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Abstract
Let H be a complete r-uniform hypergraph such that two vertices are marked in each edge
as its ‘boundary’ vertices. A linear ordering of the vertex set of H is called an agreeing
linear order, provided all vertices of each edge of H lie between its two boundary vertices.
We prove the following Helly-type theorem: if there is an agreeing linear order on the vertex
set of every subhypergraph of H with at most 2r−2 vertices, then there is an agreeing linear
order on the vertex set of H . We also show that the constant 2r −2 cannot be reduced in the
theorem. The case r = 3 of the theorem has particular interest in the axiomatic theory of
betweenness. Similar results are obtained for further r-uniform hypergraphs (r ≥ 3), where
one or two vertices are marked in each edge, and the linear orders need to satisfy various
rules of agreement. In one of the cases we prove that no such Helly-type statement holds.

Keywords Linear order · Uniform hypergraph · Betweenness

1 Introduction

“Interest in ternary betweenness relations stems from their use in axiomatizations of geom-
etry in the latter part of the nineteenth century. . . ” writes Fishburn. [6, p. 59] More than a
century ago several systems of axioms have been established by Huntington and Kline [10,
11] to characterize the usual betweenness of triples of points of a real line. “No axiom of
Huntington and Kline uses more than four points,” observed Fishburn [5], thus expressing a
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basic Helly-type property of a complete finite system of betweenness: if there is an ‘agree-
ing linear order’ for every subsytem on 4 points, then there is an agreeing linear order for
the whole system.

The investigation in the present paper is a natural extension of our ongoing study of
betweenness of convex bodies in the plane [4] (for further details see Section 2.3). Here the
early axiomatic context is replaced with general Helly-type questions that are presented and
discussed in terms of hypergraphs.

The closest theme to our subject in hypergraph theory concerns the concept of an
ordered hypergraph, that is a set system together with a linear ordering of its elements.
These combinatorial structures emerge in various contexts, from the study of matrices
with forbidden submatrices [2], to the modeling of combinatorial geometry problems [8].
Ordered hypergraphs are considered mostly in the theory of extremal hypergraphs (see
[7, 9]). Meanwhile, here we are dealing with different combinatorial problems on complete
ordered hypergraphs, which originated in the study of betweenness of convex bodies in
the plane.

Let H be a complete uniform hypergraph with no repeated edges, that is, a clique. If
every edge e ∈ E(H) has a set of two ‘marked’ vertices, denoted ∂e, then H is called here
a 2-extreme marked clique. A linear order L on V (H) is called an agreeing linear order
of H , if for every e ∈ E(H) the set of the L-minimal and the L-maximal elements in e

is equal to ∂e. Similarly, for a set of vertices U ⊆ V (H), a linear order L on U is called
an agreeing linear order of U , if for every e ∈ E(H), e ⊆ U , the L-minimal and the
L-maximal elements in e is equal to ∂e.

A 2-extreme marked clique with its vertex set ordered according to an agreeing linear
order, if exists, becomes an ordered hypergraph.

Theorem 1 Let H be a 2-extreme marked r-uniform clique on at least 2r − 2 vertices
(r ≥ 3). If every subset of 2r −2 vertices of V (H) has an agreeing linear order, then H has
an agreeing linear order. Furthermore, there exists a clique H such that every set of 2r − 3
vertices of H has an agreeing linear order, but H does not.

In Section 2 we prove Theorem 1, by using two different approaches. Section 2.1 proves
the case r = 3 separately (Theorem 4); we could not find a convenient extension of this
‘direct’ proof for r ≥ 4. Section 2.2 contains a proof for r ≥ 4 (Theorem 7 through Lem-
mas 5 and 6); this approach does not work for r = 3 without making the proof of Lemma 6
much less transparent. Section 2.3 comments on Theorem 4 (the case r = 3) that has
particular interest in the axiomatic theory of betweenness (see [3, 5, 10, 11]).

Actually, a 3-uniform 2-extreme marked clique H can be considered as ‘one-marked’
by marking the ‘middle’ vertex ê = e \ ∂e for every e ∈ E(H); and an agreeing linear
order requires that ê be positioned between the two vertices of ∂e, for every e ∈ E(H).
In Sections 3, 4 and 5 we extend the concept of marked hypergraphs, where one or two
vertices are marked in each edge, and the marked vertices agree with particular rules in the
linear ordering of the vertex set.

Given an r-uniform clique with edges containing one or two marked vertices, our main
interest consists in finding Helly-type theorems guaranteeing the existence of an agreeing
linear order for the hypergraph. We supply a table of content of the paper that may help the
reader familiarize the non-standard notions.
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clique marked agreeing lin. ord. Helly-number

2-extreme marked ∂e ∂e has the min. and max. of e 2r − 2 Section 2
min-marked A(e) A(e) is the min. in e r + 1 Section 3
1-extreme marked ê ê is the min. or max. in e — Section 4
min&max-marked {A(e), B(e)} A(e) is min. B(e) is max. in e 2r − 2 Section 5

In Section 3 we consider r-uniform min-marked cliques, with one vertex A(e) marked
in each edge e, and in an agreeing linear order A(e) is minimal among the vertices of
e. We obtain a Helly-type theorem whose proof reveals a characterization of min-marked
hypergraphs H that have an agreeing linear order, in general, in terms of a forbidden 2 × 2
submatrix in the incidence matrix of H (Theorem 11).

Theorem 2 Let H be a min-marked r-uniform clique on at least r + 1 vertices (r ≥ 3).
Then the vertices of H have an agreeing linear order if and only if each subhypergraph of
H with r + 1 vertices has an agreeing linear order.

In Section 4 the agreeing linear order of a 1-extreme marked hypergraph is investigated
that requires the marked vertex ê be either the minimal or the maximal among the vertices
in each edge e. A straightforward characterization (Proposition 12) leads to the unexpected
fact that there is no Helly-type theorem for the existence of an agreeing linear order for
1-extreme marked cliques (Proposition 13).

Another Helly-type result concludes the paper by characterizing those min&max-marked
cliques which admit an agreeing linear order where both the minimum and the maximum
vertices are prescribed in each edge.

Theorem 3 Let H be a min&max-marked r-uniform clique with at least 2r − 2 vertices
(r ≥ 3). Then H has an agreeing linear order if and only if each subhypergraph of H with
2r − 2 vertices has an agreeing linear order.

