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GEOMETRIC REALIZATIONS OF TAMARI INTERVAL LATTICES

VIA CUBIC COORDINATES

CAMILLE COMBE

ABSTRACT. We introduce cubic coordinates, which are integer words encoding intervals in
the Tamari lattices. Cubic coordinates are in bijection with interval-posets, themselves known
to be in bijection with Tamari intervals. We show that in each degree the set of cubic coordi-
nates forms a lattice, isomorphic to the lattice of Tamari intervals. Geometric realizations are
naturally obtained by placing cubic coordinates in space, highlighting some of their proper-
ties. We consider the cellular structure of these realizations. Finally, we show that the poset
of cubic coordinates is shellable.
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2 CAMILLE COMBE

INTRODUCTION

The Tamari lattices are partial orders having extremely rich combinatorial and algebraic
properties. These partial orders are defined on the set of binary trees and rely on the
rotation operation [Tam62]. We are interested in the intervals of these lattices, meaning
the pairs of comparable binary trees. Tamari intervals of size n also form a lattice. The
number of these objects is given by a formula that was proved by Chapoton [Cha06]:

2(4n + 1)!
(n + 1)!(3n + 2)! . (0.0.1)

Strongly linked with associahedra, Tamari lattices have been recently generalized in
many ways [BPR12,PRV17]. In this process, the number of intervals of these generalized
lattices have also been enumerated through beautiful formulas [BMFPR12,FPR17]. Many
bijections between Tamari intervals of size n and other combinatorial objects are known.
For instance, a bijection with 3-connected planar triangulations is presented by Bernardi
and Bonichon in [BB09] (see also [Fan18]). It has been proved by Châtel and Pons that
Tamari intervals are in bijection with interval-posets of the same size [CP15].

We provide in this paper a new bijection with Tamari intervals, which is inspired by
interval-posets. More precisely, we first build two words of size n from the Tamari dia-
grams [Pal86] of a binary tree. If they satisfy a certain property of compatibility, we build
a Tamari interval diagram from these two words. We show that Tamari interval diagrams
and interval-posets are in bijection. Then we propose a new encoding of Tamari inter-
vals, by building (n − 1)-tuples of numbers from Tamari interval diagrams. We call these
tuples cubic coordinates. This new encoding has two obvious virtues: it is very compact
and it gives a way of comparing in a simple manner two Tamari intervals, through a fast
algorithm. On the other hand, some properties of Tamari intervals translate nicely in the
setting of cubic coordinates. For instance, synchronized Tamari intervals [FPR17] become
cubic coordinates with no zero entry. Besides, cubic coordinates provide naturally a geo-
metric realization of the lattice of Tamari intervals, by seeing them as space coordinates.
Indeed, all cubic coordinates of size n can be placed in the space Rn−1. By drawing their
cover relations, we obtain a directed graph. This gives us a realization of cubic coordinate
lattices, which we call cubic realization. This realization leads us to many questions, in
particular about the cells it contains. We characterize these cells in a combinatorial way,
and we deduce a formula to compute the volume of the cubic realization in the geomet-
rical sense. Another direction, more topological, involves the shellability of partial order.
We show, drawing inspiration from the work of Björner and Wachs [BW96, BW97], that
the cubic coordinates poset is EL-shellable, and as a consequence its associated complex
is shellable.

This article is organized in three sections.
The first section is dedicated to reminders about some definitions, such as binary trees,

Tamari intervals and interval-posets, and sets out the conventions used. Because of its
key role in this work, the bijection between Tamari intervals and interval-posets is also
recalled in this section.
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In the second section, we define Tamari interval diagrams and show that they are in
bijection, size by size, with interval-posets. We then define cubic coordinates and show that
they are in bijection, size by size, with Tamari interval diagrams. Using this two bijections,
and after having endowed the set of cubic coordinates with a partial order, we show that
there is a poset isomorphism between the poset of cubic coordinates and the poset of
Tamari intervals.

As pointed out above, the poset of cubic coordinates can then be realized geometrically.
This cubic realization and the cells that compose it are the object of the third section. For
each cell, we then associate a synchronized cubic coordinate, which is a cubic coordinate
without letter 0. By relying upon this particular cubic coordinate, we give a formula to
compute the volume of the cubic realization. Finally, we extend the result of Björner
and Wachs on the Tamari posets to the Tamari interval posets, by showing that the cubic
coordinate posets are EL-shellable.

This article is a complete version of [Com19]. All the proofs are given and several new
results are presented, such as the EL-shellability of cubic coordinate posets.

General notations and conventions. Throughout this article, for all words u, we denote
by ui the i-th letter of u. For any integers i and j , [i, j] denotes the set {i, i+ 1, . . . , j}. For
any integer i, [i] denotes the set [1, i]. All posets considered in this article are finite.

1. PRELIMINARIES

In this first section we provide some basic notions of combinatorics and the conventions
used afterwards. For this, we recall the definitions of lattices, binary trees, Tamari intervals,
and interval-posets. Also, we recall the bijection given in [CP15].

1.1. Posets and lattices. A partially ordered set, commonly called poset, is a pair (P,4P).
When the context is clear, we simply denote this pair by P.

When two elements x and y of P satisfy x 4P y, then we say that x and y are compa-
rable. Otherwise, they are incomparable.

Let x, y ∈ P such that x 4P y and x 6= y. The element y covers x, denoted by x⋖P y,
for the partial order 4P if, for all z ∈ P such that x 4P z 4P y, either z = x or z = y.
The binary relation ⋖P is called the covering relation of the poset P. By a slight abuse
of notation, the set of elements (x, y) such that x⋖P y is also denoted by ⋖P.

A maximal element of P is an element x such that if there is y ∈ P such that x 4P y,
then y = x. Likewise, a minimal element of P is an element y such that if there is x ∈ P
such that x 4P y, then x = y. A poset P is bounded if it has a unique maximal element
and a unique minimal element for 4P.

Since a partial order is transitive, one can realize posets or lattices by knowing only
covering relations. The natural way to realize posets is to draw their Hasse diagrams, by
drawing a edge between all x and y in P such that (x, y) ∈ ⋖P. For any (x, y) ∈ ⋖P, we
choose the convention to represent x at the top and y at the bottom in the Hasse diagrams.
We will keep this convention for all realizations.
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Let x, y ∈ P, the join between x and y, denoted by ∨P(x, y) (or x ∨P y), is defined by
∨P (x, y) := min4P

{z ∈ P : x 4P z and y 4P z}. (1.1.1)
The meet between x and y, denoted by ∧P(x, y) (or x ∧P y), is defined by

∧P (x, y) := max4P
{z ∈ P : z 4P x and z 4P y}. (1.1.2)

A poset P is a join-semilattice if for all x, y ∈ P, ∨P(x, y) exists. Likewise, a poset P is a
meet-semilattice if for all x, y ∈ P, ∧P(x, y) exists. A poset (L,4L) is a lattice if L is a
join-semilattice and a meet-semilattice.

Let P be a poset and u(1), u(2) ∈ P such that u(1) 4P u(2). An interval (u(1), u(2)) is the
set of all elements between u(1) and u(2). The set of intervals of P is denoted by int(P).
The poset of intervals of a poset P is the poset on the set int(P) endowed with the partial
order 4int(P) defined, for all (u(1), u(2)), (v(1), v(2)) ∈ int(P), by

(u(1), u(2)) 4int(P) (v(1), v(2)) if u(1)
4P v(1) and u(2)

4P v(2). (1.1.3)
In the same way, for (u(1), u(2)), (v(1), v(2)) ∈ int(L) such that (u(1), u(2)) 4int(L) (v(1), v(2)), a
covering relation for the partial order 4int(L) is defined.

The property of being a lattice is preserved under this construction.
Proposition 1.1.1. If (L,4L) is a lattice, then (int(L),4int(L)) is a lattice.

Proof. Let (u(1), u(2)), (v(1), v(2)) ∈ int(L). First, we have to show that ∨L(u(1), v(1)) 4L

∨L(u(2), v(2)). By the definition of the join, one has u(2) 4L ∨L(u(2), v(2)) and v(2) 4L

∨L(u(2), v(2)). Furthermore, since u(1) 4L u(2) and v(1) 4L v(2) , one has u(1) 4L ∨L(u(2), v(2))
and v(1) 4L ∨L(u(2), v(2)). In addition, ∨L(u(1), v(1)) is the minimal element of L satisfying
u(1) 4L ∨L(u(1), v(1)) and v(1) 4L ∨L(u(1), v(1)). Thus, ∨L(u(1), v(1)) 4L ∨L(u(2), v(2)).

From (1.1.3), one has
∨int(L)

((u(1), u(2)), (v(1), v(2)))

= min4int(L){(w(1), w(2)) ∈ int(L) : (u(1), u(2)) 4int(L) (w(1), w(2)), (v(1), v(2)) 4int(L) (w(1), w(2))}
= min4int(L){(w(1), w(2)) ∈ int(L) : u(1) 4L w(1), u(2) 4L w(2), v(1) 4L w(1), v(2) 4L w(2)}

= (
∨L(u(1), v(1)), ∨L(u(2), v(2))) .

(1.1.4)
The case of the meet ∧int(L)

((u(1), u(2)), (v(1), v(2))) = (
∧L(u(1), v(1)), ∧L(u(2), v(2))) is sym-

metrical. �

1.2. Rooted trees and binary trees. A rooted tree, or simply a tree in our context, is
defined recursively as a node together with a (possibly empty) sequence of rooted trees.
We shall use the standard terminology about trees like root, edge, child, descendant,
subtree, etc. The size of a tree is its number of nodes. The nodes of the trees considered
in this work are labeled by positive integers. We draw trees with the root at the top, where
a node is depicted by with its label inside the circle. A forest is a sequence of trees.
From a forest f of n trees, it is always possible to build a tree t by taking the root of each
element of f and by linking all these roots to an artificial node, such that this artificial node
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become the root of t. The size of the obtained tree is one plus the sum of all sizes of trees
in f.

A binary tree (or 2-tree) t is either a leaf or a node attached through two edges to
two binary trees, which are called respectively the left subtree and the right subtree of
t. Recall that the size of a binary tree is its number of nodes. We denote by T2(n) the set
of binary trees of size n. The set of binary trees is enumerated by Catalan numbers. We
draw binary trees with the root at the top and the leaves at the bottom, where a node is
depicted by and a leaf is depicted by (see for instance Figure 1).

Let t ∈ T2(n). Each node of t is numbered recursively, starting with the left subtree,
then the root, and ending with the right subtree. An example is given in Figure 1. This
numbering then establishes a total order on the nodes of a binary tree called the infix
order. Afterwards, this numbering is used to refer to the nodes. The sequence of nodes
numbered from 1 to n forms the infix traversal.

When the size n of t satisfies n > 1, the canopy of t is the word of size n − 1 on the
alphabet {0, 1} built by assigning to each leaf of t a letter as follows. Any leaf oriented
to the left (resp. right) is labeled by 0 (resp. 1). The canopy of t is the word obtained by
reading from left to right the labels thus established, forgetting the first and the last one
(since there are always respectively 0 and 1). For instance, the binary tree in Figure 1 has
for canopy the word 0110100. There is a link between infix order of a binary tree and
its canopy. For a node of index i for the infix order in a tree t, the right subtree of i is
a leaf oriented to the right if and only if the i-th letter of the canopy of t is 1. The left
subtree of i is a leaf oriented to the left if and only if the (i − 1)-th letter of the canopy of
t is 0. The two direct implications can be proved by induction on the set of binary trees,
for instance, see Lemma 4.3. of [Gir12]. The converses are simply given by the definition
of the canopy.

