If

r > t, we have 〈(a− t)+, (a− r)−〉 = A by Lemma A.5(1), so K = A. This contradiction

shows that f(K) ≤ t, so f(K) < s. Therefore, ↑J ⊆ f−1(−∞, s), and hence f−1(−∞, s) is

a union of regular closed sets. Thus, we conclude that f ∈ N(X).

Since f ∈ N(X), we have f# = f , so γ(a) = f# = f . This shows that if 0 ≤ a, then

γ(a)(I) = sup{r | (a − r)− ∈ I} for all I ∈ X . If a is arbitrary, then there is n ≥ 1 with

a+ n ≥ 0. Since γ preserves addition, by the above argument we have:

γ(a)(J) = (γ(a + n)− n)(J) = sup{r | (a + n− r)− ∈ J} − n

= sup{r − n | (a+ n− r)− ∈ J} = sup{s | (a− s)− ∈ J},

completing the proof. �

Consequently, we have three equivalent ways to think about canonical extensions of baℓ-

algebras:

(1) The simplest is as (B(YA), ζA) which is a direct generalization of viewing the powerset

of its Stone space as a canonical extension of a boolean algebra [32]. However, this

requires (AC).
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(2) A choice-free description is as (N(X), γ), which generalizes the choice-free description

of a canonical extension of a boolean algebra as regular opens of the Alexandroff space

of its proper filters given in [13].

(3) Finally, a point-free description is as (D(R[B]), α), which is technically the most

challenging. It is this description that generalizes the point-free description of a

canonical extension of a boolean algebra given in Section 2.

In point-free topology there is a description of normal functions on an arbitrary frame

[24, 26, 27, 25]. We finish the article by the following remark, which connects our results to

that line of research.

Remark 6.10. We recall that Frm is the category of frames and frame homomorphisms. If

L,K are frames, then we write homFrm(L,K) for the set of frame homomorphisms from L

to K. Let L be a frame. It is well known that homomorphic images of L are characterized

by nuclei on L (see, e.g., [35, Sec. III.5.3]). For a frame L we write Nuc(L) for the frame

of nuclei on L. We also write L (R) for the frame of opens of R. A point-free description

of L (R) is due to Banaschewski [2] (see also [35, Sec. XIV.1]). The role of C(X) is then

played by the ℓ-algebra C (L) = homFrm(L (R), L).

As was shown in [24, Sec. 5] the role of the algebra of all real-valued functions on X is

played by the ℓ-algebra F (L) = homFrm(L (R),Nuc(L)), and that of B(X) by the bounded

subalgebra F ∗(L) of F (L). Then the operators (−)∗, (−)∗ : B(X) → B(X) generalize to

(−)∗, (−)∗ : F ∗(L) → F ∗(L) [25, Sec. 3], yielding the notion of normal function on L. We

write N(L) = {f ∈ F ∗(L) | (f ∗)∗ = f} for the set of (bounded) normal functions on L. It

follows from [16] and [10, Sec. 8] that N(L) ∈ dbaℓ.

Let A ∈ baℓ, L = Arch(A), and (B, i) be the free boolean extension of L. Then B is

isomorphic to Id(N(L)), yielding that D(R[B]) is isomorphic to N(L). Thus, our point-free

description of a canonical extension of A can alternatively be described using the algebra of

normal functions in point-free topology.

Appendix: Technical lemmas

In this appendix we present the technical lemmas used in Section 5 to prove that the pair

(D(R[B]), α) is a canonical extension of A ∈ baℓ. We start by recalling that 0 ≤ u ∈ A is

a weak order-unit if a ∧ u = 0 implies a = 0 for each a ∈ A. It is well known that a strong

order-unit is a weak order-unit (see, e.g., [14, Lem. XIII.11.4]). It is easy to see that any

positive multiple of a strong order-unit is again a strong order-unit. Thus, every positive

multiple of a strong order-unit is a weak order-unit. We will use this in the proof of next

lemma.

Lemma A.1. Let A ∈ baℓ.

(1) If e, f ∈ Id(A), and 0 ≤ r, s ∈ R, then re ∧ sf = min(r, s)(e ∧ f).