We prove Theorem 3 as a corollary of Theorem 1, and we also give an independent graph
theory proof, both in Section 5.

Note that in the 2-extreme marked and 1-extreme marked cases, if L is an agreeing linear
order, then the dual of L (in which every relation is reversed) is also agreeing. We will use
the notation Ld to denote the dual of the linear order L.

2 2-ExtremeMarked Cliques

Let H be an r-uniform clique. If every edge of H has two marked vertices, then H is called
here a 2-extreme marked clique. The name ‘2-extreme marked’ indicates that the marked
vertices of an edge should become the maximum and the minimum among the vertices of
each edge in an agreeing linear order. The set of the two marked vertices of an edge e is
denoted by ∂e.

Let U ⊆ V (H) and let L be a linear ordering on U . We say that an edge {v1, . . . , vr } ⊆
U agrees with L, provided v1 <L v2 <L · · · <L vr and ∂e = {v1, vr }; furthermore, L is
called an agreeing linear order on U , if every edge entirely in U agrees with L.
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In the next sections we prove Theorem 1, a Helly-type theorem on the existence of an
agreeing linear order for 2-extreme marked cliques. The special case r = 3 is proved sepa-
rately in Section 2.1, partly because, as mentioned in Section 2.3, this case has a particular
interest in the axiomatic theory of betweenness (see [3, 5, 10, 11]). It is worth noting that
we could not find a convenient extension of the ‘direct’ proof of this special case for r ≥ 4.
The proof of the general case in Section 2.2 uses a different approach.

2.1 The Case r = 3

Here we prove the special case r = 3 of Theorem 1.

Theorem 4 Let H be a 2-extreme marked 3-uniform clique. If every set of 4 vertices of H

has an agreeing linear order, then H has an agreeing linear order.

Proof Let x ∈ V (H). We define a binary relation ∼ = ∼x on V (H) \ {x} with respect to
x: let u ∼ v if u = v or u �= v and ∂{x, u, v} �= {u, v}. We show that the relation ∼ is an
equivalence relation.

Only transitivity is nontrivial. Let u ∼ v and v ∼ w. Suppose for a contradiction that
∂{x, u,w} = {u,w}. The set {x, u, v, w} has an agreeing linear order L. In L, we have x

between u and w; due to symmetry we may assume u <L x <L w. So where is v? Since
u ∼ v, we must have v <L x, but since v ∼ w, we must have v >L x, a contradiction.

We claim that there are at most two equivalence classes of the relation ∼. We will prove
this by showing that u �∼ v and v �∼ w imply u ∼ w. Suppose this is not true, and chose
vertices with u �∼ v, v �∼ w, and u �∼ w. The set {x, u, v,w} has an agreeing linear order
L. Similarly as above, we may assume u <L x <L w. This time, u �∼ v implies v >L x,
and v �∼ w implies v <L x in L, a contradiction. Note also that if x is not in the boundary
of some edge, say x �∈ ∂{x, u, v}, then there are exactly two equivalence classes, since
∂{x, u, v} = {u, v} implies u �∼ v.

The proof of the theorem proceeds by induction on |V (H)|. If |V (H)| = 2, the statement
is trivial. Let |V (H)| ≥ 3, and chose a vertex x that is not in the boundary of some edge.
Let the two equivalence classes with respect to x be A1 and A2. By the hypothesis, Ai ∪{x}
has an agreeing linear order Li for i = 1, 2.

Observe that x is the greatest or the least element of L1 and L2. Indeed, if u, v ∈ Ai was
such that u < x < v in Li , then ∂{x, u, v} = {u, v}, so u �∼ v contradicting u, v ∈ Ai .
After possibly taking duals, we may assume that x is the greatest element of L1 and the
least element of L2. Concatenate L1 and L2 by adding every relation A1 < A2 to form the
linear order L on V (H).

We conclude the proof by showing that L is an agreeing linear order. Let e ∈ E(H). If
e ⊆ Ai ∪ {x} for some i, then e agrees with L. If e = {u, x, v} with u ∈ A1 and v ∈ A2,
then u �∼ v exactly means ∂{u, x, v} = {u, v}, so e agrees with L.

The remaining case (up to symmetry) is e = {u, v, w}, u, v ∈ A1, u < v in L1, and
w ∈ A2. The set {u, v, w, x} has an agreeing linear order L′. Since u �∼ w, we may assume
(up to duality) that u < x < w in L′. Since v �∼ w, we have v < x in L′. Note that
u < v < x in L1 implies ∂{u, v, x} = {u, x}, so in L′, we must have u < v < x < w. Since
L′ is agreeing, this shows ∂{u, v,w} = {u,w}, and thus e agrees with L.

2.2 The Case r ≥ 4

Here we restate Theorem 1 and prove it for r ≥ 4. The proof uses two lemmas.
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Lemma 5 Let r ≥ 4, and assume that L is an agreeing linear order for the 2-extreme
marked r-uniform clique H with n vertices. Then L is unique (up to duality) if and only if
n ≥ 2r − 3.

Proof Let (u1, . . . , un) be an agreeing linear order of the vertices of H . If n ≤ 2r − 4 and
r ≥ 4, then u
n/2� and u
n/2�+1 are not boundary vertices in any edge. Therefore, they can
be swapped to obtain another agreeing linear order. Because the agreeing linear order is not
unique, n ≥ 2r − 3 follows.

Let n ≥ 2r − 3. Let L1 = (u1, . . . , un) and L2 be agreeing linear orders of H .

Claim

– If u1 <L2 un then for all i < j , we have ui <L2 uj ;
– If u1 >L2 un then for all i < j , we have ui >L2 uj .

Proof Assume first u1 <L2 un. If i = 1 and j = n, the statement is trivial. If i = 1 and
j < n, then let e be an edge with {u1, uj , un} ⊆ e; since ∂e = {u1, un} (based on L1), we
have that uj must be between u1 and un in L2, hence ui = u1 <L2 uj <L2 un. Similar
simple argument applies if i > 1 and j = n. So the only case remains when i > 1 and
j < n.