1

2

3

4

5

6

7

8

FIGURE 1. A binary tree of size 8 and the numbering of its nodes in the
infix order.

A fundamental operation in binary trees is the right rotation [Tam62]. Let k and l be
the indices for the infix order of two nodes of a binary tree t, such that the node k is
the left child of the node l. Right rotation locally changes the tree t so that l becomes
the right child of k (see Figure 2). Equivalently, this means that the local configuration
((a, b), c) becomes (a, (b, c)), where a, b and c are the subtrees shown in Figure 2.
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l

a b

k c

k

a l

cb

r. rot.

FIGURE 2. Right rotation of edge (k, l) in t (on the left), where a, b, and c

are any subtrees.

1.3. Tamari intervals and interval-posets. For any n > 0, let s, t ∈ T2(n). We set s 4ta t if
either t = s or t is obtained by successively applying one or more right rotations in s. The
set T2(n) endows with 4ta is the Tamari lattice of order n [HT72]. Moreover, s is covered
by t, denoted by s⋖ta t, if t is obtained from s by performing one right rotation.

In the literature, the Tamari lattice is closely related to the associahedron, or the Stash-
eff polytope after the work of Stasheff. More precisely, the Hasse diagram of the Tamari
lattice is the 1-skeleton of the associahedron.

Let s, t ∈ T2(n). A Tamari interval of size n is an interval (s, t) for the Tamari order
4ta. The set of Tamari intervals of size n is denoted by int(T2(n)).

The Tamari interval lattice is the set int(T2(n)) endowed with the partial order 4int(ta). Let
n > 0 and (s, t), (s′, t′) ∈ int(T2(n)), following (1.1.3), we have that (s, t) 4int(ta) (s′, t′) if s 4ta s′

and t 4ta t′. According to Proposition 1.1.1, the poset so defined is a lattice. Moreover, it
follows from the definition of 4int(ta) that (s′, t′) covers (s, t) if

⋆ either s′ is obtained by a single right rotation of an edge in s and t′ = t,
⋆ or t′ is obtained by a single right rotation of an edge in t and s′ = s.

It is known from [Cha06] that Tamari intervals of size n are enumerated by
2(4n + 1)!

(n + 1)!(3n + 2)! . (1.3.1)

The first numbers are
1, 1, 3, 13, 68, 399, 2530, 16965. (1.3.2)

This sequence is Sequence A000260 of [Slo].
Interval-posets are posets introduced by Châtel and Pons in [CP15] in order to study the

Tamari lattice. Indeed, there is a poset isomorphism between the Tamari interval lattices
and the set of interval-posets endowed with a certain partial order.

Let n > 0 and {π1, . . . , πn} be a set of n symbols numbered from 1 to n. An interval-
poset π is a partial order � on the set {π1, . . . , πn} such that

(i) if i < k and πk � πi, then for all πj such that i < j < k, one has πj � πi ,
(ii) if i < k and πi � πk, then for all πj such that i < j < k, one has πj � πk.

The size of an interval-poset is the cardinality of its underlying set. The set of interval-
posets of size n is denoted by IP(n), and the elements of interval-poset are called vertices.

http://oeis.org/A000260
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The two conditions (i) and (ii) of interval-posets are referred to as interval-poset prop-
erties. For any i < j , the relations πj � πi are known as decreasing relations and the
relations πi � πj are known as increasing relations.

As it is shown in Figure 4b, the Hasse diagram of interval-posets can be drawn as
directed graph where two vertices πi and πj are related by an arrow from πi to πj (resp.
πj to πi) if πi � πj (resp. πj � πi) where i < j .

Let n > 0 and (s, t) ∈ int(T2(n)) and π ∈ IP(n). We will recall a bijection ρ relating on
the one hand the restriction of π to its decreasing relations with the binary tree s, and on
the other hand the restriction of π to its increasing relations with the binary tree t.

Thus, from the restriction of π to its decreasing (resp. increasing) relations we build
a forest referred to as the decreasing (resp. increasing) forest, such that if πj � πi with
i < j (resp. j < i), then the node j is a descendant of the node i. Otherwise, if πj ⋪ πi with
i < j (resp. j < i) the node j is placed to the right (resp. left) of the node i.

Note that we obtain a decreasing (resp. increasing) forest formed by trees labelled from
the roots to the leaves in increasing (resp. decreasing) order. Moreover, the prefix (resp.
suffix) traversal of the decreasing (resp. increasing) forest gives the sequence of labels
1, . . . , n. Let us add a virtual root node (without label) on the top of both decreasing and
increasing forests to form two trees. We denote by s′ and t′ the trees respectively obtained
from the decreasing and the increasing forests.

Let ρ be the map sending π to the pair (s, t) of binary trees defined such that the tree
s (resp. t) is the unique binary tree obtained by reading s′ (resp. t′) in the following way.
For all label i, j in s′ (resp. t′), if a node j is a descendant of a node i in s′ (resp. t′), then j

becomes a right (resp. left) descendant of the node i in s (resp. t). If a node i is a left (resp.
right) brother of a node j in s′ (resp. t′), then i becomes a left (resp. right) descendant of
the node j in s (resp. t).

Figure 3 gives an example of construction by the bijection ρ of a Tamari interval from
an interval-poset of size 5.

In this section, we shall draw interval-posets as follows. For any i < j , if πj � πi and
there is no vertex πk such that πk � πi and j < k, then we draw an arrow with source πj
and target πi from below as shown in the example in Figure 4. Symmetrically, if πj � πk
and j < k and if there is no πi such that πi � πk and i < j , then we draw an arrow with
source πj and target πk from above. We refer to this directed graph with two types of
arrows as the minimalist representation of π.

The closure for the interval-poset properties is given by adding the decreasing rela-
tions πj � πi for any relation πk � πi and by adding the increasing relations πj � πk for
any relation πi � πk, for any i < j < k. By taking the reflexive closure and the closure
for the interval-poset properties, an interval-poset is obtained from the minimalist repre-
sentation. The interest of the minimalist representation is justified later, in particular with
Theorem 2.2.3. It is important to represent the decreasing relations and the increasing
relations independently.
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π1 π2 π3 π4 π5

(A) Interval-poset of size 5.

1
2 3

4
5

1
2 3

4 5

(B) Decreasing (on the left) and in-
creasing (on the right) forests

1

2

3

4

5

(C) Left binary tree.

1

2

3

4

5

(D) Right binary tree.

FIGURE 3. Construction of a Tamari interval from an interval-poset by ρ.

π1 π2 π3 π4 π5 π6 π7 π8

(A) Minimalist representation.

π1 π2 π3 π4 π5 π6 π7 π8

(B) Hasse diagram.

π1 π2 π3 π4 π5 π6 π7 π8

(C) Diagram with all apparent (except
reflexive) relations.

FIGURE 4. Different representations of an interval-poset of size 8.

Let n > 0 and π, π ′ ∈ IP(n) and (s, t) := ρ(π), (s′, t′) := ρ(π ′). Let (⋆) (resp. (⋄)) the
following condition: π ′ is obtained from π by adding (resp. removing) only decreasing
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(resp. increasing) relations of target a vertex πk , such that if only one of these decreasing
(resp. increasing) relations is removed (resp. added), then either π is obtained or the object
obtained is not an interval-poset.

For the sequel, we need to recall that (s′, t′) covers (s, t) if and only if π and π ′ satisfy
either (⋆) or (⋄).
Lemma 1.3.1. The interval-posets π and π ′ satisfy (⋆) (resp. (⋄)) for the vertex πi (resp.
πj ) if and only if s′ (resp. t′) is obtained by a unique right rotation of the edge (i, j) in s

(resp. t) and t′ = t (resp. s′ = s).

Proof. Suppose π and π ′ satisfy (⋆) for the vertex πi. Therefore, π ′ has more decreasing
relations of target π ′i than the vertex πi in π. Suppose that the vertices πj and πi are
not related in π , and that π ′j and π ′i are related in π ′, with i < j . Then, by the interval-
poset property (i), for any π ′k such that i < k < j , π ′k � π ′i. Moreover, if we remove
only one of these decreasing relations, we obtain either π or an object that is no longer
an interval-poset. This means that the number of descending relations added in π ′ is
minimal, or equivalently, that the vertex πj is closest to the vertex πi such that πj and πi
are not related in π and i < j . This case is depicted in Figure 5. By the bijection ρ, add

a︷ ︸︸ ︷
. . . πi−1 πi

b︷ ︸︸ ︷
πi+1 . . . πj−1 πj

c︷ ︸︸ ︷
πj+1 . . .

FIGURE 5. Interval-poset of the decreasing forest before (without dotted
line) and after (with dotted line) the right rotation of the edge (i, j), where
a, b and c may be empty.

these decreasing relations of target πi in π leads to the decreasing forest induced by s′

represented by Figure 6b. A unique right rotation is then made between the trees s and
s′ (see Figure 6a). Furthermore, since the increasing relations are unchanged between π

and π ′, the increasing forests induced by t and t′ are the same, and thus t′ = t.
Reciprocally, suppose that s′ is obtained by a unique right rotation of the edge (i, j) in s

and that t′ = t. The case is depicted by Figure 6a, and the two decreasing forests induced
by s and s′ are depicted by Figure 6b. By the bijection ρ, we then obtain the interval-poset
whose restriction to decreasing relations is shown by Figure 5. Since t′ = t, the increasing
relations of the interval-posets associated with (s, t) and (s′, t′) are the same. Finally, π ′ is
obtained by adding only decreasing relations of target πi in π. Furthermore, if only one
of these relations is removed, then either π is obtained, or the object obtained is not an
interval-poset. This means that π and π ′ satisfy (⋆).

Symmetrically, we show that π and π ′ satisfy (⋄) for πj if and only if t′ is obtained by a
unique right rotation of the edge (i, j) in t and s′ = s. Figure 6c and Figure 7 depicts this
case. �
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j

A B

i C

i

A j

CB

r. rot.

(A) Binary trees s and s′ (resp. t and t′).

a i

b

j

c

a

c

b

i

j

(B) Decreasing forests induced by
s and s′.

j

i b

c

a

i

a b

j c

(C) Increasing forests induced by t

and t′.

FIGURE 6. Right rotation of the edge (i, j) in the binary tree s (resp. t),
where a, b and c are subtrees.

. . . πi−1︸ ︷︷ ︸
a

πi πi+1 . . . πj−1︸ ︷︷ ︸
b

πj πj+1 . . .︸ ︷︷ ︸
c

FIGURE 7. Interval-poset of the increasing forest before (with dotted lines)
and after (without dotted lines) the right rotation of the edge (i, j), where
a, b and c may be empty.

2. CUBIC COORDINATES AND TAMARI INTERVALS

The aim of this section is to build the poset of the cubic coordinates, then to establish the
poset isomorphism between this poset and the poset of the Tamari intervals. To achieve
this goal, we first define the Tamari interval diagrams based on the interval-posets. The
cubic coordinates are then obtained from the Tamari interval diagrams.