(2) Let a ∈ A and r, s ∈ R with r < s. If a ∨ r ≥ s, then a ≥ s.
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Proof. (1) Without loss of generality suppose that r ≤ s. Since (e−(e∧f))∧f = (e−f)∧f =

0, we have r(e− (e ∧ f)) ∧ sf = 0 by Remark 3.15(9). Therefore,

0 ≤ (re ∧ sf)− r(e ∧ f) ≤ r(e− (e ∧ f)) ∧ sf = 0

by Remark 3.15(1). Thus, re ∧ sf = r(e ∧ f) = min(r, s)(e ∧ f).

(2) If a∨r ≥ s, then −s ≥ −(a∨r) = (−a)∧(−r), so 0 ≥ s+[(−a)∧(−r)] = (s−a)∧(s−r).

This yields

0 = [(s− a) ∧ (s− r)] ∨ 0 = [(s− a) ∨ 0] ∧ (s− r).

Because s − r > 0, it is a weak order-unit. Therefore, (s − a) ∨ 0 = 0, and so s − a ≤ 0.

Thus, s ≤ a. �

Lemma A.2. Let A ∈ baℓ.

(1) If I + J = A, then there are a ∈ I, b ∈ J with 0 ≤ a, b and a+ b = 1.

(2) 〈I〉 = A implies I = A.

(3) If I, J ∈ Arch(A), then I ∨ J = 〈I + J〉.

(4) If I, J ∈ Arch(A) and I ∨ J = A, then I + J = A.

Proof. (1) Since I + J = A, there are x ∈ I and y ∈ J with 1 = x + y. Since y ∈ J , we

have 1 + J = x + J ≤ |x| + J . Set a = 1 ∧ |x|. Then 0 ≤ a ≤ 1 and a ∈ I because x ∈ I,

so |x| ∈ I. Therefore, a + J = (1 + J) ∧ (|x| + J) = 1 + J . Thus, b := 1 − a ∈ J . Clearly

a+ b = 1 and 0 ≤ b since a ≤ 1.

(2) Suppose 〈I〉 = A. Then 1 ∈ 〈I〉, so (n · 1− 1)+ ∈ I for each n ≥ 1 by Proposition 4.8.

In particular, (2 · 1− 1)+ ∈ I. Thus, 1 ∈ I, and so I = A.

(3) Since I + J ⊆ I ∨ J and I ∨ J is archimedean, we have 〈I + J〉 ⊆ I ∨ J . On the other

hand, 〈I + J〉 is an archimedean ideal which contains both I and J , so it contains I ∨ J .

Thus, I ∨ J = 〈I + J〉.

(4) This follows from (2) and (3). �

Let L be a frame and B its free boolean extension. We recall that for a ∈ L, we write a∗

for the pseudocomplement of a in L. On the other hand, we write ¬a for the complement of

a in B.

Lemma A.3. Let A ∈ baℓ and B be the free boolean extension of Arch(A).

(1) If I ∈ Arch(A), then xI =
∨

{x¬J | J ∨ I = A}.

(2) If 0 ≤ f ∈ D(R[B]), then there are 0 ≤ rI ∈ R with f =
∨

{rIx¬I | I ∈ Arch(A)}.

(3) Let 0 ≤ f ∈ D(R[B]) and 0 ≤ t ∈ R. If f =
∨

{rIx¬I | I ∈ Arch(A)} with rI ≥ 0,

then f + t =
∨

{(t+ rI)x¬I | I ∈ Arch(A)}.

Proof. (1) Since Arch(A) is a regular frame (see Theorem 4.4),

I =
∨

{K | K ≺ I} =
∨

{K | K∗ ∨ I = A}.

We show that I =
∨

{¬J | J ∨ I = A}. The right-to-left inclusion is clear. For the left-to-

right inclusion it is sufficient to show that if K∗ ∨ I = A, then K ≤ ¬J for some J with

J ∨ I = A. But if we set J = K∗, then K ⊆ K∗∗ = J∗ ≤ ¬J . Thus, I =
∨

{¬J | J ∨ I = A},

and hence xI =
∨

{x¬J | J ∨ I = A}.
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(2) Each element of D(R[B]) is a join from R[B]. A nonnegative element of R[B] can

be written in the form r1xb1 + · · · + rnxbn = r1xb1 ∨ · · · ∨ rnxbn for some 0 ≤ ri ∈ R and

b1, . . . , bn ∈ B with bi∧ bj = 0 whenever i 6= j (see Remark 3.14). Since each b ∈ B is a finite

join of elements of the form J ∧¬I with I, J ∈ Arch(A), we may write a nonnegative element

of R[B] as a join of elements of the form r(xJ ∧ x¬I). Thus, by (1), if 0 ≤ f ∈ D(R[B]), we

may write f as a join of elements of the form rx¬I with I ∈ Arch(A).

