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IMPROVED LOWER BOUNDS ON THE ON-LINE CHAIN

PARTITIONING OF POSETS OF BOUNDED DIMENSION

CSABA BIRÓ AND ISRAEL R. CURBELO

Abstract. An on-line chain partitioning algorithm receives a poset, one ele-
ment at a time, and irrevocably assigns the element to one of the chains. Over
30 years ago, Szemerédi proved that any on-line algorithm could be forced to

use
(

w+1
2

)

chains to partition a poset of width w. The maximum number of
chains that can be forced on any on-line algorithm remains unknown. In a
survey paper by Bosek et al., it is shown that Szemerédi’s argument could
be improved to obtain a lower bound almost twice as good. Variants of the
problem were considered where the class is restricted to posets of bounded
dimension or where the poset is presented via a realizer of size d. In this
paper, we prove two results. First, we prove that any on-line algorithm can
be forced to use (2 − o(1))

(

w+1
2

)

chains to partition a 2-dimensional poset of
width w. Second, we prove that any on-line algorithm can be forced to use

(2 −

1
d−1

− o(1))
(

w+1
2

)

chains to partition a poset of width w presented via a

realizer of size d.

1. Introduction

We consider each problem as a two-player coloring game between Beth and Anna.
In this game, Beth is the builder who constructs a poset one point at a time and
Anna is the algorithm who constructs a chain partition. During round i, Beth
introduces a new point xi to the poset and describes the subposet induced by the
elements {x1, . . . , xi}. Anna responds by assigning xi to one of the chains in the
chain partition. To avoid confusion, we refer to the chains in the partition as colors.

The on-line width olw(w) of the class of posets of width at most w is the largest
integer k for which there exists a strategy for Beth that forces Anna to use k colors
on a poset of width at most w. Clearly, olw(1) = 1. Kierstead [4] showed that
5 ≤ olw(2) ≤ 6, and Felsner [3] later showed that olw(w) ≤ 5, solving the problem
for w = 2. The exact value of olw(w) remains unknown for w ≥ 3. Kierstead [4]
was the first to prove that olw(w) was bounded. The upper bound has since been
improved several times with the most recent coming in the year 2021 from Bosek
and Krawcyk [2] where they prove that olw(w) ≤ wO(log logw). On the other hand,

a strategy by Szemerédi [5] proved that olw(w) ≥
(

w+1
2

)

. Szemerédi’s strategy was

later improved in [1] to show that olw(w) ≥ (2− o(1))
(

w+1
2

)

.
In this paper, we show that any poset resulting from the improved strategy is

2-dimensional. Furthermore, if Beth is required to present the poset along with a
realizer of size d, then we can achieve a lower bound which is arbitrarily close to
that of the general problem for sufficiently large d.

1.1. Background and Results. A set R = {L1, . . . , Lt} of linear extensions of a
poset (X,P ) is called a realizer of (X,P ) if x < y in P if and only if x < y in Li

for i ∈ {1, . . . , t}. The dimension of (X,P ) is then defined as the least integer d
1
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for which (X,P ) has a realizer of cardinality d. In this paper, we focus on variants
of the problem where not only is the width of the poset restricted but also the
dimension of the poset. We refer the reader to the survey paper [1] for an overview
of the different variants that have branched from the main problem. Let olw(w, d)
be the largest integer k for which there exists a strategy for Beth that forces Anna
to use k colors on a poset of width at most w and dimension at most d. The analysis
of the on-line chain partition game restricted to d-dimensional posets appears to be
as hard as the general problem and no better upper bound is known for this class
(even for d = 2). In [1], a proof that olw(w, 2) ≥

(

w+1
2

)

is provided. For our first
contribution, we prove the following theorem.

Theorem 1.1. Let w and d be integers such that w ≤ 1 and d ≥ 2. Then

olw(w, d) ≥ (2 − o(1))
(

w+1
2

)

.