2.1. Tamari interval diagrams. Let us give the definition of a Tamari diagram, as for-
mulated in [BW97]. For any n > 0, a Tamari diagram is a word u of length n on the
alphabet N which satisfies the two following conditions:

(i) 0 6 ui 6 n − i for all i ∈ [n],
(ii) ui+j 6 ui − j for all i ∈ [n] and j ∈ [0, ui].
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The size of a Tamari diagram is its number of letters. For instance, the sets of Tamari
diagrams of size 2, 3 and 4 are

{00, 10}, {000, 100, 010, 200, 210},
{0000, 0010, 0100, 0200, 0210, 1000, 1010, 2000, 2100, 3000, 3010, 3100, 3200, 3210}. (2.1.1)

In the literature, Tamari diagrams are also known as bracket vectors, objects inspired
by the right bracketing introduced in [HT72] by Huang and Tamari. Furthermore, Tamari
diagrams are known to be enumerated by Catalan numbers

cat(n) := 1
n + 1

(2n
n

)
. (2.1.2)

A dual version of Tamari diagrams can be defined by considering the opposite of Con-
ditions (i) and (ii). For any n > 0, a dual Tamari diagram is a word v of length n on the
alphabet N which satisfies the two following conditions:

(i) 0 6 vi 6 i − 1 for all i ∈ [n],
(ii) vi−j 6 vi − j for all i ∈ [n] and j ∈ [0, vi ].

The size of a dual Tamari diagram is its number of letters. In other words, v = v1 . . . vn
is a dual Tamari diagram if and only if vn . . . v1 is a Tamari diagram.

Note that the first condition of a Tamari diagram u and of a dual Tamari diagram v of
size n implies that un = 0 and v1 = 0.

A graphical representation of a Tamari diagram u of size n by needles and diagonals
provides a simple way to check Condition (ii) of a Tamari diagram. For each position
i ∈ [n], we draw a needle from the point (i − 1, 0) to the point (i − 1, ui) in the Cartesian
plane. Condition (ii) says that one can draw lines of slope −1 passing through the x-axis
and the top of each needle without crossing any other needle. For instance, the Tamari
diagram 9021043100 is drawn by Figure 8. One can observe that none of its diagonals,
drawn as dotted lines, crosses a needle.

Likewise, a graphical representation can be given for the dual Tamari diagram v of
size n. One draws v in the same way as Tamari diagram, and Condition (ii) says that one
can draw lines of slope 1 passing through the x-axis and the top of each needle without
crossing any other needle. Figure 8 also depicts the dual Tamari diagram 0010040002.

FIGURE 8. A Tamari diagram 9021043100 (on the left) and a dual Tamari
diagram 0010040002 (on the right) of size 10.
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FIGURE 9. A binary tree and the associated Tamari diagram of the same
size.

For any n > 0, the set of Tamari diagrams of size n is in bijection with T2(n). Indeed,
one builds from a Tamari diagram u of size n a binary tree s recursively as follows. If
n = 0, s is defined as the leaf. Otherwise, let i be the smallest position in u such that ui is
the maximum allowed value, namely n − i. Then s1 := u1 . . . ui−1 and s2 := ui+1 . . . un are
also Tamari diagrams. One forms s by grafting the binary trees obtained recursively by
this process applied on s1 and on s2 to a new node. Reciprocally, for each node of index i
of the tree s, labeled with an infix traversal, the value of the i-th letter of the corresponding
Tamari diagram is given by the number of nodes in the right subtree of the node i. The
complete demonstration is given in [Pal86].

In the case of dual Tamari diagrams, the construction of the binary tree t is also recur-
sive, except that it is the maximum position i in the dual Tamari diagram whose value is
the highest allowed on that section of the word that should be chosen first. Similarly for
the reciprocal, the procedure is identical, except that the value of the i-th letter in the dual
Tamari diagram is given by the number of nodes in the left subtree of the node i in the
tree t.

For instance, in Figure 1, the Tamari diagram is 10040210 and the dual Tamari dia-
gram is 00230100. Figure 9 depicts the corresponding binary tree of the Tamari diagram
1003010.

Let n > 0 and u be a Tamari diagram, and v be a dual Tamari diagram, both of size
n. The diagrams u and v are compatible if there are no i, j with 1 6 i < j 6 n such that
ui > j − i and vj > j − i. If u and v are compatible, then the pair (u, v) is called Tamari
interval diagram. The set of Tamari interval diagrams of size n is denoted by TID(n).

In other words, a Tamari diagram u of size n and a dual Tamari diagram v of size n

are compatible if for any needle of position i and height vi 6= 0 in v (resp. ui 6= 0 in u),
there is no needle of position j and height greater than or equal to i − j in u (resp. j − i in
v) with i − vi 6 j 6 i − 1 (resp. i + 1 6 j 6 i + ui) and i ∈ [n].

For example, the two diagrams in Figure 8 are compatible. Figure 10 gives two other
examples of two incompatible diagrams 00400000 and 00003000, and two compatible di-
agrams 04000000 and 00000030. Hereinafter, if u and v are compatible, we can also say
that u and v satisfy the compatibility condition.

As for Tamari diagrams and dual Tamari diagrams, a graphical representation of the
Tamari interval diagram is also possible, as shown in Figure 10. Figure 11 gives the
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FIGURE 10. Two incompatible diagrams (on the left) and two compatible
diagrams (on the right).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

FIGURE 11. A Tamari interval diagram of size 10 (on the left) and its asso-
ciated interval-poset (on the right).

representation of the Tamari interval diagram (9021043100, 0010040002) formed by the
two diagrams seen in Figure 8 which are compatible, where we have simply considered
the symmetry relative to the abscissa axis of the Tamari diagram, and placed it under the
dual Tamari diagram. Thus, the Tamari diagram u is drawn below and the dual Tamari
diagram v is drawn above. With such a representation, it is then easy to verify that u
and v are compatible. Indeed, any needle of u that is below the diagonal linking the top
of the needle in position j in v to the abscissa point j − vj , has a diagonal that intersects
the x-axis strictly before the position j . Symmetrically, any needles of v that is above a
diagonal linking the top of the needle in position i in u to the abscissa point i + ui, has a
diagonal that intersects the x-axis strictly after the position i.

One consequence of the compatibility condition is that each needle of non-zero height
in the dual Tamari diagram v is always preceded by a needle of u of zero height. Sym-
metrically, each non-zero height needle in the Tamari diagram u is always followed by a
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needle of v of zero height. In other words, for any i ∈ [n], ui and vi+1 can both be zero,
but cannot both be non-zero.

2.2. Link with interval-posets. Let us show that there is a bijection between the set of
Tamari interval diagrams and the set of interval-posets of the same size.

Let n > 0 and χ be the map sending a Tamari interval diagram (u, v) of size n to the
relation

({π1, . . . , πn},�) (2.2.1)

where πi+l � πi for all i ∈ [n] and 0 6 l 6 ui, and πi−k � πi for all i ∈ [n] and 0 6 k 6 vi.

Proposition 2.2.1. For any n > 0, the map χ has values in IP(n).
Proof. Let (u, v) ∈ TID(n) and π := χ(u, v). First, we show that � is a partial order, then
that interval-poset properties are satisfied.

(1) By the definition of χ one has πi+l�πi and πi−k�πi with 0 6 l 6 ui and 0 6 k 6 vi
for all πi ∈ π. Specifically, πi � πi. This shows that π is reflexive.

(2) Let πi, πj and πk be vertices of π with i < j < k.
(a) Suppose that πj � πi and that πk � πj . Then πj � πi implies that there is an

integer 0 6 i′ 6 ui such that j = i + i′. Therefore, by Condition (ii) of a
Tamari diagram, uj = ui+i′ 6 ui − i′. Likewise, πk � πj implies that there
is an integer 0 6 j ′ 6 vj such that k = j + j ′. Still by the same condition,
one has uk = uj+j ′ 6 uj − j ′. By using these two inequalities, we obtain that
ui > uk + i′ + j ′. Since i′ + j ′ = k − i, then we have ui > k − i, which implies
by the definition of χ that πk � πi in π.

(b) Suppose that πj�πi and that πi�πk. Therefore, πj�πk because πi�πk implies
that each vertex between πi and πk is in relation with πk.

(c) Suppose that πi � πj and that πj � πk. Then πi � πj implies that there is an
integer 0 6 i′ 6 vi such that i = j − i′. By Condition (ii) of a dual Tamari
diagram, vi = vj−i′ 6 vj − i′. Likewise, πj � πk implies that there is an integer
0 6 j ′ 6 vj such that j = k − j ′. By the same condition (ii), vj = vk−j ′ 6 vk − j ′.
By these two inequalities, one has vk > vi + i′ + j ′. Since i′ + j ′ = k− i, one has
vk > k − i, which implies by the definition of χ that πi � πk in π.

(d) Suppose that πj � πk and that πk � πi. Then πj � πi because πk � πi implies
that all vertex between πi and πk is in relation with πi.

This shows that π is transitive. Notice that it is impossible to have the case πi �πk
and πk � πj since π is the image of a Tamari interval diagram. Getting this case
would contradict the fact that u and v are compatible. Similarly, the case πi � πj
and πk � πi is impossible.

(3) Let i < j and πi , πj be vertices of π. Suppose that πj � πi and that πi � πj . By
the definition of χ, πj � πi if and only if ui > j − i. Likewise, πi � πj if and only
if vj > j − i. However, since u and v are compatible, this case is impossible. This
shows that π is antisymmetric.



GEOMETRIC REALIZATIONS OF TAMARI INTERVAL LATTICES VIA CUBIC COORDINATES 15

(4) The definition of χ implies directly that π satisfies the interval-poset properties,
namely that for all πi , πj and πk vertices of π with i < j < k, if πk�πi, then πj �πi ,
and if πi � πk , then πj � πk.

�

Let n > 0 and χ′ be the map sending an interval-poset π of size n on a pair of words
(u, v) ∈ Nn × Nn , such that for all i ∈ [n],

ui := #{πj ∈ π : πj � πi and i < j}; (2.2.2)
vj := #{πi ∈ π : πi � πj and i < j}. (2.2.3)

Lemma 2.2.2. Let n > 0, π ∈ IP(n) and (u, v) := χ′(π). If ui > j − i (resp. vj > j − i), then
πj � πi (resp. πi � πj), with 0 6 i 6 j 6 n.

Proof. According to (2.2.2), the fact that ui > j −i means that there are at least j −i vertices
in decreasing relation to the vertex πi. By the point (i) of interval-poset properties, this
implies in particular that πj �πi. Respectively, we show with the point (ii) of interval-poset
properties that vj > j − i implies that πi � πj . �

Theorem 2.2.3. For any n > 0, the map χ : TID(n) Ï IP(n) is bijective.

Proof. Let us show that χ′ is the inverse map of χ. Let n > 0, π ∈ IP(n) and (u, v) := χ′(π).
(1) Since π is an interval-poset, there are at most n − i vertices of π in decreasing

relation to πi and at most i − 1 vertices of π in increasing relation to πi for all
i ∈ [n]. Therefore, the word u satisfies Condition (i) of a Tamari diagram and the
word v satisfies Condition (i) of a dual Tamari diagram.

(2) Let πi and πi+j be vertices of π such that i ∈ [n] and j ∈ [0, ui]. By Lemma 2.2.2,
the fact that ui > j means that πi+j �πi. Thus, by transitivity of interval-posets, one
has that for any i + j 6 k 6 n, if πk � πi+j , then πk � πi. Thus, ui+j + j 6 ui, which
implies Condition (ii) of a Tamari diagram.
Symmetrically, Condition (ii) of a dual Tamari diagram is checked by considering
πi and πi−j vertices of π such that i ∈ [n] and j ∈ [0, vi].