(3) By Remark 3.14(2,3), xI + x¬I = xI ∨ x¬I = 1. Therefore, by Remark 3.15(1),

f + t =
∨

{t+ rIx¬I | I ∈ Arch(A)} =
∨

{(t+ rI)x¬I + txI | I ∈ Arch(A)}.

Because x¬I ∧ xI = 0, Remark 3.15(9) implies (t + rI)x¬I ∧ txI = 0, so (t + rI)x¬I + txI =

(t+ rI)x¬I ∨ txI . Thus, by (1),

f + t =
∨

{(t+ rI)x¬I ∨ txI | I ∈ Arch(A)}

=
∨

{(t+ rI)x¬I ∨ tx¬J | I, J ∈ Arch(A), I ∨ J = A}.

Now, t ≤ t+rJ , so tx¬J ≤ (t+rJ)x¬J . Consequently, f+t =
∨

{(t+rI)x¬I | I ∈ Arch(A)}. �

Remark A.4. Let A ∈ baℓ. For S ⊆ A we let [S] be the ℓ-ideal of A generated by S. It is

well known (see, e.g., [33, p. 96]) that

[S] = {x ∈ A : |x| ≤ n|a| for some n ≥ 1, a ∈ S}.

If S = {a}, we write [a] for [S].

Lemma A.5. Let A ∈ baℓ and let X = Arch(A) \ {A}.

(1) If a, b ∈ A with a < b and b− a ∈ R, then 〈b+, a−〉 = A.

(2) If I, J ∈ X with I 6⊆ J , then there is K ∈ X with J ⊆ K and K + I = A.

Proof. (1) Set I = 〈b+, a−〉. Since 0 ≤ a+ ≤ b+, we have a+ ∈ I, so a = a+ − a− ∈ I. Also,

as 0 ≤ b− ≤ a−, we have b− ∈ I, and so b ∈ I. Thus, b− a ∈ I, and since b− a is a nonzero

real number, it is a unit in A, and hence I = A.

(2) Since I 6⊆ J there is a ∈ I with a /∈ J . Because J is archimedean, by Proposition 4.8,

there is n ≥ 1 with (n|a| − 1)+ /∈ J . Let K = J ∨ 〈(n|a| − 1)−〉. Then J ⊆ K, and

I ∨ K = A by (1). We show that K ∈ X . Otherwise 1 = x + y with 0 ≤ x, y, x ∈ J ,

and y ∈ 〈(n|a| − 1)−〉. We claim that y(n|a| − 1)+ = 0. To see this, we set b = n|a| − 1.

Since y ∈ 〈b−〉, we have (y − 1/p)+ ∈ [b−] for each p ≥ 1 by Proposition 4.8. Therefore,

by Remark A.4, for each p there is m with (y − 1/p)+ ≤ mb−. Thus, 0 ≤ (y − 1/p)+b+ ≤

mb−b+ = 0 by Remark 3.15(7), and so (y− 1/p)+b+ = 0. Because y− 1/p ≤ (y − 1/p)+, we

have (y − 1/p)b+ ≤ (y − 1/p)+b+ = 0, so yb+ ≤ (1/p)b+, which yields pyb+ ≤ b+. Since this

is true for all p ≥ 1, it follows that yb+ = y(|n|a−1)+ = 0 as A is archimedean. This verifies

the claim. Therefore, (n|a|−1)+ = (n|a|−1)+(x+y) = (n|a|−1)+x, and so (n|a|−1)+ ∈ J ,

which is a contradiction. Thus, K ∈ X . �

Lemma A.6. Let A ∈ baℓ, B be the free boolean extension of Arch(A), X = Arch(A)\{A},

I ∈ X, 0 ≤ f, g ∈ D(R[B]), and 0 ≤ t ∈ R. Suppose that whenever tx¬I ≤ f , there is

K ∈ X with I ⊆ K and tx¬K ≤ g. Then f ≤ g.
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Proof. To show f ≤ g, by Lemma A.3(2) we need to show that tx¬I ≤ f implies tx¬I ≤ g.