Observe that because (j − 1) + (n − i) ≥ n ≥ 2r − 3, we have

j ≥ r or i ≤ n − r + 1. (1)

Suppose for a contradiction that uj <L2 ui . Let A ⊆ V (H) \ {u1, ui, uj , un} be an
(r − 4)-element subset of V (H), and let e = A ∪ {u1, ui, uj , un}. Since ∂e = {u1, un}, we
have that ui and uj are both between u1 and un in L2, so specifically,

u1 <L2 uj <L2 ui <L2 un. (2)

Recalling (1), suppose first that j ≥ r . This means that there exists an edge f ⊆
{u1, . . . , uj } such that {u1, ui, uj } ⊆ f . Since ∂f = {u1, uj }, it follows that ui is between
u1 and uj in L2, contradicting (2). Now suppose that i ≤ n − r + 1. Then there exists
g ⊆ {ui, . . . , un} such that {ui, uj , un} ⊆ g. Since ∂g = {ui, un}, it follows that uj is
between ui and un in L2, contradicting (2).

Following a similar argument for u1 >L2 un, equation (2) turns into

un <L2 ui <L2 uj <L2 u1,

and a similar argument to the one above leads to a contradiction.

It is now easy to see how this technical claim implies the Lemma. If u1 <L2 un, then
every pair of vertices is ordered the same in L2 as in L1, so L1 = L2. If u1 >L2 un, then
every pair of vertices is ordered the opposite in L2 as in L1, so L2 = Ld

1 .

A vertex � ∈ V (H) is an extremal vertex of a 2-extreme marked clique H , if every
e ∈ E(H) containing � satisfies � ∈ ∂e. Note that H has at most two extremal vertices.

Lemma 6 For r ≥ 4, let H be a 2-extreme marked r-uniform clique with |V (H)| ≥ 2r −2.
If every set of 2r − 2 vertices of H has an agreeing linear order, then H has exactly two
extremal vertices.
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Proof We proceed by induction on the number n of vertices. If n = 2r − 2, then H has an
agreeing linear order L. The least element �1 and the greatest element �2 of L are clearly
extremal vertices of H .

Now let n > 2r − 2, and suppose that the lemma is true for n − 1. Let x ∈ V (H) be a
non-extremal vertex of H , and let H ′ = H − x. We apply the hypothesis to find extremal
vertices �1 and �2 in H ′. Next consider the edge set

F = {{x, �1, �2, v1, . . . , vr−3} : v1, . . . , vr−3 ∈ V (H) \ {x, �1, �2}}.

Claim 1 For some f ∈ F we have x �∈ ∂f .

Proof Since x is not extremal in H , we have x �∈ ∂e for some e ∈ E(H) containing x. Let
S = e ∪ {�1, �2}. If S = e then we are done, because in this case e ∈ F . Hence we have
r + 1 ≤ |S| ≤ r + 2 ≤ 2r − 2.

Let L be an agreeing linear order on S. Because x �∈ ∂e, the vertex x is not the minimal
or maximal element of S in L. If �1 and �2 are the minimal and maximal elements of S in
L, then there is a subset f ⊆ S, |f | = r , containing {x, �1, �2}, that is, f is an edge in F

satisfying x �∈ ∂f , as required. We show that this is the case.
Suppose on the contrary that a ∈ e \ {x, �1, �2} is the L-minimal or L-maximal element

of S. Take any subset g ⊆ S, |g| = r , such that a ∈ g and x �∈ g. Then ∂g = {�1, �2},
because g is an edge in H ′. Since L is an agreeing linear order on g ⊆ S, and a ∈ g is a
minimal or maximal element of S in L, we obtain a ∈ ∂g, a contradiction.

Claim 2 For every f ∈ F we have x �∈ ∂f .

Proof By Claim 1, x �∈ ∂f for some f ∈ F . Assume for a contradiction that x ∈ ∂f ′ for
some f ′ ∈ F . Let these edges be

f = {x, �1, �2, v1, . . . , vr−3}, f ′ = {x, �1, �2, v
′
1, . . . , v

′
r−3}.

Notice that this step assumes r ≥ 4. Since |f ∪ f ′| ≤ 2r − 3, we have an agreeing linear
order L on f ∪ f ′.

Let W be any (r − 2)-element subset of V = {v1, . . . , vr−3, v
′
1, . . . , v

′
r−3}. Then, by the

hypothesis, ∂(W ∪{�1, �2}) = {�1, �2}. This means that in L, every element of V is between
�1, and �2. On the other hand, due to x ∈ ∂f ′, we have that x is not between �1 and �2. So
up to symmetry and the possible exchange of �1 and �2, we obtain

�1 <L V <L �2 <L x

Then f ⊆ V ∪ {x, �1, �2} implies x ∈ ∂f , a contradiction.

We show that both �1 and �2 are extremal in V (H). It is enough to show the state-
ment for �1; the proof for �2 is similar. If �1 is not extremal, there exists an edge f =
{�1, x, v1, . . . , vr−2} for which �1 �∈ ∂f . The set {x, �1, �2, v1, . . . , vr−2} has an agreeing
linear order L.

Let V = {v1, . . . , vr−2}, and let W be any (r − 3)-element subset of V . Since ∂(V ∪
{�1, �2}) = {�1, �2}, we have that every element of V is between �1 and �2 in L. From the
fact that �1 �∈ ∂f , some vi and x must surround �1 in L. So up to symmetry,

x <L �1 <L V <L �2

Since e = W ∪ {x, �1, �2} ∈ F , this contradicts x �∈ ∂e proved in Claim 2.
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Observation If � ∈ V is an extremal vertex of V , then � is the minimal or maximal vertex
in every agreeing linear order on each U ⊆ V containing �.

Theorem 7 For r ≥ 4, let H be a 2-extreme marked r-uniform clique with at least 2r − 2
vertices. Then H has an agreeing linear order if and only if every subhypergraph of H on
2r − 2 vertices has an agreeing linear order. Furthermore, the constant 2r − 2 cannot be
replaced by a smaller value.

Proof Necessity in the first claim is obvious, we prove the sufficiency by induction on the
order of H = (V ,E). The claim is true for |V | = 2r −2, by the condition. Let |V | = n+1,
n ≥ 2r − 2, and assume that the claim is true for n vertices. We may assume, by Lemma 6,
that v0, vn are the extremal vertices of H . By induction, there is an agreeing linear order L1
for H − v0. Due to the Observation, up to duality, we may assume that L1 = (v1, . . . , vn).
We claim that L0 = (v0, v1, . . . , vn) is an agreeing linear order for H .