(3) For all i, j such that 1 6 i < j 6 n and ui > j − i, suppose that vj > j − i. By
Lemma 2.2.2, the relation ui > j − i implies that πj � πi. Likewise, the relation
vj > j − i means that πi�πj . Both of these implications lead to a contradiction with
the antisymmetric nature of interval-posets. Necessarily, we have vj < j − i, which
implies that u and v are compatible.

The pair (u, v) is a Tamari interval diagram of size n. Finally, it is clear that χ(u, v) = π

by construction. Therefore, the map χ is surjective.
Let (u, v) and (u′, v′) be two Tamari interval diagrams of size n, such that (u, v) 6= (u′, v′)

and such that χ(u, v) := π and χ(u′, v′) := π ′. So there is at least one letter of (u, v) and
(u′, v′) such that ui 6= u′i or vi 6= v′i , for i ∈ [n]. Therefore, the number of vertices of π in
relation to the vertex πi associated with the component ui and vi by χ is different from
the number of vertices of π ′ in relation to the vertex π ′i associated with the component u′i
and v′i by χ, we thus have π 6= π ′. This shows that the map χ is injective. �
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The minimalist representation of the interval-posets defined in Section 1 allows us to
describe a direct construction of the corresponding Tamari interval diagram. Indeed, let
us consider the minimalist representation of an interval-poset π of size n. For any relation
πj � πi (resp. πi � πj) drawn, with 1 6 i < j 6 n, we set ui := j − i (resp. vj := j − i) and all
other elements not involved in any relation to 0. This forms a pair of words (u, v) which
is the inverse image of π by χ.

An example is given by Figure 11, where a Tamari interval diagram and its interval-
poset which is its image by χ are shown.

2.3. Cubic coordinates. We describe in this part the set of cubic coordinates, and we
show that there is a bijection between this set and the set of Tamari interval diagrams.

An (n−1)-tuple c on Z is a cubic coordinate if there is a Tamari interval diagram (u, v)
of size n such that

c = (u1 − v2, u2 − v3, . . . , un−1 − vn). (2.3.1)
The size of a cubic coordinate is its number of components plus one. The set of cubic
coordinates of size n is denoted by CC(n). For instance, (9, −1, 2, 1, −4, 4, 3, 1, −2) is a cubic
coordinate of size 10 since there is the Tamari interval diagram (9021043100, 0010040002)
satisfying the conditions of the definition.

Besides, for any n > 1, let φ be the map sending an (n − 1)-tuple c on Z to a pair (u, v)
of words on N, both of length n, such that u satisfies un = 0 and for any i ∈ [n − 1],

ui = max(ci, 0), (2.3.2)
and v satisfies v1 = 0 and for any 2 6 i 6 n,

vi = |min(ci−1, 0)|. (2.3.3)
Theorem 2.3.1. For any n > 0, the map φ : CC(n) Ï TID(n) is bijective.

Proof. Let c and c′ be two cubic coordinates of size n such that c 6= c′. Then there is a
component ci such that ci 6= c′i , with i ∈ [n − 1]. By the map φ, one has then ui 6= u′i or
vi+1 6= v′i+1, namely (u, v) 6= (u′, v′). Which shows that the map φ is injective.

Let (u, v) ∈ TID(n). Let c := (u1 − v2, u2 − v3, . . . , un−1 − vn), the (n − 1)-tuple whose
components are given by the difference between ui and vi+1 for any i ∈ [n − 1]. Now if
ui 6= 0, then vi+1 = 0 for any i ∈ [n − 1]. Therefore, φ(c) = (u, v), where (u, v) is indeed a
Tamari interval diagram by hypothesis. By the definition of a cubic coordinate, one can
conclude that c ∈ CC(n). This shows that the map φ is surjective. �

Therefore, by the map φ it is possible to build a cubic coordinate from a Tamari interval
diagram and reciprocally. Graphically, we have to shift the upper part of a Tamari interval
diagram (corresponding to the dual Tamari diagram) to the left by one position and collect
the height of the needles from left to right. Then, we put a positive sign for the needles
of the lower part of the Tamari interval diagram (corresponding to the Tamari diagram)
and a negative sign for the upper part, and we forget the last needle of zero height. To
reconstruct a Tamari interval diagram from a cubic coordinate, we reconstruct the needles
of the Tamari diagram and the dual Tamari diagram from the components of the cubic
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coordinate in the same way, and then we shift the dual Tamari diagram to the right by
one position.

Using the map χ we can then directly give the cubic coordinate of an interval-poset π.
In the same way that we shift the dual Tamari diagram one position to the left, we shift
all the increasing relations of the interval-poset to the left by one vertex. Then, for each
vertex πi , we count the number of elements in increasing or decreasing relation of target
πi , out of reflexive relation, for all i ∈ [n − 1]. These numbers become the components
of positive sign if it is a decreasing relation, negative otherwise, of the cubic coordinate.
As the increasing relations have been shifted, the number associated with the vertex πn is
always zero. Therefore, this vertex is forgotten for the cubic coordinate. In the same way,
to construct an interval-poset from a cubic coordinate with each component of a cubic
coordinate, we rebuild the increasing and decreasing relations on n − 1 vertices, we add
the vertex πn , then we shift the increasing relations to the right.

Lemma 2.3.2. Let n > 0 and c ∈ CC(n) such that there is a component ci 6= 0, for
i ∈ [n − 1]. Let c′ be the (n − 1)-tuple such that c′i = 0 and c′j = cj for any j 6= i, with
j ∈ [n − 1]. Then c′ is a cubic coordinate.

Proof. Let (u′, v′) := φ(c′) and (u′j , v′j+1) be the pair of letters corresponding to c′j by the
map φ, with j ∈ [n−1]. Since c′i = 0, then (u′i, v′i+1) = (0, 0). By hypothesis, all other pairs of
letters are the same as those of (u, v) := φ(c). In order to show that c′ is a cubic coordinate,
we have to show that (u′, v′) is a Tamari interval diagram, namely that (u′, v′) satisfies the
conditions of a Tamari diagram, of a dual Tamari diagram, and of compatibility. Clearly,
with (u′i, v′i+1) = (0, 0), all these conditions are satisfied for (u′, v′). �

Depending on the case, either the definition of cubic coordinates or the definition of
Tamari interval diagrams is used, as it is done for the proof of Lemma 2.3.2. For example,
the following results are stated for Tamari interval diagrams.

Let n > 0. A Tamari interval diagram (u, v) of size n is synchronized if either ui 6= 0
or vi+1 6= 0 for any i ∈ [n − 1].

Likewise, a cubic coordinate c of size n is synchronized if ci 6= 0 for any i ∈ [n − 1].
The set of synchronized cubic coordinates of size n is denoted by SCC(n).

A Tamari interval (s, t) is synchronized if and only if the binary trees s and t have the
same canopy [FPR17,PRV17]. The definition of the canopy is recalled in Section 1.

Proposition 2.3.3. Let n > 0 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v) is
synchronized if and only if ρ(χ(u, v)) is a synchronized Tamari interval.

Proof. If (u, v) is not synchronized, then there is an index i ∈ [n− 1] such that ui = 0 and
vi+1 = 0. Let π := χ(u, v) be the interval-poset associated to (u, v), and (s, t) := ρ(χ(u, v)).
The two binary trees s and t are not synchronized if there is at least one letter of some
index j in the canopy of the tree s that is different from the letter of the same index j in
the canopy of t. Let us show that (u, v) is not synchronized if and only if the binary trees
s and t are not synchronized.
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The letter ui is equal to 0 if and only if there is no descending relation of target πi in
π , namely, if and only if the node i has no right child in the tree s (see Section 1.3). To
summarize, ui = 0 if and only if the right subtree of the node i is a leaf oriented to the
right. Now, as recall in Section 1.2, a leaf linked to the node i is oriented to the right if
and only if the i-th letter in the canopy corresponding to s is 1.

Symmetrically, vi+1 = 0 if and only if there is no increasing relation of target πi+1 in π ,
namely, if and only if the node i + 1 has no left child in the tree t. Then, vi+1 = 0 if and
only if the left subtree of the node i+ 1 is a leaf oriented to the left. As seen in Section 1,
a leaf linked to the node i + 1 is oriented to the left if and only if the i-th letter in the
canopy corresponding to t is 0.

To conclude, ui = 0 and vi+1 = 0 if and only if the letter of index i in the canopy of the
tree s is different from the letter of index i in the canopy of the tree t. Therefore, (u, v)
is not synchronized if and only if the binary trees s and t are not synchronized. �

An interval-poset π of size n > 3 is new if
(1) there is no decreasing relation of source πn ,
(2) there is no increasing relation of source π1,
(3) there is no relation πi+1 � πj+1 and πj � πi with i < j .

The definition of a new interval-poset is given in [Rog20].
For any n > 3, a Tamari interval diagram (u, v) of size n is new if the following condi-

tions are satisfied
(i) 0 6 ui 6 n − i − 1 for all i ∈ [n − 1],
(ii) 0 6 vj 6 j − 2 for all j ∈ [2, n],
(iii) uk < l − k − 1 or vl < l − k − 1 for all k, l ∈ [n] such that k + 1 < l.

Proposition 2.3.4. Let n > 3 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v) is
new if and only if χ(u, v) is a new interval-poset.

Proof. Let us show that π := χ(u, v) is not new if and only if (u, v) is not new. Theorem 2.2.3
leads to three cases.

⋆ Let us consider the negation of (i) of a new Tamari interval diagram by assuming
that ui = n−i. By Lemma 2.2.2, this implies that πn�πi with i ∈ [n−1]. Reciprocally,
if πn � πi with i ∈ [n − 1], then by the point (i) of interval-poset properties, all
vertices between πi and πn are in decreasing relation to πi. Since ui := #{πj ∈ π :
πj � πi and i < j}, it implies that ui = n − i.

⋆ Likewise, by Lemma 2.2.2, if vj = j − 1, then π1 �πj with j ∈ [2, n]. By the point (ii)
of interval-poset properties, we get the converse property.

⋆ According to Lemma 2.2.2, if ui > j − i, then πj � πi , and if vj+1 > j − i, then
πi+1 � πj+1 with i < j . We obtain the two converse properties with respectively
the point (i) and the point (ii) of interval-poset properties. Specifically, by setting
l := j+1 and k := i, we find the formulation of the negation of (iii) of a new Tamari
interval diagram, with k + 1 < l.

�
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In [Rog20] it is shown that a Tamari interval is new if and only if the associated interval-
poset is new. With Proposition 2.3.4 we get the following result.

Proposition 2.3.5. Let n > 3 and (u, v) ∈ TID(n). The Tamari interval diagram (u, v) is
new if and only if ρ(χ(u, v)) is a new Tamari interval.

Proposition 2.3.6. Let n > 3 and (u, v) ∈ TID(n). If (u, v) is synchronized, then (u, v) is
not new.