Given tx¬I ≤ f , there is K ⊇ I with tx¬K ≤ g. If K = I, then we are done. Suppose I ⊂ K.

For each J ⊇ I with J ∨K = A we have tx¬J ≤ tx¬I ≤ f , so there is J ′ ⊇ J with tx¬J ′ ≤ g.

We have J ′ ∨K = A since J ′ ⊇ J . We claim that

I = K ∩
⋂

{J ′ ∈ X | J ′ ⊇ J, J ′ ∨K = A}.

The inclusion I ⊆ K ∩
⋂

{J ′ ∈ X | J ′ ⊇ J, J ′ ∨ K = A} is clear since I ⊆ J ⊆ J ′. For

the reverse inclusion, let a ∈ K \ I. Then |a| ∈ K \ I, so we assume 0 ≤ a. Since I is

archimedean, there is n ≥ 1 with (a − 1/n)+ /∈ I. We show that I ∨ 〈(a− 1/n)−〉 6= A.

For, if I ∨ 〈(a− 1/n)−〉 = A, then I + [(a− 1/n)−] = A by Lemma A.2. Therefore, by

Lemma A.2(1), there are 0 ≤ x, y with x ∈ I, y ∈ [(a− 1/n)−], and x + y = 1. Thus,

by Remark A.4, we have y ≤ m(a − 1/n)− for some m ≥ 1, and hence y(a − 1/n)+ = 0

by Remark 3.15(7). Consequently, (a − 1/n)+ = (a − 1/n)+x ∈ I, a contradiction. Set

J = I ∨ 〈(a− 1/n)−〉. Because 〈a, (a− 1/n)−〉 = A by Lemma A.5(1), we have J ∨K = A

since a ∈ K, and a /∈ J ′ because J ′ is proper. Therefore, a is not in the intersection. Thus,

I = K ∩
⋂

{J ′ ∈ X | J ′ ⊇ J, J ′ ∨K = A} as desired. From this we obtain that in B we have

¬I = ¬K ∨
∨

{¬J ′ | J ′ ⊇ J, J ′ ∨K = A}, and so

tx¬I = tx¬K ∨
∨

{tx¬J ′ | J ′ ⊇ J, J ′ ∨K = A} ≤ g.

�

We arrive at our final auxiliary lemma, item (2) of which has the most involved proof.

Lemma A.7. Let A ∈ baℓ, X = Arch(A) \ {A}, 0 ≤ a ∈ A, and I ∈ X.

(1) If sI = sup{r | (a− r)− ∈ I}, then (a− sI)
− ∈ I.

(2) rx¬I ≤ α(a) iff (a− r)− ∈ I.

(3) sI = sup{r | rx¬I ≤ α(a)} and I ∨ 〈(a− sI)
+〉 6= A.

Proof. (1) If (a− r)− ∈ I, then a+ I ≥ r+ I in A/I by Remark 4.7(2). We use this to show

that (a− sI)
− ∈ I. For each n ≥ 1 there is r with (a− r)− ∈ I and sI − 1/n ≤ r. Therefore,

(sI − 1/n) + I ≤ r + I ≤ a + I, and so (sI − a) + I ≤ 1/n + I. Since this is true for all

n, we have (sI − a) + I ≤ 0 + I as A/I is archimedean. Thus, sI + I ≤ a + I. Applying

Remark 4.7(2) again yields (a− sI)
− ∈ I.

(2) If (a − r)− ∈ I, then rx¬I ≤ α(a) by Lemma 5.7(1). Conversely, suppose that

rx¬I ≤ α(a). The result is clear if r ≤ 0 since then (a−r)− = 0 ∈ I, so assume r > 0. By (1)

and Lemma 5.7(1), we may write α(a) =
∨

{sJx¬J | J ∈ Arch(A)}, where sJ is given in (1).