Let e be an arbitrary edge of H . If v0 �∈ e, then e agrees with L1 so e agrees with L0.
For the balance of the argument, assume v0 ∈ e, specifically, let e = {v0, vi1 , vi2 , . . . , vir−1}
with 1 ≤ i1 < . . . < ir−1 ≤ n. Consider a (2r − 2)-element set U containing e and
including vn. By the condition of the theorem, U has an agreeing linear order L′

0. By the
Observation, L′

0 has v0 and vn as its minimal and maximal elements. Let U ′ = U \ {v0}.
Since |U ′| = 2r − 3, by Lemma 5, L′

0|U ′ = L1|U ′ or L′
0|U ′ = (L1|U ′)d . Hence, up to

duality, in L′
0 we have

v0 < vi1 < · · · < vir−1 < vn,

therefore ∂e = {v0, vir−1}.
To see the second claim of the theorem we present a hypergraph H on n = 2r − 2

vertices, for every r ≥ 4, such that the vertex set of each subhypergraph of H with 2r −
3 has an agreeing linear order but V (H) does not. Let V (H) = {v1, v2, . . . , v2r−2}; for
e0 = {v1, . . . , vr−1, vr } define ∂e0 = {v1, vr−1}, and for every e = {vi1 , vi2 , . . . , vir },
1 ≤ i1 < i2 < . . . ir ≤ 2r − 2, different from e0 define ∂e = {vi1 , vir }. Let e1 =
{vr−1, vr , . . . , v2r−2}. Because the extremal vertices of H are v1 and v2r−2, it follows that
no agreeing linear order L = (v1, . . . , v2r−2) agrees with both e0 and e1.

Observe that L1 = (v1, . . . , vr−1, vr , . . . , v2r−2) agrees with all edges of H but e0, and
L0 = (v1, . . . , vr , vr−1, . . . , v2r−2) agrees with all edges of H but e1. Because e0 ∪ e1 =
V (H), no subhypergraph H −vi contains both e0 and e1; therefore, either L0 −vi or L1 −vi

is an agreeing linear order of V (H) \ {vi}, for every 1 ≤ i ≤ 2r − 2.

2.3 Betweenness Structure

Theorem 4 on 2-extreme marked 3-uniform cliques has particular interest in the axiomatic
theory of betweenness (see [3, 5, 10, 11]). The edges of a 2-extreme marked 3-uniform
complete hypergraph describe a ‘betweenness structure’ investigated first by Huntington
and Klein [11]. They write: The ‘universe of discourse’ of the present paper is the class of
all well-defined systems (K,R) where K is any class of elements A,B, C, . . . and R is any
triadic relation. The notation R[ABC], or simply ABC, indicates that three given elements
A, B,C, in the order stated, satisfy the relation R.

The four basic postulates of ‘betweenness’ due to Huntington and Klein [11] can
be interpreted in a natural way in terms of 2-extreme marked 3-uniform cliques. Let
H = (K,E) be a 3-uniform complete hypergraph with vertex set K , and edge set E, where
each edge has two boundary vertices and the third vertex is its ‘middle’ vertex between the
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boundary vertices. Every e = {A,B,C} ∈ E with two boundary vertices can be specified
as a sequence (A,B,C) or (C, B,A), where B is the middle vertex of e.

• Postulate A: if ABC is true, then CBA is true
– for {A,B, C} ∈ E any of the notations (A,B,C) or (C,B, A) reads as ‘B is

between A and C’.
• Postulate B: if A, B,C are distinct, then at least one of the six possible permutations

will form a true triad
– H = (K,E) is a complete hypergraph.

• Postulate C: we cannot have AXY and AYX both true at the same time
– H = (K,E) is a simple hypergraph and each edge has two fixed boundary

vertices, that is 2-extreme marked.
• Postulate D: if ABC is true, then the elements A,B, and C are distinct

– H = (K,E) is a 3-uniform hypergraph.

The less general model of betweenness is the betweenness relation naturally defined
by a linear order. By adding further axioms to Postulates A, B, C, D, Huntington [10]
and Huntington and Kline [11] identify several sets of independent axioms to characterize
betweenness structures admitting ‘agreeing linear order’. They observe (see also Fishburn
[5]) that no axioms concerning more than four elements need be assumed as fundamental.

This observation takes a precise form here due to Theorem 4 (proved in Section 2.1): a
betweenness structure admits an agreeing linear order if and only if its every substructure on
4 elements admits an agreeing linear order. In the light of this theorem all systems of axioms
listed by Huntington [10] are various logical constructions that exclude the obstructing
4-point betweenness structures.

In the study of betweenness structures involving triples of convex sets in the plane [4] we
introduced a different kind of ‘agreeing’ linear order, where the ‘middle element’ of each
triple precedes the two ‘boundary elements’. This concept of betweenness is extended in
the next sections from triples to r-tuples (r ≥ 3), where one or two elements are marked
in each; and our investigations concern linear orders of the elements agreeing with various
rules of agreement.

3 Min-Marked Hypergraphs

Let H be an r-uniform hypergraph (not necessarily a clique), and let A(e) ∈ e be the vertex
marked in each e ∈ E(H). This hypergraph will be called a min-marked hypergraph indi-
cating that A(e) should become the minimum among the vertices of each e in an agreeing
linear order. A linear order L of H is called an agreeing linear order, provided A(e) <L v,
for every e ∈ E(H) and v ∈ e \ {A(e)}.

First we will characterize general hypergraphs admitting an agreeing linear order, then
we discuss the Helly-property of complete hypergraphs.

Let M(H) denote the incidence matrix of H , that is, rows correspond to the edges,
columns correspond to the vertices, and for any e ∈ E(H) and α ∈ V (H)

m(e, α) =
⎧

⎨

⎩

0 if α /∈ e

−1 if α = A(e)

1 if α ∈ e \ {A(e)}

672



Order (2023) 40:665–682

The matrix F = -1 1
1 -1

and its permutation will be called a forbidden 2 × 2. If L is

an agreeing linear order of the min-marked hypergraph H , then the incidence matrix M(H)

contains no submatrix equivalent to a forbidden 2 × 2.
The submatrix

and its permutations are called precedence 2 × 2 matrices. If M(H) has a precedence sub-
matrix as above and L is an agreeing linear order, then the first row implies the ‘precedence’
α <L β;

We show a necessary and sufficient condition for the existence of an agreeing linear
order of a min-marked hypergraph. For this purpose we introduce an auxiliary directed
graph D(H), called the D-graph of H , containing ‘precedence information’ about H as
follows. Consider the partition � of E(H) into classes where f1, f2 are equivalent if and
only if A(f1) = A(f2). Let the vertices of D(H) be the equivalence classes of �, and for
distinct F1, F2 ∈ � let F1 → F2 be a directed edge of D(H) if e ∈ F1, f ∈ F2 such that
A(f ) ∈ e, that is the {e, f } × {A(e),A(f )} submatrix of M(H) is either a forbidden or a
precedence matrix.