Proof. Assume by contradiction that (u, v) is synchronized and new. Since (u, v) is new,
one has ui < n − i for i ∈ [n − 1], and vj < j − 1 for j ∈ [2, n]. In particular, un−1 = 0 and
v2 = 0. This implies, since (u, v) is synchronized, that u1 6= 0 and vn 6= 0. Furthermore,
since (u, v) is new, Condition (iii) of a Tamari interval diagram is satisfied. Specifically, for
any k ∈ [n − 2], either uk < 1 or vk+2 < 1. Let us denote by (∗) this condition. Assuming
that u1 6= 0, since (u, v) is synchronized, one has either u2 6= 0 or v3 6= 0. By (∗), the second
choice is impossible, thus u2 6= 0. By the same reasoning, for every k ∈ [n − 2], uk 6= 0.
However, also by assumption one has vn 6= 0. Therefore, un−2 6= 0 and vn 6= 0 which is a
contradiction with (∗). �

2.4. Order structure. Firstly, we endow the set of cubic coordinates with an order relation.
Then we show that there is an isomorphism between this poset and the poset of Tamari
intervals. The two bijections constructed in the first two parts of Section 2 allow us to
establish this poset isomorphism.

Let n > 0 and c, c′ ∈ CC(n). We set that c 4 c′ if and only if ci 6 c′i for all i ∈ [n − 1].
Endowed with 4, the set CC(n) is a poset called the cubic coordinate poset.

Recall that the map φ is defined at the beginning of Section 2.3 and the map χ is defined
at the beginning of Section 2.2. Let (s, t), (s′, t′) ∈ int(T2(n)) and let ψ := φ−1 ◦ χ−1 ◦ ρ−1 be
the map from the Tamari interval poset to the cubic coordinate poset CC(n).

For the next results in all this section, let us denote by c := ψ(s, t), c′ := ψ(s′, t′) and
(u, v) := φ(c), (u′, v′) := φ(c′), and π := χ(u, v), π ′ := χ(u′, v′).

Lemma 2.4.1. If (s′, t′) covers (s, t), then there is a unique different component ci between
c and c′ such that ci < c′i and there is no cubic coordinate c′′ different from c and c′

such that c 4 c′′ 4 c′.

Proof. By Lemma 1.3.1 we know that (s′, t′) covers (s, t) if and only if π and π ′ satisfy
either (⋆) or (⋄). Let us assume that π and π ′ satisfy either (⋆) or (⋄) for the vertex πi. By
using (2.2.2) and (2.2.3), two cases are possible.

⋆ Suppose that π and π ′ satisfy (⋆), then since only decreasing relations are added in
π ′ relative to π , only u′ is modified in (u′, v′) relative to (u, v). Furthermore, since
π ′ is obtained by adding decreasing relations of target πi in π , only the letter u′i in
u′ is increased relative to u. Moreover, since the number of descending relations
added in π is minimal, there cannot be any Tamari interval diagram between (u, v)
and (u′, v′), and thus no cubic coordinate between c and c′. In the end, the image
by φ−1 of (u′, v′) is the cubic coordinate c′ with c′i = u′i and c′j = cj for any j 6= i.
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⋆ Suppose that π and π ′ satisfy (⋄), the arguments are roughly the same, with the
difference that this time, only increasing relations are removed in π ′ relative to π.
We obtain that only the component c′i−1 = −v′i of c′ has increased relative to c.

In both cases, the implication is true. �

Note that if there is a unique different component ci between c and c′ such that ci < c′i
and there is no cubic coordinate c′′ different from c and c′ such that c 4 c′′ 4 c′, then in
particular c′ covers c. Thus, Lemma 2.4.1 has the consequence that if (s′, t′) covers (s, t),
then c′ covers c.

Lemma 2.4.2. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′, then there is a cubic coordinate c′′

such that u′′ = u and v′′ = v′, where (u′′, v′′) := φ(c′′).
Proof. The composition of bijections φ−1 ◦ χ−1 associates a pair of words (u, v) to a pair
of comparable binary trees (s, t) such that u encodes the binary tree s and v encodes the
binary tree t. By this composition, u (resp. v) is obtained by counting in s (resp. t) the
number of left (resp. right) descendants of each node for the infix order. Additionally,
we know that if (s, t) 4int(ta) (s′, t′), then the interval (s, t′) is a Tamari interval because we
always have s 4ta s′ 4ta t′. The construction of φ−1 ◦ χ−1 and the fact that (s, t′) is a Tamari
interval imply that the pair (u, v′) is always a Tamari interval diagram. Therefore, c′′ is a
cubic coordinate. �

For any c, c′ ∈ CC(n), let
D−

(
c, c′

) := {d : cd 6= c′d and c′d 6 0} , (2.4.1)
and

D+ (
c, c′

) := {d : cd 6= c′d and cd > 0} . (2.4.2)
Now consider the case where c and c′ share either their Tamari diagrams or their

associated dual Tamari diagrams, then we have the two following lemmas.

Lemma 2.4.3. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ such that u = u′ and #D− (c, c′) = r,
then there is a chain (

c = c(0), c(1), . . . , c(r−1), c(r) = c′
)
, (2.4.3)

such that #D−
(
c(i−1), c(i)) = 1 for all i ∈ [r].

Proof. Let
D−

(
c, c′

) = {d1, d2, . . . , dr} (2.4.4)
with dk−1 < dk for all k ∈ [2, r]. For any k ∈ [r], let c(k) be a tuple obtained by replacing
in c all the components cdi by the components c′di for i ∈ [k]. The tuple c(k) is a cubic
coordinate. Indeed, by denoting φ(c(k)) by (u(k), v(k)), one has that u(k) = u = u′, so the
compatibility with v(k) is always satisfied. Therefore, the only thing to check is that v(k) is
a dual Tamari diagram. Condition (i) is naturally satisfied. Since c 6 c′, one has vi > v′i
for all i ∈ [n]. Therefore, Condition (ii) is satisfied because for i ∈ [dk] and j ∈ [i + 1, n],
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v
(k)
i = v′i and v

(k)
j = vj , and so v

(k)
j − v

(k)
i = vj − v′i > vj − vi > j − i. The word v(k) is then a

dual Tamari diagram. Consider the chain
(
c = c(0), c(1), . . . , c(r−1), c(r) = c′

)
. (2.4.5)

For all i ∈ [r], since we change only one component between c(i−1) and c(i), one has
#D−

(
c(i−1), c(i)) = 1. �

Lemma 2.4.4. Let n > 0 and c, c′ ∈ CC(n). If c 4 c′ such that v = v′ and D+ (c, c′) = s,
then there is a chain (

c = c(0), c(1), . . . , c(s−1), c(s) = c′
)
, (2.4.6)

such that #D+ (
c(i−1), c(i)) = 1 for all i ∈ [s].

Proof. The proof is similar to the demonstration of Lemma 2.4.3. Let
D+ (

c, c′
) = {d1, d2, . . . , ds} (2.4.7)

with dk−1 < dk for all k ∈ [2, s]. For any k ∈ [s], let c(k) be a tuple obtained by replacing
in c all the components cdi by the components c′di for i ∈ [k]. As we did in the proof of
Lemma 2.4.3, we can check that, for any k ∈ [s], the tuple c(k) is a cubic coordinate. Then,
by consider the chain (

c = c(0), c(1), . . . , c(s−1), c(s) = c′
)
, (2.4.8)

one has that #D+ (
c(i−1), c(i)) = 1 for all i ∈ [s].

�

Theorem 2.4.5. For any n > 0, the map ψ is a poset isomorphism.

Proof. The map ψ is an isomorphism of posets if ψ and its inverse preserves the partial
order. As these relations are transitive, Lemma 2.4.1 gives the direct implication. Suppose
that c 4 c′. According to Lemma 2.4.2, Lemma 2.4.3 and Lemma 2.4.4 there is always a
chain between c and c′ such that the components are independently increasing one by
one. So we can see what happens when we change only one component ci by c′i at any
step between c and c′.

Obviously, if ci = c′i , then ui = u′i and vi+1 = v′i+1 and no changes are made between
the corresponding binary tree pairs. Suppose that ci < c′i , then three cases are possible.

⋆ Suppose that c′i is positive and ci is positive or null. The image by φ of c and
c′ differ for the letter ui, namely c′i = u′i and ci = ui , and vi+1 = v′i+1 = 0. The
difference of a letter ui between (u, v) and (u′, v′) is directly translated by the map
χ: the interval-poset π ′ has more decreasing relations of target πi than the vertex
πi in π. By the map ρ, it means that to go from the tree s to the tree s′ at least one
right rotation of the edge (i, j) is made, where j is the father of the node i in s.

⋆ Symmetrically, assume that c′i is negative or null, then c′i = −v′i+1, ci = −vi+1 and
ui = u′i = 0. By the map χ, the interval-poset π ′ has less decreasing relations of
target πi+1 than the vertex πi+1 in π. This implies by ρ that to pass from the tree
t to the tree t′ at least one right rotation of the edge (k, i + 1) is made, where k is
the right child of the node i + 1 in t.
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⋆ Finally, with Lemma 2.4.2, the case where ci is negative and c′i is positive falls into
the conjunction of the two previous cases.

Therefore, c 4 c′ implies that (s, t) 4int(ta) (s′, t′). Hence, the map ψ is an isomorphism
of posets. �

Let us denote by ⋖ the covering relation of the poset CC(n).

Proposition 2.4.6. Let n > 0 and c, c′ ∈ CC(n) such that c⋖ c′. Then, there is a unique
different component between c and c′.

Proof. It is a consequence of Theorem 2.4.5 and Lemma 2.4.1. �

The following diagram provides a summary of the applications used in Section 2. Recall
that ψ = φ−1 ◦ χ−1 ◦ ρ−1, therefore this diagram of poset isomorphisms is commutative.

TID(n) IP(n)

CC(n) int(T2(n))

χ

φ

ψ

ρ (2.4.9)

A consequence of the poset isomorphism ψ is that the order dimension [MP90,Tro02]
of the poset of Tamari intervals is at most n − 1.

3. GEOMETRIC PROPERTIES

In this section, we give a very natural geometrical realization for the lattices of cubic
coordinates. After defining the cells of this realization, we give some properties related to
them. Finally, we show that the lattice of the cubic coordinates is EL-shellable.

3.1. Cubic realizations. Theorem 2.4.5 provides a simpler translation of the order relation
between two Tamari intervals. We provide the geometrical realization induced by this
order relation, which is natural for cubic coordinates. In a combinatorial way we study
the cells formed by this realization.

For any n > 0, the cubic realization of CC(n) is the geometric object C (CC(n)) defined
in the space Rn−1 and obtained by placing for each c ∈ CC(n) a vertex of coordinates
(c1, . . . , cn−1), and by forming for each c, c′ ∈ CC(n) such that c⋖ c′ an edge between c

and c′. Every edge of C (CC(n)) is parallel to some vector in the canonical basis of Rn−1.
Figure 12 shows the cubic realization of CC(3), where the elements are the vertices and

the edges are the covering relations. Figure 13 shows the cubic realization of CC(4). In
these drawings the negative sign components are denoted with a bar.

In algebraic topology, to define the tensor products of A∞-algebras, one can use a cell
complex called the diagonal of the associahedron. This complex has notably been studied
by Loday [Lod11], by Saneblidze and Umble [SU04], and by Markl and Shnider [MS06].
More recently, there is a description of this object in [MTTV21]. The realization of this
complex seems to be identical to the cubic realization, up to continuous deformation.
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(1̄, 2̄)

(0, 1̄) (1̄, 0)

(1̄, 1)

(1, 0)

(0, 2̄)

(0, 0)

(0, 1)

(2, 0)

(1, 2̄)

(1, 1̄)

(2, 1)

(2, 1̄)

FIGURE 12. C(CC(3)).

3.2. Covering map. Let n > 0. We define the set of
⋆ input-wings as the set I(CC(n)) containing any c ∈ CC(n) which covers exactly
n − 1 elements,

⋆ output-wings as the set O(CC(n)) containing any c ∈ CC(n) which is covered by
exactly n − 1 elements.

