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Abstract In this paper, we analyze an OBS switch
endowed with both wavelength converters (WCs) and

fiber delay lines (FDLs) to resolve contention. We con-

sider the case where the number of wavelengths is large
by introducing a mean field model that provides exact

results when the number of wavelengths tends to in-

finity. We have confirmed through simulations that the
mean field model provides accurate approximations for

switches with a large but finite number of wavelengths,

which are of interest in view of wavelength division

multiplexing (WDM). Furthermore, our model allows
a very general behavior for the arrival process and the

packet size distribution, as well as two different wave-

length allocation policies: minimum horizon and min-
imum gap. Our results include a detailed analysis of

the effect that these parameters have on the burst loss

rate, and on the minimum number of WCs required to
attain a zero loss rate as the number of wavelengths

becomes large. We have found that at high loads there

is little value in adding FDLs and, if included, shorter

granularities result in fewer WCs required to achieve a
zero loss rate. The inclusion of FDLs becomes more sig-

nificant under mid loads and bursty traffic, where the

addition of several FDLs may reduce the conversion re-
quirements. Also, increasing the number of WCs under

the minimum horizon policy may worsen the loss rate,

while this is never the case for the minimum gap policy.
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1 Introduction

Nowadays optical fibers are able to carry a huge amount

of information thanks to wavelength division multiplex-

ing (WDM). With WDM several signals can be trans-
mitted at the same time using different wavelengths,

increasing the fiber capacity by tens or hundreds. To

cope with this increasing capacity, optical burst switch-
ing (OBS) has been proposed as a solution to reduce

the opto-electronic translations at the backbone net-

work switches [16,18]. In OBS, only the header requires
this translation, while the payload is processed in the

optical domain. To resolve contention in the optical do-

main we consider two alternatives: wavelength conver-

sion and optical buffering. Therefore, when an incom-
ing packet requires transmission through a wavelength

currently unavailable there are two options to prevent

dropping the burst: it can be translated to a different
wavelength using a wavelength converter; or it can be

buffered using a Fiber Delay Line (FDL) until the wave-

length becomes available. Furthermore, both solutions
can be combined to allow a burst to be first converted to

a different wavelength and then buffered, or vice versa.

The main purpose of this paper is to analyze the effect

of combining these solutions in an OBS switch with a
large number of wavelengths.

Our Contribution: In this paper, we consider an OBS

switch equipped with a pool of full-range wavelength
converters and a set of FDLs per output port. Each of

these ports has W wavelengths that can be used to si-

multaneously transmit the same number of bursts. The
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number of wavelengths can be over a hundred due to

the advances in WDM. To analyze the performance of
this switch we introduce a mean field model that is ex-

act when the number of wavelengths tends to infinity.

Moreover, the performance of a switch with a large but
finite number of wavelengths tends to that of the mean

field as the number of wavelengths increases. Therefore,

the mean field model can be used to approximate the
performance of a switch with a large number of wave-

lengths, as has been confirmed by means of simulations.

Furthermore, the time required to evaluate a particular

scenario with the mean field model is typically a few
seconds on a personal computer, compared to the long-

lasting simulations that are needed when the number

of wavelengths is large and the performance measures
to evaluate are small (e.g., burst loss probability). As a

result, the mean field model can be used to efficiently

evaluate the effect of various parameters on the perfor-
mance of the switch. These include, among others, the

number of converters, the number and granularity of

FDLs, the packet size distribution and the arrival pro-

cess’ burstiness. The main features of the mean field
model can be summarized as follows: (i) contention is

resolved by means of both wavelength conversion and

optical buffering; (ii) the number of converters may
vary between zero and the number of wavelengths, a

property called partial conversion; (iii) two different

policies are considered for wavelength allocation: mini-
mum horizon and minimum gap; (iv) the arrival process

is assumed to be a general Markovian arrival process

(MAP) [8], which is able to represent general corre-

lated inter-arrival times; (v) the burst size is assumed
to follow a general distribution with finite support.