Proposition 8 A min-marked hypergraph H has an agreeing linear order if and only if the
D-graph of H contains no directed cycle.

Proof The condition is obviously necessary. Assume now that D = D(H) has no directed
cycle. Then the vertices of D have a topological order L, that is, an ordering such that all
edges go ‘forward’ (from smaller to larger). Use this ordering of the equivalence classes of
� to define a linear order of V (H) by listing the marked vertices common to the edges in
each equivalence class according to the forward ordering, then all vertices of H marked for
no edge follow in arbitrary order.

Suppose that it is not an agreeing linear order. Then there is an e ∈ E(H), α, β ∈ e,
β <L α and α = A(e). By the definition of L, there is an f ∈ E(H) with β = A(f ).
Suppose that e ∈ F1, f ∈ F2. Then A(f ) ∈ e, therefore, there is a directed edge from F1 to
F2, contradicting β <L α. Therefore, L is an agreeing linear order of H .

3.1 Min-marked Cliques

Lemma 9 Assume that H is a min-marked r-uniform clique with at least r + 1 vertices
(r ≥ 3). If M(H) has a forbidden 2 × 2, then there exist e, f ∈ E(H) and α, β ∈ V (H)

such that |e ∪ f | = r + 1 and {e, f } × {α, β} is a forbidden 2 × 2.

Proof Let e, f ∈ E(H) be distinct edges and α, β ∈ V (H) such that {e, f } × {α, β} is a
forbidden 2×2; furthermore, let k = |e∪f | is as small as possible. We show that k < r +2
as stated. Assume that k > r + 1.
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Table 1

Table 1 shows e and f by listing first the elements in e ∩ f ending with α and β, then
the elements in f \ e followed by the elements of e \ f . Let f ′ = (f \ {ζ }) ∪ {β ′}, where
ζ ∈ f \ e and β ′ ∈ e \ f are arbitrary vertices. Observe that |f ∪ f ′| = r + 1 < k implies
that f ∪f ′ contains no forbidden 2×2; in particular, A(f ′) ∈ {β, β ′} (see Table 1). In each
case we obtain a forbidden 2 × 2 in e ∪ f ′, which contradicts the minimality of k, because
|e ∪ f ′| = |(e ∪ f ) \ {ζ }| = k − 1.

Lemma 10 A min-marked r-uniform clique H with r + 1 vertices (r ≥ 3) has an agreeing
linear order if and only if M(H) contains no forbidden 2 × 2.

Proof If H has an agreeing linear order then M(H) contains no forbidden 2 × 2. Assume
now that M(H) has no forbidden 2 × 2.

Claim The −1 entries of M(H) are in two columns.

Proof By permuting rows and columns, we may assume that M(H) has the following form:

– the first row is e1 = [

0 −1 1 . . . 1
]

;
– the second row is e2 = [−1 0 1 . . . 1

]

or e2 = [

1 0 −1 . . . 1
]

;
– each subsequent row ei has its 0 entry at the ith position.

To prove the claim, assume to the contrary that the −1 entries are spread in three (or
more) columns. In the table on the left for the first case, let ζ be the column different from
the first two columns, α and β, containing a −1, say m(f, ζ ) = −1. Then {e1, f } × {β, ζ }
is a forbidden 2 × 2.

For the second case let e3 be the third row in the standard right table. Then either
m(e3, ζ ) = −1, for some ζ different from α, β and γ , and we are done as before (e3 taking
the role of f ); or m(e3, α) = −1, as α being the third column containing −1.

In this latter case consider the next row e4 and column δ of the standard M(H) (they
exist, since r + 1 ≥ 4, furthermore, m(e4, δ) = 0). If m(e4, α) = −1 then {e2, e4} × {α, γ }
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is a forbidden 2×2; if m(e4, β) = −1 or m(e4, γ ) = −1 then {e3, e4}×{α, β} or {e1, e4}×
{β, γ } yields a forbidden 2 × 2, respectively.

Due to the Claim we may assume that all −1 entries of M(H) are in columns α and β.
If (α, β, . . .) is not an agreeing linear order of H , then there is an edge e ∈ E(H) such that
m(e, α) = 1, m(e, β) = −1. Then m(f, β) �= 1 for every f ∈ E(H), since m(f, β) = 1
implies that f �= e and m(f, α) = −1, thus {e, f } × {α, β} would be a forbidden 2 × 2.
Thus if (α, β, . . .) is not an agreeing linear order of H , then (β, α, . . .) is so.

We conclude the section with the proof of Theorem 2 stated in a more technical form.

Theorem 11 For a min-marked r-uniform clique H with at least r + 1 vertices (r ≥ 3) the
following statements are equivalent

(i) M(H) contains no forbidden 2 × 2,
(ii) There is an agreeing linear order on every (r + 1)-element subset of V (H).
(iii) H has an agreeing linear order,

Proof Statement (iii) obviously implies (i) and (ii), furthermore, (i) and (ii) are equivalent
due to Lemma 10. To prove the theorem we assume that (i) and (ii) are true (we know that
they are equivalent), that is, M(H) contains no forbidden 2 × 2 and there is an agreeing
linear order on every (r + 1)-element subset of V (H). We need to show that H has an
agreeing linear order.

This claim is verified by induction on n proving that M(H) has a column that contains
no entry equal to 1, that corresponds to a minimal vertex. This is true for n = r + 1, since
then H has an agreeing linear order. Assume n > r + 1, let H ′ = H −χ , where χ ∈ V (H)

is arbitrary, furthermore, assume that there is a column λ in M(H ′) not containing 1.

Claim 3 A(f ) ∈ {χ, λ}, for every f ∈ E(H) with χ, λ ∈ f .