Let n > 0 and c ∈ CC(n). For i ∈ [n − 1], the covering map ↑i sends c to its covering
differing only at index i, when such covering exists. We denote by ↑ ci the letter which
differs in ↑i (c).

In particular, for n > 0, a cubic coordinate c of size n is an output-wing if for any
i ∈ [n − 1], ↑i (c) is well-defined.

Let n > 0 and c ∈ CC(n), and (u, v) := φ(c). If ↑ ci is positive, then the letter ui increases
and becomes equal to ↑ ci and vi+1 is equal to 0. Then, we define ↑ ui :=↑ ci. If ↑ ci is
negative or null, then vi+1 decreases and becomes equal to | ↑ ci| and ui is equal to 0.
Then, we set ↓ vi+1 := − ↑ ci.

Lemma 3.2.1. Let n > 0 and c ∈ CC(n), and i ∈ [n − 1] such that ↑i (c) is well-defined.
Then,

(i) if ci < 0, then ↑ ci 6 0,
(ii) if ci > 0, then ↑ ci > 0.

Proof. Let us show the first implication, the second being obvious because the covering
map always strictly increases a component. Let ci < 0, and let c′ be the (n− 1)-tuple such
that c′i = 0 and c′j = cj for any j 6= i, with j ∈ [n − 1]. By Lemma 2.3.2, c′ is a cubic
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coordinate. As c 6 c′ and they differ only at the i-th component, by the definition of ↑i (c),
we have c 6↑i (c) 6 c′, thus ↑ ci 6 c′i = 0. �

Let c ∈ CC(n). For all i ∈ [n], let
⇑i (c) :=↑i (↑i+1 . . . (↑n−1 (↑n (c)))), (3.2.1)

with the convention that ↑n (c) := c. For instance, for c ∈ CC(5), ⇑2 (c) =↑2 (↑3 (↑4 (↑5 (c)))).
Lemma 3.2.2. Let n > 0 and c ∈ O(CC(n)). For all i ∈ [n], ⇑i (c) is a cubic coordinate.

Proof. For i = n, one has by convention that ⇑n (c) is a cubic coordinate. Let us suppose
that for i ∈ [n− 1], ⇑i+1 (c) is a cubic coordinate, and let us show that ⇑i (c) is also a cubic
coordinate. Depending on the sign of ⇑i+1 (c)i , two cases are possible.

Suppose that ⇑i+1 (c)i < 0. In this case, consider c′ the (n−1)-tuple obtained from ⇑i+1 (c)
by replacing the component ⇑i+1 (c)i by 0. By Lemma 2.3.2, c′ is a cubic coordinate. Since
⇑i+1 (c)i < 0 one has ⇑i+1 (c) 4 c′. If c′ covers ⇑i+1 (c), then c′ =⇑i (c). Otherwise, it
is always possible to find another cubic coordinate c′′ between ⇑i+1 (c) and c′ such that
c′′ =⇑i (c). In both cases, ⇑i (c) is a cubic coordinate.

Suppose that ⇑i+1 (c)i > 0. Let us set (u, v) := φ(c), and (x, y) := φ(⇑i+1 (c)). Since ui is
not changed yet in x, one has xi = ui. Due to Condition (ii) of a Tamari diagram and the
compatibility condition, there are two configurations, involving indices, which can make
contradiction with the fact that (x, y) is still a Tamari interval diagram when xi becomes
↑ xi.

(1) If there is an index j such that 1 6 i < j 6 n and yj > j − i in y, then, since yj < vj ,
one has vj > j − i in v. By the compatibility condition, that implies ui < j − i in u.
Moreover, since c is assumed to be an output-wing, ui < j − i − 1 in u, so that ui
can be increased. This inequality remains true in x.

(2) If there is an index h such that 1 6 i − h 6 uh, by Condition (ii) of a Tamari
diagram, ui 6 uh − i + h in u. This remains true in x because components with
index smaller than i remain unchanged between c and ⇑i+1 (c). Furthermore,
since c is an output-wing, then ui < uh − i + h. This inequality remains true for
⇑i+1 (c).

With these two configurations, let us build a cubic coordinate c′ different from ⇑i+1 (c)
only for ⇑i+1 (c)i , depending on which choices are available to increase ui. Let us set
(u′, v′) := φ(c′).

(a) Suppose there is a j satisfying (1), and there is no h satisfying (2) in ⇑i+1 (c). In
this case, by choosing the minimal index j such that (1) holds, we set u′i := j − i− 1
in c′. Thus, u′i is also minimized, and since u′i < j − i, the compatibility condition
is satisfied in c′. Furthermore, since ⇑i+1 (c) is assumed to be a cubic coordinate,
all conditions in a Tamari diagram and a dual Tamari diagram are satisfied for c′.
Therefore, our candidate c′ is a cubic coordinate. Note that in the construction of
c′, other possible not minimal j satisfying (1) will not cause any problem.

(b) Suppose there is an h satisfying (2), and there is no j satisfying (1) in ⇑i+1 (c).
Then, by choosing the minimal index h such that (2) holds, we set u′i := u′h −
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i + h. Therefore, Condition (ii) of a Tamari diagram is satisfied for u′. Also, by
Condition (i) of a Tamari diagram, u′h 6 n − h which implies u′i 6 n − i. Finally,
the compatibility condition is also satisfied because it was assumed that there was
no j satisfying (1). The tuple c′ is thus a cubic coordinate. As for the previous case,
other possible not minimal h satisfying (2) will not cause any problem.

(c) Suppose there is a j and an h satisfying (1) and (2) in ⇑i+1 (c). In this case, we set
u′i := min{u′h − i + h, j − i − 1}. By the two previous cases, the tuple c′ is a cubic
coordinate.

(d) Otherwise, we set u′i := n − i. The tuple c′ is a cubic coordinate.
In any case, for u′i fixed in c′, either c′ covers ⇑i+1 (c), and so c′ =⇑i (c), or there is a

cubic coordinate c′′ between ⇑i+1 (c) and c′ such that c′′ =⇑i (c). In both cases, ⇑i (c) is a
cubic coordinate, and differs by only one component from c′. �

Let n > 0 and c ∈ O(CC(n)). The cubic coordinate ⇑1 (c) is the corresponding
input-wing of c (the name comes from a corollary of Theorem 3.3.1). For instance
c = (0,−1, 1,−1,−5, 0, 1,−1,−3) is an output-wing, and its corresponding input-wing is
⇑1 (c) = (1, 0, 2, 0,−4, 3, 2, 0,−2). By Lemma 3.2.2 such an element does exist. Note that
performing the covering map on c in a different order than the one prescribed by (3.2.1)
does not always result in the corresponding input-wing. This observation can already be
made on the two pentagons of Figure 12.

3.3. Cells and synchronized cubic coordinates. In Figure 12 and Figure 13, we notice
that a "cellular" organization appears. Thanks to the cubic coordinates, a combinatorial
definition of these cells is provided. The aim is to have a better understanding of the
realization of the cubic coordinate posets as a geometrical object.

For any n > 0, let c, c′ ∈ CC(n) such that c 4 c′. A cell is the set of points
〈c, c′〉 := {

x ∈ Rn−1 : ci 6 xi 6 c′i for all i ∈ [n − 1]} . (3.3.1)
By the definition, a cell is an orthotope, that is, a parallelotope whose edges are all mutually
orthogonal or parallel. The dimension dim 〈c, c′〉 of a cell 〈c, c′〉 is its dimension as an
orthotope and it satisfies dim 〈c, c′〉 = #D(c, c′), where D(c, c′) := {d : cd 6= c′d}.

From now on, we denote by cout any output-wing and by cin its corresponding input-
wing. Any particular cell 〈cout, cin〉 formed by an output-wing and by its corresponding
input-wing is called a cell-wing.

A consequence of Lemma 3.2.1 is that for any cell-wing 〈cout, cin〉 of dimension n − 1,
for all i ∈ [n − 1],

(i) if cout
i < 0, then cin

i 6 0,
(ii) if cout

i > 0, then cin
i > 0.

Theorem 3.3.1. Let n > 1 and 〈cout, cin〉 be a cell-wing of dimension n − 1, and c be a
(n − 1)-tuple such that for all i ∈ [n − 1], the component ci is equal either to cout

i or to
cin
i . Then c is a cubic coordinate.
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Proof. If all the components of c are equal to those of cout (resp. to those of cin), then c

is a cubic coordinate. Suppose this is not the case, meaning that c has components of cout

and cin.
Let us denote (uout

i , vout
i+1) (resp. (uin

i , v
in
i+1)) the pair of letters corresponding to cout

i (resp.
cin
i ) and (ui, vi+1) the one corresponding to ci for any i ∈ [n − 1]. By hypothesis on cout

and cin the letter ui which is equal to uout
i or uin

i satisfies 0 6 ui 6 n − i for any i ∈ [n].
Similarly, the letter vi which is equal to vout

i or vin
i satisfies 0 6 vi 6 i − 1 for any i ∈ [n].

In order to show that c is a cubic coordinate, let us prove that u satisfies Condition (ii) of
a Tamari diagram, v satisfies Condition (ii) of a dual Tamari diagram and (u, v) satisfies
the compatibility condition.

(i) Let us show that for any choice of letters ui and ui+j with i ∈ [n] and j ∈ [0, ui] one
has ui+j 6 ui − j .
⋆ If ui and ui+j are equal respectively to uout

i and to uout
i+j (resp. to uin

i and to uin
i+j),

then Condition (ii) of a Tamari diagram is satisfies because cout (resp. cin) is a
cubic coordinate.

⋆ Suppose that ui = uin
i and ui+j = uout

i+j . By the definition of cin one has uout
i+j <

uin
i+j . However uin

i+j 6 uin
i − j because cin is a cubic coordinate. Therefore,

Condition (ii) of a Tamari diagram is satisfied.
⋆ Suppose that ui = uout

i and ui+j = uin
i+j . Let c′ :=⇑i+j (cout). According to

Lemma 3.2.2 c′ is a cubic coordinate such that c′i = uout
i and c′i+j = uin

i+j . Since
Condition (ii) of a Tamari diagram is satisfied for c′, it must also be satisfied
for c.

(ii) Condition (ii) of a dual Tamari diagram is satisfied with similar arguments given
for the previous case, applied to the dual Tamari diagram v.

(iii) Rather than showing the compatibility condition as it is stated, let us show the
contrapositive. That is, for every 1 6 i < j 6 n such that vj > j − i, let us show that
ui < j − i.
⋆ Clearly, if ui and vj are equal to uout

i and vout
j (resp. to uin

i and vin
j ), then the

compatibility condition is satisfied.
⋆ Suppose that ui = uout

i and vj = vin
j . If vin

j > j − i, then for cout one has
vout
j > j− i because vin

j < vout
j . Since cout is a cubic coordinate, this implies that

uout
i < j − i.