For the main result of this paper, we consider the variant of the problem first
analyzed by Kierstead, McNulty, and Trotter [6] in which Beth introduces a d-
dimensional poset via its embedding in R

d or equivalently, by providing on-line a
realizer of cardinality d. Let olwR(w, d) be the largest integer k for which there
exists a strategy for Beth that forces Anna to use k chains on a poset of width w
introduced on-line via a realizer of cardinality d. Kierstead, McNulty and Trotter

[6] proved that olwR(w, d) ≤
(

w+1
2

)d−1
. For our main contribution, we prove the

following theorem.

Theorem 1.2. Let w and d be positive integers. Then olwR(w, d) ≥ (2 − 1
d−1 −

o(1))
(

w+1
2

)

.

In Section 2, we introduce substrategies and generalize previous results. In
Sections 3 and 4 we prove Theorem 1.1 and 1.2 respectively. First, we introduce
some notation and terminology.

1.2. Notation. Let (X,P ) be a poset. Let U and V be disjoint subsets of X . We
say that U < V if for any point u ∈ U and any point v ∈ V , u < v. We say that U
and V are completely comparable if for any point u ∈ U and any point v ∈ V , u
and v are comparable. Similarly, we say that U and V are completely incomparable
if for any point u ∈ U and any point v ∈ V , u and v are incomparable. Let T (w)
be a strategy. Suppose T (w) is played resulting in the poset (X,P ). If Y ⊆ X , we
use σ(Y ) to denote the set of colors used on Y and ‖Y ‖ = |σ(Y )| The dual P∗ of
a partial order P is a partial order on the same set at P such that x < y in P ∗

if and only if y < x in P . Hence, we define the dual strategy T ∗(w) as a strategy
such that whenever Beth introduces a new point x, x < y in P for any previously
introduced element y if and only if it would have been the case that y < x in P ∗

playing A∗(w). Lastly, each strategy in this paper is defined in multiple stages. We
reserve Si to denote the set of points introduced in Stage i.

2. Preliminaries

Let us recall Szemerédi’s original strategy Sz(w) which consists of two stages. In
Stage 1, Beth builds a chain Cw of size w along with an antichain Gw of size at most
w− 1. In Stage 2, Beth recursively plays Sz(w− 1) so that each new element is less
than every element of Gw and incomparable to every element of Cw. Szemerédi’s
strategy always results in a poset (X,P ) consisting of a chain Ci of size i such
that every element of Ci has a distinct color and an antichain Gi of size at most
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Figure 1. Sz(4) embedded in R
2. Subscripts denote the on-line

order and superscripts denote the color assigned.

i − 1 for each i ∈ {1, . . . , w}. We refer to the chains C1, . . . , Cw as rainbow chains

where the index indicates the size of the chain. Moreover, elements from distinct
rainbow chains are incomparable and the set of minimal elements of (X,P ) are
exactly the minimal elements of C1, . . . , Cw. Figure 1 shows a poset constructed
by Sz(4) embedded in R

2. The x and y coordinates provide linear orders Lα and
Lβ respectively such that Lα ∩ Lβ = P . Notice that this embedding strategy will
always conclude with Cw at the bottom of Lα.

2.1. Substrategies. In order to prove our results, we need to be able to guarantee
that the strategy concludes with Ck at the bottom of Lα for any k ∈ {1, . . . , w}.
To guarantee this, we must present two strategies Lα(k, w) and Lβ(k, w) which
construct the linear orders Lα and Lβ respectively. The two strategies are played
simultaneously to construct the partial order Lα ∩Lβ, however, in order to acheive
our desired condition, we do in fact need to treat them as independent strategies.
We prove the existence of such strategies in Lemma 2.2, but first we prove the
following claim.

Lemma 2.1. Let w be a positive integer. Then there exist strategies Lα(w) and

Lβ(w) that constructs a realizer {Lα, Lβ} so that Lα ∩Lβ = Cw ∪Gw where Cw is

a rainbow chain of size w, Gw is an antichain of size at most w − 1, Cw ∩Gw = ∅
and Cw < Gw in Lβ.