To show (a−r)− ∈ I we then need to show r ≤ sI . We have rx¬I ≤
∨

{sJx¬J | J ∈ Arch(A)}

and rx¬I ≤ r. Therefore,

rx¬I ≤
∨

{sJx¬J | J ∈ Arch(A)} ∧ r

=
∨

{sJx¬J ∧ r | J ∈ Arch(A)}

=
∨

{min(sJ , r)x¬J | J ∈ Arch(A)}
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by Remark 3.15(2) and Lemma A.1(1). To simplify notation set tJ = min(sJ , r). Then

(a− tJ)
− ≤ (a− sJ)

−, so (a− tJ)
− ∈ J . From this and Remark 3.14(3) we get

r = rxI ∨ rx¬I ≤ rxI ∨
∨

{tJx¬J | J ∈ Arch(A)} ≤ r

since the join is bounded by r, so equality holds throughout. Fix ε > 0. Then

r =
(

rxI ∨
∨

{tJx¬J | J ∈ Arch(A)}
)

∨ (r − ε)

= rxI ∨
∨

{tJx¬J ∨ (r − ε) | J ∈ Arch(A)}.

If tJ ≤ r − ε, then tJx¬J ≤ r − ε. Therefore,

r = rxI ∨
∨

{tJx¬J ∨ (r − ε) | J ∈ Arch(A)}

=
(

rxI ∨
∨

{tJx¬J | r − ε < tJ}
)

∨ (r − ε).

Thus, rxI ∨
∨

{tJx¬J | r − ε < tJ} = r by Lemma A.1(2). Multiplying both sides by r−1

yields xI ∨
∨

{r−1tJx¬J | r − ε < tJ} = 1. Consequently, x¬I ≤
∨

{r−1tJx¬J | r − ε < tJ} by

Remark 3.13(2), and hence rx¬I ≤ {tJx¬J | r−ε < tJ}. Let S = {J ∈ Arch(A) | r−ε < tJ}.

We then have rx¬I ≤
∨

{tJx¬J | J ∈ S} and (a − (r − ε))− ∈ J for each J ∈ S since

(a − (r − ε))− ≤ (a − tJ )
− and (a − tJ)

− ∈ J . Because tJ ≤ r for each J by definition

and r > 0, we have rx¬I ≤
∨

{rx¬J | J ∈ S}, so x¬I ≤
∨

{x¬J | J ∈ S}. Therefore,

¬I ≤
∨

{¬J | J ∈ S} in B. Since B is a boolean algebra,
∧

B S ≤ I. Because Arch(A)

is a sublattice of B, we have
∧

Arch(A) S ≤
∧

B S. But
∧

Arch(A) S =
⋂

S, so
⋂

S ⊆ I. As

(a− (r − ε))− ∈ J for each J ∈ S, we see that (a− (r − ε))− ∈ I. Since this is true for all

ε, we have a+ I ≥ (r − ε) + I for each ε, so a+ I ≥ r + I because I is archimedean. Thus,

(a− r)− ∈ I.

(3) We write s = sI for convenience. The first part of the statement follows from (1)

and (2). Suppose that I ∨ 〈(a− s)+〉 = A. Then I + [(a− s)+] = A by Lemma A.2. By

Lemma A.2(1) and Remark A.4, there are 0 ≤ x, y with x ∈ I, y ≤ n(a − s)+ for some n,

and x + y = 1. Then 1/n − y/n = x/n ∈ I and 1/n − y/n ≥ 1/n − (a − s)+. Therefore,

1/n− y/n ≥ (1/n− (a− s)+) ∨ 0, so (1/n− (a− s)+)+ ∈ I. Using items (3), (1), (2), and

(4) of Remark 3.15, we have
(

1/n− (a− s)+
)+

= (1/n− ((a− s) ∨ 0))+ = (1/n+ ((s− a) ∧ 0))+

= ((s+ 1/n− a) ∧ 1/n) ∨ 0

= ((s+ 1/n− a) ∨ 0) ∧ 1/n

= (a− (s+ 1/n))− ∧ 1/n.

Thus, (a− (s+ 1/n))− ∧ 1/n ∈ I. Let m ≥ 1 be such that (a− (s+ 1/n))− ≤ m. Applying

Remark 3.15(8) yields

(a− (s+ 1/n))− ≤ mn(a− (s+ 1/n))− ∧m

= mn[(a− (s+ 1/n))− ∧ 1/n] ∈ I.

Therefore, (a − (s + 1/n))− ∈ I, so (s + 1/n)x¬I ≤ α(a) by Lemma 5.7(1). This is a

contradiction to the definition of s = sI . Thus, I ∨ 〈(a− sI)
+〉 6= A. �
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