⋆ Suppose that ui = uin
i and vj = vout

j . If vout
j > j − i, then for all k ∈ [i, j − 1],

uout
k < j−k because cout is a cubic coordinate and then satisfies the compatibility

condition. Moreover, since cout ∈ O(CC(n)) each component can be minimally
increased independently of the others, thus uout

k < j−k− 1 for all k ∈ [i, j− 1].
For the same reason ui+h < ui −h for all h ∈ [0, ui]. These two reasons imply
that if one builds the cubic coordinate c′ =⇑i (cout), then by the definition of
the covering map one has c′i = u′i < j − i, because at worst, the covering map
sends uout

i to j− i− 1 (we have already seen this in the proof of Lemma 3.2.2).
However, by the definition of cin one has uin

i = u′i , that is uin
i < j−i. Therefore,

the compatibility condition between uin and vout
j is satisfied for c.
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Thus, for all choices of letters of u and v one has that c is a cubic coordinate. �

One of the direct consequences of Theorem 3.3.1 is that for every cell-wing 〈cout, cin〉,
at least 2n−1 cubic coordinates belong to this cell.

This theorem also implies that a corresponding input-wing covers n − 1 cubic coordi-
nates, and so is in particular an input-wing.

Moreover, due to the fact the Tamari interval lattice is self-dual, the number of output-
wings is equal to the number of input-wings. Therefore, by Theorem 2.4.5, an input-wing
is always a corresponding input-wing of some output-wing.

Let n > 0, and ε ∈ {−1, 1}n−1, and c ∈ CC(n). The ε-region of c is the set
Rε(c) := {(x1, . . . , xn−1) ∈ Rn−1 : xi < ci if εi = −1, xi > ci otherwise}. (3.3.2)

The cubic coordinate c is external if there is ε ∈ {−1, 1}n−1 such that CC(n) ∩ Rε (c) = ∅.
The ε-region Rε (c) is then empty. Otherwise, c is internal.

Proposition 3.3.2. Let n > 0 and c ∈ CC(n). If c is internal, then φ(c) is a new Tamari
interval diagram.

Proof. Instead, let us show that if φ(c) is not new, then c is external. Let us denote (ui, vi+1)
the pair of letters corresponding to ci by the map φ for i ∈ [n − 1].

Tamari interval diagram φ(c) is not new if there is
(1) either i ∈ [n − 1] such that ui = n − i,
(2) or j ∈ [2, n] such that vj = j − 1,
(3) or k, l ∈ [n] such that uk = l − k − 1 and vl = l − k − 1 with k + 1 < l.

Suppose there is some i satisfying (1), then there cannot be a cubic coordinate c′ such that
c′i > ci because, by the definition of a Tamari diagram, c′i 6 n− i. Similarly, if we assume
that there is j satisfying (2), then there cannot be a cubic coordinate c′ such that c′j−1 < cj−1
because by the definition of a dual Tamari diagram, c′j−1 > 1 − j . If (3) is satisfied, then
there cannot be a cubic coordinate c′ such that c′k > ck and c′l−1 < cl−1. Indeed, if the
letters uk and vl are increased in c, then the compatibility condition is contradicted, so the
result cannot be a cubic coordinate. Since in each case at least one ε-region is empty, c is
external. �

Proposition 3.3.3. Let n > 0 and c ∈ SCC(n). Then c is external.

Proof. By Proposition 2.3.6 we know that if c is synchronized, then φ(c) is not new. Now,
we just saw from Proposition 3.3.2 that if φ(c) is not new, then c is external. �

We know that each cell-wing contains at least 2n−1 cubic coordinates on the edges. Now,
let us show that it is possible to associate bijectively each cell-wing to a synchronized cubic
coordinate.

Let n > 1 and 〈cout, cin〉 be a cell-wing of dimension n− 1 and γ be the map defined by

γ(cout
i , cin

i ) :=
{
cout
i if cout

i < 0,
cin
i if cout

i > 0,
(3.3.3)
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(0, 0, 0)

(3, 2, 1)

(0, 2, 1)
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(3, 2, 0)

(1̄, 2̄, 3̄)

(1̄, 0, 3̄)

(1̄, 2̄, 0)

FIGURE 13. C(CC(4)).

for all i ∈ [n − 1]. Note that the components returned by the map γ are never zero. Let
denote by (uout

i , vout
i+1) (resp. (uin

i , v
in
i+1)) the pair of letters corresponding to cout

i (resp. cin
i )

by the map φ, for any i ∈ [n − 1]. Thus, the map γ becomes

γ(cout
i , cin

i ) :=
{

−vout
i+1 if cout

i < 0,
uin
i if cout

i > 0.
(3.3.4)

Let Γ be the map defined by
Γ〈cout , cin〉 := (γ(cout

1 , cin
1 ), γ(cout

2 , cin
2 ), . . . , γ(cout

n−1, c
in
n−1)). (3.3.5)

For instance, the cell-wing 〈(0,−1, 1,−1,−5, 0, 1,−1,−3), (1, 0, 2, 0,−4, 3, 2, 0,−2)〉 is sent
by Γ to (1,−1, 2,−1,−5, 3, 2,−1,−3).

Theorem 3.3.4. For any n > 1, the map Γ is a bijection from the set of cell-wings of
dimension n− 1 to SCC(n).
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Proof. The components of Γ〈cout, cin〉 belong to either cout or cin. In both cases, it is a non-
zero component. According to Theorem 3.3.1, Γ〈cout , cin〉 is therefore a cubic coordinate
of size n. Moreover, this cubic coordinate is synchronized because none of its components
is null.

Let 〈cout, cin〉 and 〈eout, ein〉 be two cell-wings of dimension n− 1 such that Γ〈cout, cin〉 =
Γ〈eout , ein〉. Let us denote (uout

i , vout
i+1) (resp. (uin

i , v
in
i+1)) the pair of letters corresponding

to cout
i (resp. cin

i ) and (xout
i , yout

i+1) (resp. (xin
i , y

in
i+1)) the pair of letters corresponding to eout

i

(resp. ein
i ) by the map φ, for all i ∈ [n − 1].

To suppose that Γ〈cout , cin〉 = Γ〈eout, ein〉 is equivalent to suppose that for all i ∈ [n− 1],
γ(cout

i , cin
i ) = γ(eout

i , ein
i ). The map Γ is injective if, for every i ∈ [n − 1], cout

i = eout
i and

cin
i = ein

i . Suppose that there is some index i such that cout
i 6= eout

i or cin
i 6= ein

i , and we take
the smallest such index. Then, two cases have to be considered: either γ(cout

i , cin
i ) = uin

i

or γ(cout
i , cin

i ) = −vout
i+1.

(1) Suppose that γ(cout
i , cin

i ) = uin
i .

⋆ In this case, γ(eout
i , ein

i ) = xin
i and uin

i = xin
i . Moreover, since uin

i 6= 0 (resp.
xin
i 6= 0), then necessarily vin

i+1 = 0 (resp. y in
i+1 = 0). Therefore, cin

i = ein
i .

⋆ On the other hand , the fact that uin
i > 0 (resp. xin

i > 0) implies by Lemma 2.3.2
that 0 6 uout

i < uin
i and vout

i+1 = 0 (resp. 0 6 xout
i < xin

i and yout
i+1 = 0). Thus, one

has vout
i+1 = yout

i+1. Therefore, the only way for the hypothesis to be true is that
uout
i 6= xout

i .
Without loss of generality, suppose that uout

i < xout
i . By the definition of the

covering map, one has xout
i < xin

i . This implies, in addition to the hypothesis
that xin

i = uin
i , that uout

i < xout
i < uin

i .
Let c :=⇑i+1 (cout) and e :=⇑i+1 (eout), both cubic coordinates by Lemma 3.2.2.
By construction, cj = cout

j (resp. ej = eout
j ) for all j ∈ [i] and ck = cin

k (resp.
ek = ein

k ) for all k ∈ [i + 1, n− 1].
By minimality of i, we have that cj = ej for all j ∈ [i]. Moreover, by the
hypothesis that Γ〈cout, cin〉 = Γ〈eout, ein〉, we have that uin

k = xin
k for k ∈ [i +

1, n − 1]. Indeed, if uin
k > 0 (resp. xin

k > 0) then necessarily γ(cout
k , cin

k ) = uin
k

(resp. γ(eout
k , ein

k ) = xin
k ) and so uin

k = xin
k . Otherwise, uin

k = xin
k = 0. Note that

because we know nothing about vin
k and y in

k for k ∈ [i + 2, n], we cannot say
that ↑i (c) and ↑i (e) are equal.
Now, let c′ be a tuple such that c′i = xout

i and c′j = cj for all j 6= i and let (u′, v′)
the pair of words corresponding to c′ by the map φ. Let us show that c′ is a
cubic coordinate.
By construction, since the word v′ is the dual Tamari diagram of c, v′ is a dual
Tamari diagram. Likewise, since the word u′ is the Tamari diagram of ↑i (e),
u′ is a Tamari diagram.
Moreover, we know that between c, c′ and ↑i (c), only one positive letter
changes, with ci = uout

i , c′i = xout
i and ↑ ci = uin

i , and we have established that
uout
i < xout

i < uin
i . Since the letter uin

i satisfies the compatibility condition with
the letters of vin in ↑i (c), then all letter lower in position i satisfies this condition
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as well. Therefore, u′ and v′ are compatible and c′ is a cubic coordinate distinct
from c and ↑i (c) such that c 4 c′ 4↑i (c).
However, if c′ is a cubic coordinate, then by the definition of the covering map
↑ ci := uin

i = xout
i , and so ↑i (c) :=⇑i (cout) = c′. This is not possible with the

assumption that uin
i = xin

i , and so that γ(cout
i , cin

i ) = γ(eout
i , ein

i ).
(2) Suppose that γ(cout

i , cin
i ) = −vout

i+1. In this case γ(eout
i , ein

i ) = −yout
i+1 and vout

i+1 = yout
i+1.

By rephrasing the arguments of the case (1) for the dual, we show that cout
i = eout

i

and cin
i = ein

i .
This shows that the map Γ is injective.
Now let us show that the cardinal of the set of cell-wings of dimension n−1 is equal to the

cardinal of SCC(n). Recall that the set of cells of size n is exactly O(CC(n)). Furthermore,
by the poset isomorphism ψ we know that these elements are the Tamari intervals having
n − 1 elements covering in the Tamari interval lattices. In [Cha18] Chapoton shows that
the set of these Tamari intervals has the same cardinal as the set of synchronized Tamari
intervals (see Theorem 2.1 and Theorem 2.3 from [Cha18]). Finally, Proposition 2.3.3
allows us to conclude that the cardinal of SCC(n) and the cardinal of the set of cell-wings
of dimension n − 1 are equal. Thus, the map Γ is bijective. �

Let us also defined the map γ̄ by

γ̄(cout
i , cin

i ) :=
{
cin
i if cout

i < 0,
cout
i if cout

i > 0,
(3.3.6)

for all i ∈ [n − 1]. Then Γ̄ is defined by

Γ̄〈cout, cin〉 := (γ̄(cout
1 , cin

1 ), γ̄(cout
2 , cin

2 ), . . . , γ̄(cout
n−1, c

in
n−1)). (3.3.7)

By Theorem 3.3.1, Γ̄〈cout, cin〉 is a cubic coordinate belonging to 〈cout, cin〉, called oppo-
site cubic coordinate. For the synchronized cubic coordinate c associated with 〈cout, cin〉

by Γ, denote cop the opposite cubic coordinate. All the components of cop are different
from those of c, and these differences are the greatest possible. For any synchronized
cubic coordinate c, such a cubic coordinate cop always exists and is unique.

Note that the map Γ only returns the positive components of cin and the negative
components of cout. Conversely, the map Γ̄ returns the positive components of cout and
the negative components of cin. We already know that the latter combination is always
possible for any comparable cubic coordinates according to Lemma 2.4.2. On the other
hand, this is not the case for the first mentioned combination.