Proof Assume to the contrary that m(f, χ) = m(f, λ) = 1 for some f ∈ E(H). Let
ζ ∈ f \ {χ, λ} such that A(f ) = ζ . Consider the columns labeled by the vertices in f ∪{ξ},
where ξ /∈ f is arbitrary. Let g = (f ∪ {ξ}) \ {χ} (see the table). Notice that A(g) = λ,
because g ∈ E(H ′) and λ is a in M(H ′) containing no 1.

For ζ = A(f ) the submatrix {f, g} × {λ, ζ } is a forbidden 2 × 2, a contradiction.
Therefore, either m(f, χ) = −1 or m(f, λ) = −1, and the claim follows.

Next we show by contradiction that either λ or χ is a column not containing 1 in M(H).
If λ is not such a column of M(H), then there is an edge � ∈ E(H) \ E(H ′) satisfying

m(�, λ) = 1 and m(�, χ) �= 0. By the Claim, m(�, χ) = −1.
If χ is not such a column of M(H) then there is an edge h ∈ E(H ′) with m(h, χ) = 1.

Observe that m(h, λ) �= −1, because otherwise, the submatrix {h, �}×{χ, λ} is a forbidden
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2×2. Thus the Claim implies m(h, λ) = 0. Let ζ = A(h), then m(�, ζ ) = 0 since otherwise,
{h, �} × {χ, ζ } is a forbidden 2 × 2 (see the table).

Let g ∈ E(H) be an edge with χ, λ, ζ ∈ g. The Claim implies that the marked vertex in
g is one of the 
 entries, in each case producing a forbidden 2×2, a contradiction. Therefore,
either χ or λ is a column of M(H) not containing 1.

An agreeing linear order of H is obtained by removing the vertex corresponding to the
least column λ∗ ∈ {λ, ζ }, then by taking an agreeing linear order for the (n − 1)-element
set V (H) \ {λ∗}, finally by completing this order with λ∗ as the least element.

4 1-ExtremeMarked Hypergraphs

Let H be an r-uniform hypergraph (not necessarily a clique), and let ê ∈ e be a dedicated
vertex in each edge e ∈ E(H). This hypergraph will be called a 1-extreme marked hyper-
graph. The name ‘1-extreme marked’ indicates that the marked vertex of an edge should
become either minimum or maximum among the vertices of each edge in an agreeing linear
order. A linear order L of a set U ⊆ V (H) is an agreeing linear order on U provided ê is
either L-minimal or L-maximal among the vertices of e for every edge e ⊆ U . An agreeing
linear order on V (H) is also called an agreeing linear order of H .

The edge/vertex incidence matrix M(H) is defined for every e ∈ E(H) and α ∈ V (H)

by the entries

m(e, α) =
⎧

⎨

⎩

0 if α /∈ e

−1 if α = ê

1 if α ∈ e \ {̂e}

4.1 Auxiliary Graphs

Let H be a 1-extreme marked hypergraph, and let L be an agreeing linear order of H . A

2 × 2 submatrix of M(H) equal to
-1 1
1 -1

or its permutation is called an F -matrix;

a 2 × 2 submatrix of M(H) equal to
1 -1
1 -1

or its permutation is called an S-matrix.

The two vertices corresponding to the columns of an F -matrix are extremes of different
types, one is the L-minimal, the other is the L-maximal element of the edges corresponding
to the rows. Meanwhile, the column containing −1 of an S-matrix is either L-minimal or
L-maximal element in both edges.

We associate a graph SF(H) to H in two steps as follows. First let G be a graph with
V (G) = E(H) and for e, f ∈ E(H) let ef be an edge in G labeled with S or F if and only
if there exists an S-matrix or an F -matrix with rows e and f , respectively. Now SF(H) is
obtained from G by contracting all S-edges, then eliminating multiple F -edges and S-loops.
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Table 2

As an example consider the hypergraph H with vertex set V = {α, β, γ, χ, ξ} including
the edges e, f, g, h and j marked as in Table 2. Then SF(H) is a triangle on the compound
vertices {f, g}, {h, j} and {e}.

An agreeing linear order L of H defines a natural 2-coloring of the edges of H : color
A or B will be assigned to e ∈ E(H) if ê is L-minimal or L-maximal in e, respectively.
In other words, E(H) = EA ∪ EB , where EA are edges of a min-marked subhypergraph
of H and EB are edges of a ‘max-marked’ subhypergraph of H , which is equivalent to a
min-marked hypergraph.

To obtain a characterization similar to the one in Proposition 8 for min-marked
hypergraphs, assume that SF(H) is two-colorable (bipartite), we consider any proper
two-coloring with A and B, and we associate to this A, B-coloring an auxiliary directed
graph AB(H) on vertex set V (H) as follows. Each compound vertex represents a class
of ‘S-equivalent edges’ of H ; assign the color of a compound vertex γ of SF(H) to
all edges belonging to the class represented by γ . Thus we obtain a partition E(H) =
EA ∪ EB , where EA = {e ∈ E(H) : if e is colored with A} and EB = {e ∈ E(H) :

if e is colored with B}. For every e ∈ E(H) and α, β ∈ e, α → β is an arc, if either
e ∈ EA and ê = α, or e ∈ EB and ê = β.

On the analogy of Proposition 8 we obtain a straightforward specification of 1-extreme
marked hypergraphs in terms of auxiliary graphs.

Proposition 12 A 1-extreme marked hypergraphH has an agreeing linear order if and only
if SF(H) contains no odd cycle and there is an AB(H) graph associated with some proper
two-coloring of SF(H) that contains no directed cycle.

Proof Let L be an agreeing linear order of H . As described earlier, L defines a two-
coloring, that is, a partition E(H) = EA ∪ EB , where EA = {e ∈ E(H) :
ê is L-minimal in e} and EB = {e ∈ E(H) : ê is L-maximal in e}. Notice that the color
is the same for all edges represented by any given compound vertex γ of SF(H), therefore
SF(H) is a bipartite graph (and contains no odd cycle as required). Consider the AB(H)

graph associated with this two-coloring. Let α, β ∈ e, for some e ∈ E(H). If α → β is
an arc in AB(H), then α <L β, because L agrees with e. Therefore, AB(H) contains no
directed cycle.