Proof. We argue by induction on the positive integer w. If w = 1, Beth simply
presents a single point. Suppose w > 1. By the induction hypothesis, there exist
strategies that constructs a realizer {Lα, Lβ} so that Lα∩Lβ = Cw−1∪Gw−1 where
Cw−1 is a rainbow chain of size w − 1, Gw−1 is an antichain of size at most w − 2,
and Cw−1 < Gw−1 in Lβ . Beth plays the strategies and then introduces a new
point x at the top of Lα and in between Cw−1 and Gw−1 in Lβ. If x is assigned a
new color, then Cw = Cw−1 ∪ {x} and Gw = Gw−1. Otherwise, we add x to Gw−1

and repeat. If |Gw−1| = w− 1, then Anna must use a new color in the next round.
Thus the strategy terminates with |Cw | = w and |Gw| ≤ w − 1. �

Note that the strategies from Lemma 2.1 can be defined independently in a
constructive manner. Each round, Lα(w) simply places a new element at the top of
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k = w k < w
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Lβ
xw
Nxw−1

N−1
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1

Lβ(w − 1, w − 1)

xw
Nxw−1

N−1
x2
4x2

3x1
2x1

1

Lα(k, w − 1)
x1
1 x2

3
xw
N

Lα(w − 1, w − 1)
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2x2

4xw−1
N−1

x1
1 x2

3
xw
N

Lβ(k, w − 1)
x1
2x2

4xw−1
N−1

Figure 2. The resulting Lα and Lβ on a greedy algorithm.

Lα, and Lβ(w) traverses up Lβ and inserts a new element immediately under the
first repeated color. It is easy to verify that played together, they indeed satisfy
the conditions of Lemma 2.1. We now use Lemma 2.1 to prove the following.

Lemma 2.2. Let w and k be positive integers such that k ≤ w. Then for any on-

line algorithm there exist strategies Lα(k, w) and Lβ(k, w) for Beth which construct

the same poset as Sz(w) via a realizer {Lα, Lβ} so that if Ck is the rainbow chain

of size k, then if u ∈ Ck and v /∈ Ck, u < v in Lα.

Proof. We argue by induction on the positive integers w and k with k ≤ w. If
w = k = 1, Beth simply presents a single point. Suppose w > 1 and k < w. The
strategies consists of two stages.

By Lemma 2.1, there exist strategies L′
α(w) and L′

β(w) which construct a realizer

{L′
α, L

′
β} so that L′

α∩L′
β = Cw∪Gw where Cw is a rainbow chain of size w, Gw is an

antichain of size at most w− 1, and Cw < Gw in L′
β . By the induction hypothesis,

there exist strategies L′′
α(k, w − 1) and L′′

β(k, w − 1) for Beth which construct the

same poset as Sz(w−1) via a realizer {L′′
α, L

′′
β} so that the rainbow chain Ck of size

k is at the bottom of L′′
α. Then Beth plays L′

α(w) and L′
β(w) in Stage 1 followed by

L′′
α(k, w− 1) and L′′

β(k, w− 1) in Stage 2 in Lα and Lβ respectively so that S2 < S1

in Lα and Cw < S2 < Gw in Lβ.
If k = w, then the argument is nearly identical except that Beth uses the induc-

tion hypothesis strategies for k = w−1, and the roles of Lα and Lβ are switched. �

The construction of Lα and Lβ can be seen in Figure 2. The strategies are
defined recursively where Lα(k, w) continues to play Lα(i − 1) under Lα(i) until
i = k + 1 in which case Lβ(k) is played under Lα(k + 1). This switch when k = w
guarantees that the rainbow chain Ck is at the bottom of Lα.

2.2. Generalizing the improved strategy. The improved strategy Sz′(w) pre-
sented in [1] involved three stages where Beth played Sz(w) in Stage 1 followed by
Sz∗(w) completely under S1 in Stage 2. Let C1, . . . , Cw be the rainbow chains from
Sz(w) and D1, . . . , Dw be the rainbow chains from Sz∗(w). Then, the proof relied

on the fact that there exists an integer t such that ‖Ct ∪ Dw‖ > 2w −
√
2w. In

order to prove our main theorem, we generalize this claim.