3.4. Volume of C(CC). Now let us take a closer look at the geometry of the cubic realiza-
tion. We already know that there are at least 2n−1 cubic coordinates forming an outline
of each cell-wing. The following notions will allow us to say more.

A point x of Rn−1 is inside a cell 〈c, c′〉 if, for any i ∈ [n−1], ci 6= c′i implies ci < xi < c′i.
A cell 〈c, c′〉 is pure if there is no cubic coordinate inside 〈c, c′〉. The volume vol 〈c, c′〉 of
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〈c, c′〉 is its volume as an orthotope and it satisfies
vol 〈c, c′〉 =

∏

i∈D(c,c′)
(c′i − ci). (3.4.1)

Lemma 3.4.1. Let n > 1 and 〈cout, cin〉 be a cell-wing of dimension n − 1. The cell
〈cout, cin〉 is pure.

Proof. Suppose there is a cubic coordinate c such that cout
i < ci < cin

i for all i ∈ [n − 1].
By Lemma 3.2.1 we know that if cout

i < 0, then cin
i 6 0 and if cout

i > 0, then cin
i >

0. However, since cout
i < ci < cin

i , then ci is different from 0. In the end, if such a
cubic coordinate c exists, it would be synchronized. But then, there would be a cubic
coordinate both synchronized and internal by hypothesis. This is impossible according to
Proposition 3.3.3. �

We showed with Theorem 3.3.1 that each cell-wing contains at least 2n−1 cubic coordi-
nates. By Lemma 3.4.1, we know that each cell-wing 〈cout, cin〉 is pure, and then has only
cubic coordinates on its border.

Let n > 1 and 〈cout, cin〉 be a cell-wing of dimension n − 1. Since between cout and cin

all components are different, one has D(cout, cin) = n − 1, and so the volume of 〈cout, cin〉

satisfies
vol〈cout, cin〉 =

n−1∏

i=1
(cin
i − cout

i ). (3.4.2)

Let us denote by c0 the cubic coordinate such that c0
i = 0 for any i ∈ [n − 1]. To

compute vol〈cout, cin〉 from the synchronized cubic coordinate c associated by Γ, we must
first compute the volume of the cell formed by c0 and c.

By Lemma 3.2.1, any cell-wing is included in an ε-region of the c0 cubic coordinate.
This means that no cell-wing can be cut by a line passing by the origin c0 and a cubic
coordinate of the form (0, . . . , 0, 1, 0, . . . , 0) or (0, . . . , 0,−1, 0, . . . , 0).

According to Lemma 2.3.2, for any cubic coordinate, replacing any component by 0
gives a cubic coordinate. In other words, for any cubic coordinate c, there are n− 1 cubic
coordinates related to c which are its projections on the lines passing by c0 and a cubic
coordinate of the form (0, . . . , 0, 1, 0, . . . , 0) or (0, . . . , 0,−1, 0, . . . , 0). Therefore, even if c0

and c are not comparable, we consider the cell, denoted by 〈c〉, between c0 and c, such
that the volume of this cell satisfies

vol 〈c〉 =
∏

i∈D(c,c0)
|ci|. (3.4.3)

Note that the dimension of a cell is less than or equal to n − 1. Moreover, 〈c〉 can be
no-pure, and may even contain other cells of the same dimension.

By the map Γ, the components of the synchronized cubic coordinate c of the cell-wing
〈cout, cin〉 are the greatest in absolute value between cout and cin. Therefore, in the cell-
wing 〈cout, cin〉, c is the furthest cubic coordinate from c0. In particular, 〈c〉 contains the
cell-wing 〈cout, cin〉 and the dimension of 〈c〉 is n − 1.
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Let n > 0 and c ∈ SCC(n). Since by the definition, all components of c are different
from 0, one has D(c, c0) = n − 1. Therefore,

vol 〈c〉 =
n−1∏

i=1
|ci|. (3.4.4)

Let us endow the set SCC(n) with the partial order 4s such that for c, c′ ∈ SCC(n) one
has c′ 4s c if c′i and ci have the same sign and |c′i| 6 |ci| for any i ∈ [n − 1].

Lemma 3.4.2. For any n > 1, let 〈cout, cin〉 be a cell-wing of dimension n − 1, and
c := Γ〈cout, cin〉. For any x ∈ Rn−1 such that x ∈ 〈c〉, if x /∈ 〈cout, cin〉, then there is
c′ ∈ SCC(n) different from c such that c′ 4s c and x ∈ 〈c′〉.

Proof. Let cop be the opposite cubic coordinate of c. Since x /∈ 〈cout, cin〉 and x ∈ 〈c〉,
then necessarily cop 6= c0. For the same reasons, there is an index i such that |xi| < |c

op
i |

where c
op
i 6= 0. Let us build from such index i the (n − 1)-tuple ∇c such that ∇ci = c

op
i

and ∇cj = cj for all j 6= i. According to Theorem 3.3.1, ∇c is a cubic coordinate and
belongs to the cell-wing 〈cout, cin〉. Also, ∇c is a synchronized cubic coordinate which
satisfies ∇c 4s c and which is different from c. We can then associate to ∇c a cell, which
is strictly included in 〈c〉. Then x ∈ 〈∇c〉. �

Since by Lemma 3.4.1 all cell-wings are pure, Lemma 3.4.2 implies that 〈c〉 ⊆
∐

c′4sc Γ−1(c′),
and since the reciprocal inclusion is obvious, one has the following result.

Lemma 3.4.3. Let n > 0 and c ∈ SCC(n). Then

〈c〉 =
∐

c′4sc

Γ−1(c′). (3.4.5)

Let n > 0 and c ∈ SCC(n). The synchronized volume of c is defined by

sv(c) := vol 〈c〉 −
∑

c′4sc
c′ 6=c

sv(c′). (3.4.6)

Note that (3.4.6) is a Möbius inversion [Sta12].

Proposition 3.4.4. Let n > 1 and 〈cout, cin〉 be a cell-wing of dimension n− 1. By setting
c := Γ〈cout, cin〉, we have

vol〈cout, cin〉 = sv(c). (3.4.7)

Proof. This is a consequence of Lemma 3.4.3 and of (3.4.6). �

With Proposition 3.4.4 we are able to compute, for any n > 0, the volume of C(CC(n))
depending on synchronized cubic coordinates,

vol(C(CC(n))) =
∑

c∈SCC(n)
sv(c). (3.4.8)
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3.5. EL-shellability. In [BW96] and [BW97], Björner and Wachs generalized the method
of labellings of the cover relations of graded posets to the case of non-graded posets. In
particular, they showed the EL-shellability of the Tamari poset [BW97].

Let P be a bounded poset and Λ be a poset, and λ : ⋖P → Λ be a map. For any saturated
chain (

x(1), . . . , x(k)) of P, we set
λ

(
x(1), . . . , x(k)

)
:=

(
λ

(
x(1), x(2)

)
, . . . , λ

(
x(k−1), x(k)

))
. (3.5.1)

We say that a saturated chain of P is λ-increasing (resp. λ-decreasing) if its image by
λ is an increasing (resp. decreasing) word for the order relation 4Λ. We say also that a
saturated chain (

x(1), . . . , x(k)) of P is λ-smaller than a saturated chain (
y(1), . . . , y(k)) of P

if λ (
x(1), . . . , x(k)) is smaller than λ

(
y(1), . . . , y(k)) for the lexicographic order induced by

4Λ. The map λ is called EL-labeling (edge lexicographic labeling) of P if for any x, y ∈ P

satisfying x 4P y, there is exactly one λ-increasing saturated chain from x to y, and this
chain is λ-minimal among all saturated chains from x to y. Any bounded poset that admits
an EL-labeling is EL-shellable [BW96,BW97].

The EL-shellability of a poset P implies several topological and order theoretical prop-
erties of the associated order complex ∆(P) built from P. Recall that the faces of this sim-
plicial complex are all the chains of P. Moreover, if P has at most one λ-decreasing chain
between any pair of elements, then the Möbius function of P takes values in {−1, 0, 1}.
In this case, the simplicial complex associated with each open interval of P is either con-
tractible or has the homotopy type of a sphere [BW97].

For the sequel, we set Λ as the poset Z3 wherein elements are ordered lexicographically.
Let (c, c′) ∈ ⋖ such that, for i ∈ [n − 1], ci < c′i , and let λ : ⋖ Ï Z3 be the map defined by

λ(c, c′) := (ε, i, ci), (3.5.2)

where ε :=
{

−1 if ci < 0,
1 else.

Note that by Proposition 2.4.6, the index i such that ci < c′i is unique.

Theorem 3.5.1. For any n > 0, the map λ is an EL-labeling of CC(n). Moreover, there
is at most one λ-decreasing chain between any pair of elements of CC(n).

Proof. Let c, c′ ∈ CC(n) such that c 4 c′. By Lemma 2.4.2, there is a cubic coordinate c′′
such that u′′ = u and v′′ = v′ with (u′′, v′′) := φ(c′′). Let

D−
(
c, c′′

)
= {d1, d2, . . . , dr} (3.5.3)

with dk−1 < dk for all k ∈ [2, r], and
D+ (

c′′, c′
)

= {d′1, d
′
2, . . . , d

′
s}, (3.5.4)

with d′k−1 < d′k for all k ∈ [2, s].
By Lemma 2.4.3, there is a chain between c and c′′

(
c, c(1), . . . , c(r−1), c(r) = c′′

)
, (3.5.5)
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where, for k ∈ [r], c(k) be a cubic coordinate obtained by replacing in c all the components
cdi by the components c′′di for i ∈ [k].

By Lemma 2.4.4, there is a chain between c′′ and c′

(
c′′, c′(1), . . . , c′(s−1), c′(s) = c′

)
, (3.5.6)

where, for k ∈ [s], c′(k) be a cubic coordinate obtained by replacing in c′′ all the components
c′′di by the components c′di for i ∈ [k].

Let us consider the chain obtained by concatenating the two chains (3.5.5) and (3.5.6).
Since in this chain only one component differs between two consecutive cubic coordinates,
a saturated chain µ can be constructed by considering all the cubic coordinates between
them. For both chains (3.5.5) and (3.5.6), the components are independently increasing
one by one from the left to the right. By construction, it implies that µ is λ-increasing for
the lexicographic order induced by (3.5.2).

Moreover, any other choice of saturated chain between c and c′ implies choosing, at
a certain step k, a greater label for the lexicographical order than the label (ε, k, ck) of
µ, and then having to choose the label (ε, k, ck) afterwards. Thus, in addition to being
λ-increasing, the saturated chain µ is unique and is λ-minimal among all saturated chains
from c to c′.

If a saturated chain λ-decreasing exists between c and c′, it is built by first changing the
different and negative components between c and c′′ from right to left, and then changing
the different and positive components between c′′ and c′ from right to left. For the same
reason that any saturated λ-increasing chain is unique for any interval, if it exists, the
λ-decreasing chain is also unique. �

For instance, in Figure 12, the λ-increasing saturated chain between (−1,−2) and (2, 1)
is the chain

((−1,−2), (0,−2), (0,−1), (0, 0), (1, 0), (2, 0), (2, 1)) , (3.5.7)
and
λ ((−1,−2), . . . , (2, 1)) = ((−1, 1,−1), (−1, 2,−2), (−1, 2,−1), (1, 1, 0), (1, 1, 1), (1, 2, 0)) . (3.5.8)
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