Next we prove that the requirements on the auxiliary graphs are sufficient for the exis-
tence of an agreeing linear order. The graph SF(H) is bipartite, so its vertices have a
proper two-coloring. Since AB(H) associated with some A,B-coloring of SF(H), it has
no directed cycle, there is a linear ordering L on V (H) such that α → β implies α <L β.
Observe that if e ∈ EA then for every β ∈ e \ {̂e} we have ê → β, that is ê is L-minimal
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in e. Similarly, if e ∈ EB then for every α ∈ e \ {̂e} we have α → ê, hence ê is L-maximal
in e.

4.2 1-ExtremeMarked Cliques

We will see here that the characterization of 1-extreme marked hypergraphs in Proposi-
tion 12 leads to the somewhat unexpected outcome that no Helly-type theorem exists for
1-extreme marked cliques.

Proposition 13 For every r ≥ 3 and n ≥ r + 1 such that n − r is even, there exists a
1-extreme marked r-uniform clique H on n vertices such that any subhypergraph of H on
n − 1 vertices has an agreeing linear order but H does not.

Proof We provide a construction for the case r = 3, which will be extended for every r ≥ 4.
Case r = 3. Notice that, by assumption, n is odd.

Let V (H) = {1, 2, . . . , n}, and let ei = {i, i + 1, i + 2} be edges with marked vertex
êi = i + 1, for i = 1, 2, . . . , n, (modulo n). For each 3-set f = {α1, α2, α3} ⊆ V , with
α1 < α2 < α3, different from all ei , i = 1, 2, . . . , n, let ̂f = α1.

Suppose an agreeing linear order L exists. Let C be the (odd) cycle on the vertex set
V (H) with edges {i, i + 1} (cyclically) for each i. The linear order L induces a 2-coloring
on the edges as follows: {i, i + 1} is red, if i >L i + 1, and blue if i <L i + 1. The condition
êi = i + 1 implies that this is a proper edge coloring of an odd cycle with 2 colors, a
contradiction.

Now let ξ ∈ V (H), and let H ′ = H − ξ . Organize the vertices of H ′ along a polygonal
path, as shown below. (In this picture ξ is even. If ξ is odd, the only difference is the up/down
position of the first and last point.)

ξ + 1

ξ + 2

. . .

. . .

n − 2

n − 1

n

1

2

3

. . .

. . .

ξ − 2

ξ − 1

Then list the lower elements on the picture in increasing order, and list the upper elements
in decreasing order, i.e., for ξ even, let

L = (1, 3, . . . , ξ − 1, ξ + 2, ξ + 4, . . . , n − 1, n, n − 2, . . . , ξ + 1, ξ − 2, . . . , 4, 2).

The linear order L clearly agrees with the edges ei ∈ E(H ′). For any other edge, if the
marked vertex (i.e. lowest indexed vertex) is downstairs, it will be least in L; if it is upstairs,
it will be greatest in L.

Case r ≥ 4. We define a 1-extreme marked r-regular clique satisfying the requirements
as follows. Notice that the condition n − r ≡ 0 (mod 2) implies that n0 = n − r + 3 is
odd. Let V0 = {1, 2 . . . , n0}, and let V = V0 ∪ W , where W is an (r − 3)-set disjoint
from V0. Use the construction with vertex set {1, 2 . . . , n0} as described above for the case
r = 3 to obtain a 1-extreme marked 3-regular clique H0 on vertex set V0 with no agreeing
linear order.
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For every 3-set f0 ∈ E(H0) define the r-set f = f0 ∪ W with marked vertex ̂f = ̂f0.
For any other r-set e ⊆ V we have |e ∩ V0| ≥ 4; define ê to be the smallest value in e ∩ V0.
Thus we obtain a 1-extreme marked r-uniform clique H .

Edges that contain 3 elements of V0 prevent an agreeing linear order by a similar
argument as above.

If ξ ∈ W then H − ξ becomes a 1-extreme marked hypergraph such that the ordering
of the values 1, 2, . . . , n0 followed by the elements of W in arbitrary order is an agreeing
linear order of H − ξ .

For 1 ≤ ξ ≤ n0 an agreeing linear order for H − ξ is obtained by using an agreeing
linear order L0 of H0 − ξ , and by inserting the elements of W between n0 − 1 and n0 in any
order. Equivalently, though less rigorously, W is inserted between the “downstairs” and the
“upstairs” vertices of V0.

5 Min&Max-Marked Cliques

Let H be an r-uniform clique such that for every e ∈ E(H) two distinct vertices are marked
as a min-vertex and a max-vertex, denoted A(e) and B(e), respectively. This hypergraph will
be called a min&max-marked clique.

A linear order L of the vertex set of a min&max-marked clique H is called an agreeing
linear order, provided A(e) <L v <L B(e), for every e ∈ E(H) and v ∈ e \ {A(e), B(e)}.
We prove Theorem 3 in the following form.

Theorem 14 For r ≥ 3 an r-uniform min&max-marked clique H with n ≥ 2r − 2 ver-
tices has an agreeing linear order if and only if there is an agreeing linear order on every
(2r − 2)-element subset of V (H). Furthermore, the number 2r − 2 in the statement cannot
be lowered.

Proof For the second statement we adapt the construction in Theorem 7 to present a
min&max-marked clique H on n = 2r − 2 vertices such that the vertex set of each
subhypergraph of H with 2r − 3 vertices has an agreeing linear order but H does not.

Let V (H) = {v1, v2, . . . , v2r−2}; for e0 = {v1, . . . , vr−1, vr } define A(e0) =
v1, B(e0) = vr−1, and for every e = {vi1 , vi2 , . . . , vir }, 1 ≤ i1 < i2 < . . . ir ≤ 2r − 2,
different from e0 define A(e) = vi1 , B(e) = vir . Let e1 = {vr−1, vr , . . . , v2r−2}.

In an agreeing linear order L of V (H) we have vr <L B(e0) = vr−1 = A(e1) <L vr , a
contradiction. Observe next that L1 = (v1, . . . , vr−1, vr , . . . , v2r−2) agrees with all edges
of H −e0, and L0 = (v1, . . . , vr , vr−1, . . . , v2r−2) agrees with all edges of H −e1. Because
e0∪e1 = V (H), no subhypergraph H −vi contains both e0 and e1. Therefore, either L0−vi

or L1 − vi is an agreeing linear order of V (H) \ {vi}, for every 1 ≤ i ≤ 2r − 2.