Proposition 2.3. Suppose the strategy Sz(w) is played resulting in a poset with

rainbow chains C1, . . . , Cw. let D denote a set of w distinct colors, and let k be a

positive integer. If k <
√
2w, then there exists a t such that w − k + 1 ≤ t ≤ w

and |σ(Ct) ∪ D| ≥ 2w − w
k
− k−1

2 . Otherwise, there exists an integer t such that

|σ(Ct) ∪D| > 2w −
√
2w.
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C1

Cw

w−
√
2w

√
2w

C1

Cw

w−w

k
−k−1

2

k

w

k
− k+1

2

k k

Figure 3. If k ≥
√
2w, Beth can guarantee the same number of

colors as in Sz′(w). If k <
√
2w, Beth can guarantee slightly less

colors than Sz′(w)

Proof. Figure 3 (LEFT) shows that when k ≥
√
2w, we have enough rainbow chains

to guantaree the same number of colors as in Sz′(w). Suppose that k <
√
2w, and

let C′ =
⋃w

i=w−k+1 Ci. Each color from D may only be used once in C′ and

|C′| = wk − 1
2k(k − 1). If we let C′′ denote the set of points not colored with

colors from D, then |C′′| ≥ wk − 1
2k(k − 1) − w. On average each chain has

w− 1
2 (k− 1)− w

k
colors distinct from those in D. Thus there must exist an integer

t such that w−k+1 ≤ t ≤ w and |σ(Ct)∪D| ≥ 2w− w
k
− k−1

2 . A visual arguement
is shown in Figure 3 (RIGHT).

�

In Stage 3, Sz′(w) ends with Beth recurvisely playing Sz′(w − 1) so that every
new point is completely incomparable to Cw ∪ Dw and completely comparable to
(S1 ∪ S2) \ (Cw ∪Dw). Any poset resulting from Sz′(w) has width w which is easy
to see from the structure of the poset which consists of rainbow chains and the
corresponding antichains. We include the following proposition for emphasis.

Proposition 2.4. The strategy Sz′(w) always constructs a poset of width w.

3. Proof of the First Theorem

We imitate the improved strategy Sz′(w) from [1] using Lα(k, w) and Lβ(k, w)
to obtain a new strategy S(w) for Beth which will force Anna to use (2−o(1))

(

w+1
2

)

colors on a 2-dimensional poset (X,P ) of width w. Note that while it may not be
necessary to construct the poset via its realizer in order to prove our first result, it is
for our main result and hence in using the same substrategies for both results allows
us to contrast and better demonstrate the connections between the two problems.

3.1. The Strategy for Beth. We define the strategy S(w) for Beth recursively on
the positive integer w. The strategy S(w) is completed in three stages. During the
first two stages, Beth constructs linear orders Ak and Bk for each k ∈ {1, . . . , w}
such that each pair realizes the same poset (X,P ), and presents (X,P ) to Anna.
In Stage 3, Beth throws away all but one pair {At, Bt} of linear orders and plays
S(w−1) analogously to that of Sz′(w). The choice of t is dependent on the coloring
by Anna. Let w > N for some sufficiently large N .
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Stage 1. For each positive integer k ≤ w, Beth constructs two linear orders Ak

and Bk by playing Lα(k, w) and Lβ(k, w) respectively. By Lemma 2.2, S1 contains
a sequence of rainbow chains C1, . . . , Cw such that Ck < S1 \ Ck in Ak for k ∈
{1, . . . , w}.
Stage 2. For every positive integer k ≤ w, Beth updates Ak and Bk by playing
the dual strategies L∗

β(w,w) and L∗
α(w,w) completely under S1 in Ak and Bk

respectively so that S2 < S1 in both Ak and Bk. By Lemma 2.2, S2 contains a
sequence of rainbow chains D1, . . . , Dw such that S2 \ Dw < Dw < S1 in Bk for
k ∈ {1, . . . , w}.
Stage 3. By Proposition 2.3, there exists a t such that ‖Ct ∪ Dw‖ > 2w −

√
2w.

Beth plays S(w − 1) for the remainder of the game in such a way that S2 \Dw <
S3 < S1 \ Ct but S3 and Ct ∪Dw are completely incomparable in P .