To prove the first part of the theorem define a directed graph G on V = V (H) with an
edge (x, y) from x to y if either x = A(e) or y = B(e), for some e ∈ E(H), x, y ∈ e. Now
H has an agreeing linear order if and only if the vertices of G have a labeling v1, v2, . . . , vn

such that each arc (vi, vj ) of G implies i < j . This labeling of V exists if and only if G

has no directed cycle. Assume now that H satisfies the Helly-condition. Observe that G has
no directed 2-cycle, because if it exists and is induced by e, f ∈ E(H), then |e ∪ f | ≤
2r − 2, contradicting the condition that on every (2r − 2)-element subset of V (H) there is
an agreeing linear order.
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Assume to the contrary that G contains a directed cycle, let C = (a1, a2, . . . , ak) be a
shortest directed cycle of G, k ≥ 3.

Let the arc (a1, a2) of G be induced by some e ∈ E(H); without loss of generality we
assume that a1 = A(e). A shortest directed cycle has no chord, thus e ∩ C = {a1, a2}. For
the same reason, C contains no r-tuple, hence k ≤ r − 1 and |e ∪C| = (r + k)− 2 ≥ r + 2.

Let f ⊆ e∪C be an r-tuple containing C and let a = A(f ). If a ∈ e\C, then (a, a1) is a
directed 2-cycle; if a = ai , i = 1, . . . , k, then (a, ai−1) is a directed 2-cycle (with a0 = ak),
a contradiction.

In addition to the direct proof of Theorem 3 (see Theorem 14 above) we show how
Theorem 3 follows as a corollary of Theorem 1.

Second proof of Theorem 14 Let H be an r-uniform min&max-marked clique with at least
2r − 2 vertices, and assume that there is an agreeing linear order on every (2r − 2)-element
subset of V (H). Construct H ′, a 2-extreme marked clique from H by making the marked
vertices undistinguished, and apply Theorem 1 to get an agreeing linear order L, in the sense
of Theorem 1.

Every edge e ∈ E(H) has the property that the smallest and the largest vertex of e in L

form the set {A(e), B(e)}. Call e “good”, if the smallest vertex of e in L is A(e), and the
largest vertex is B(e), and call it “bad” if it is the other way around. If every edge is good,
then L is an agreeing linear order in the sense of Theorem 14, so we are done. If every edge
is bad, then the dual of L will work, and we are done. So we just have to settle the case
when there is a good edge g, and a bad edge b.

Recall that the Johnson graph (see [1]) is defined on the r-element subsets of {1, . . . , n},
as vertices, and two of these vertices (r-sets) e and f are adjacent, if |e ∩ f | = r − 1. An
immediate observation is that the Johnson graph is connected.

On the path in the Johnson graph from the good edge g to the bad edge b (which are
vertices of the Johnson graph), there are two elements e, f ∈ E(H) such that |e∩f | = r−1,
and e is good and f is bad. Since |e ∪f | = r + 1 ≤ 2r − 2, there is an agreeing linear order
L′ on e ∪ f .

Note that |{A(e), B(e)} ∩ {A(f ), B(f )}| ≥ 1. Without loss of generality, either
A(e) = B(f ), or A(e) = A(f ). In the former case

A(f ) <L′ B(f ) = A(e) <L′ B(e),

while in the latter,
B(f ) <L A(f ) = A(e) <L B(e).

In both cases, every element of e ∩ f should be both between A(f ) and B(f ), and A(e)

and B(e), contradiction.

6 Concluding Remarks

In this paper we established Helly-type results for the existence of an agreeing linear order,
for complete r-uniform hypergraphs, in four versions. For 2-extreme marked, min-marked
and min&max marked cliques we found Helly-type theorems and the Helly numbers. For
1-extreme marked cliques we showed that there is no such theorem.

As a possible generalization of the questions discussed in the paper, D. Pálvölgyi
(personal communication) proposed the question of investigating Helly-type properties of
cliques, such that a poset is specified for each edge as “marks”. An edge e agrees with a
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linear order L, if L|e is a linear extension of the poset corresponding to e, and an agreeing
linear order, as before, is a linear order on the vertex set that agrees with every edge.

Similarly to the proof of Theorem 14, it can be shown that if none of the posets are
antichains, and every set of 2r2 vertices has an agreeing order, then there is an agreeing
linear order of the vertices. However, determining the Helly-numbers (based on the posets)
is wide open.

Thinking of 2-extreme marked 3-uniform hypergraphs, it is a basic assumption (see
[10, 11]) defining the betweenness relation for all triples with prescribed ‘boundaries’. How-
ever, it is natural to ask, what is the situation for not necessarily complete hypergraphs. In
this general case there is no Helly-type theorem in any of the four versions. We show an
example in the min-marked case. For m > 2 arbitrary, let u1, . . . , um, vi

j , 1 ≤ i ≤ m,

1 ≤ j ≤ r − 2 be the vertices of H . The hyperedges are ei = {ui, ui+1, v
i
1, . . . , v

i
r−2},

1 ≤ i ≤ m, cyclically. Let A(ei) = ui . Clearly, there is no agreeing linear order for H ,
because the vertices u1, . . . , um cannot be ordered in a desired way. However, if we remove
any vertex, at least one of the hyperedges is also deleted and then there is an agreeing order.

There are similarly easy counterexamples in the other cases too. But then, it is an inter-
esting problem to find conditions on the original hypergraph that would still guarantee a
Helly-type theorem. In the 2-extreme marked, min-marked and min&max marked cases, is
it enough to assume that the original r-uniform hypergraph is dense (that is, the hypergraph
has �(nr) hyperedges)?
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Csaba Biró and Jenő Lehel did not receive funding.

Data Availability No data was used in this research.

Declarations

Conflict of Interests We declare that the authors have no competing interests as defined by Springer, or
other interests that might be perceived to influence the results and/or discussion reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alspach, B.: Johnson graphs are Hamilton-connected. Ars Math. Contemp. 6(1), 21–23 (2013)
2. Anstee, R.P.: A Survey of Forbidden Configuration Results. In: Dynamic Surveys, Electron. J. Comb

(2013)
3. Azimipour, S., Naumov, P.: Axiomatic theory of betweenness. arXiv:1902.00847v2 (2020)
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7. Fox, J., Pach, J., Sudakov, B., Suk, A.: Erdős-szekeres-type theorems for monotone paths and convex

bodies. Proc. London Math. Soc. 105, 953–982 (2012)
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