3.2. The Result. Notice that the only difference between S(w) and Sz′(w) is that
we kept track of a realizer for each choice of t. Thus S(w) forces at least

w
∑

i=1

(

2w −
√
2w

)

= (2− o(1))

(

w + 1

2

)

colors on a poset (X,P ) and by Proposition 2.4, (X,P ) has width at most w.
Finally, we claim that (X,P ) is 2-dimensional. Notice that At ∩ Bt = P |S1∪S2

.
By the induction hypothesis, the poset (S3, P |S3

) is 2-dimensional. Let A and B
be linear extensions of P |S3

such that A∩B = P |S3
. We define a realizer {L1, L2}

in such a way that At ∪ A ⊂ L1, Bt ∪B ⊂ L2, and the following conditions hold.

(1) S2 < Ct < S3 < S1 \ Ct in L1.
(2) S2 \Dw < S3 < Dw < S1 in L2.

This concludes the proof.

4. Proof of the Main Theorem

In this variant of the game, Beth is restricted on the number of linear extensions
and must present them to Anna each round. In other words, Beth cannot simply
throw away the extra linear extensions while keeping only the ones needed. Hence,
we must be more selective when constructing the linear extensions. Similarly to
the previous proof, we use the strategies from Section 2 to obtain a new strategy
S(d, w) for Beth which will force Anna to use (2 − 1

d−1 − o(1))
(

w+1
2

)

colors on an

d-dimensional poset (X,P ) of width w presented with via a realizer of size d.

4.1. The Strategy for Beth. We fix the positive integer d and define the strategy
S(d, w) for Beth recursively on the positive integer w. Beth constructs a poset
(X,P ) by presenting a realizer R of size d. Let d and w be positive integers. Beth
constructs R by constructing d linear extensions Lw−d+2, . . . , Lw, Lw+1. In order
to handle the case when w < d− 1, we extend the algorithm Lα(k, w) to be defined
for k < 1 as follows: If k < 1, then Lα(k, w) = Lα(w,w). The strategy S(d, w) is
completed in three stages.

Stage 1. For each integer i such that w− d+2 ≤ i ≤ w, Beth constructs the linear
extension Li by playing Lα(i, w). Beth simultaneously constructs Lw+1 by playing
Lβ(w,w). By Lemma 2.2, S1 contains a sequence of rainbow chains C1, . . . , Cw

such that Ci < S1 \ Ci in Li for i ∈ {w − d+ 2, . . . , w}.
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Stage 2. For each integer i such that w − d + 2 ≤ i ≤ w, Beth updates Li by
playing the dual strategy L∗

β(w,w) completely under S1 in Li. Beth simultaneously

updates Lw+1 by playing the dual strategy L∗
α(w,w) completely under S1 in Lw+1.

By Lemma 2.2, S2 contains a sequence of rainbow chains D1, . . . , Dw such that
S2 \Dw < Dw < S1 in Lw+1.

Stage 3. By Proposition 2.3, for w sufficiently large, there exists a t such that
w− d+ 2 ≤ t ≤ w and ‖Ct ∪Dw‖ ≥ 2w− w

d−1 − d−2
2 . Then for each integer i such

that w − d + 2 ≤ i ≤ w + 1, Beth plays Lα(i − 1, w − 1) for each integer i such
that w − d + 2 ≤ i < w, and Lβ(w − 1, w − 1) for i = w + 1 so that the following
inequalities hold:

(1) S2 < Ct < S3 < S1 \ Ct in Lt

(2) S2 \Dw < S3 < Dw < S1 in Lw+1

(3) S2 < S3 < S1 in Li for i /∈ {t, w + 1}.
4.2. The Result. Since Dw < Ct < S3 in Lt and S3 < Dw < Ct in Lw+1, S3

and Ct ∪Dw are completely incomparable. Since S2 \Dw < S3 < S1 \ Ct in every
linear extension, it also holds true in P . Hence, the resulting poset (X,P ) is in
the class P of posets resulting from Sz′(w). In particular, the posets which can
be constructed from S(d, w) are exactly the posets from P where t is restricted to

{w− d+ 2, . . . , w} when d < 1 +
√
2w. Thus by Proposition 2.4, (X,P ) has width

at most w. Moreover, S(d, w) forces at least
w
∑

i=1

(

2i− i

d− 1
− d− 2

2

)

=

(

2− 1

d− 1
− o(1)

)(

w + 1

2

)

colors on a poset (X,P ) of width at most w.
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