The main performance measure for the switch is

the burst loss probability, which is the probability that

an incoming burst has to be dropped due to the im-
possibility to transmit, convert or buffer it. Since the

number of wavelengths is large, it is expected that the

loss probability will decrease to a near-zero value if the

number of converters is large enough, as in an Erlang
loss system. Therefore, it becomes relevant to determine

the minimum number of converters required to attain

a near-zero loss probability. We can reformulate this by
expressing the number of converters C in terms of the

number of wavelengths W as C = σW , where σ ∈ (0, 1)

(partial conversion). The goal is therefore to find the
minimum value of σ such that the loss probability is

almost zero, which will be denoted as σ∗. As will be

shown later, with the mean field model we are able to

compute the value of σ∗ in a single run, which allows us
to consider the effect that other parameters have on σ∗,

specially the number and granularity of FDLs. Some of

the insights we have gathered in this direction are:

1. If the system is under-dimensioned in terms of con-

version resources, meaning σ < σ∗, periodic system
behavior may occur, which is a very unwanted ef-

fect in any system. The period seems to equal the

greatest common divisor of the burst lengths.
2. The effect of the number of FDLs on the loss rate

and σ∗ is highly dependent on the load. While for

high loads it may have little or no effect, for mid
loads the addition of a few FDLs may reduce both

the loss rate and σ∗.

3. Also, if the number of WCs is insufficient (σ < σ∗),

increasing the number of FDLs may not improve the
loss rate. However, under bursty traffic the effect of

adding FDLs is more substantial, helping to reduce

the conversion requirements.
4. The effect of the granularity on σ∗ also depends on

the load: while for low and mid loads the set of gran-

ularity values with the best performance depends
on the packet size distribution, for high loads the

performance is inversely proportional to the granu-

larity. As a result, among the best possible values

for the granularity under mid loads, the results fa-
vor the selection of a small granularity since this

requires fewer converters to attain a near-zero loss

probability at high loads.
5. The minimum horizon policy shows a consistently

worse performance than its minimum gap counter-

part. Moreover, if σ < σ∗ the addition of converters
may worsen the loss rate under the minimum hori-

zon policy.

Related work: The effect of wavelength conversion on a

bufferless switch has been considered in [1,20] by means

of analytical models. Separately, the performance of
a switch equipped with FDLs but without converters

has been treated in [9, 10, 19]. The analysis of a switch

including both solutions turns out to be more com-

plex since the multidimensional nature of a multi-wave-
length switch has to be combined with the special queu-

ing behavior of the optical buffer. The interaction of

both wavelength conversion and FDLs has been ana-
lyzed by means of simulation models in [4,5,7]. In these

studies, as well as in the present paper, the converters

are assumed to have full-range conversion, i.e., a burst
can be converted to any wavelength. The case where

the bursts can only be converted to a restricted set of

wavelengths has been treated in [2, 6, 14, 15]. It must

be noted that a five-page version of this paper was pre-
sented in [13], where only an overview of the model and

a few results were put forward.

The paper is organized as follows: Section 2 intro-

duces the architecture and operation of the switch un-

der analysis; Section 3 describes the mean field model
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in detail; finally, Section 4 compares the results of the

mean field model with results from the simulation of
a finite system. This section also analyzes the effect of

various parameters on the performance of the switch,

with special emphasis on the effect of the allocation
policies, the number and granularity of FDLs and the

burstiness of the arrival process.

2 Switch Architecture and Operation

In this section, we describe the operation and main fea-

tures of the optical switch, the wavelength allocation

policies and some modeling issues relevant for the de-
scription of the switch. In this and the next sections we

use the terms packet and burst interchangeably. The op-

tical switch under analysis, shown in Figure 1, is made
of a number of input/output ports, each one connected

to a fiber with W wavelengths. The switch works in

a synchronous manner, where the time is divided in

equally-spaced slots and the state of the switch is ob-
served at slot boundaries. The synchronous operation,

as opposed to the asynchronous case, makes the switch-

ing matrix design simpler but requires packet synchro-
nization and alignment [1, 5].

The arrival process at each wavelength is modeled

as a Markovian Arrival Process (MAP) [8] character-
ized by the set of m×m matrices {B0, B1, . . . , BLmax

},

where Lmax is the maximum packet length. The MAP is

driven by an underlying Markov chain with transition

matrix B =
∑Lmax

k=0 Bk. For k ≥ 1, the (i, j)-th entry
of the matrix Bk is the probability that a packet of

size k arrives and the underlying Markov chain makes

a transition from i to j. Correspondingly, B0 contains
the transition probabilities of the underlying chain in-

volving no arrivals. The states of the underlying Markov

chain are also referred to as the phases of the arrival
process. The class of MAP processes has been used be-

fore to model the arrival process at a bufferless optical

switch [1]. It includes many well-known processes as

special cases, e.g., the discrete-time versions of the Pois-
son process, interrupted Poisson process (IPP), Markov

modulated Poisson process (MMPP), etc. When a burst

arrives it is switched to the corresponding output port
using its own wavelength, called home wavelength. If

the home wavelength is available for transmission in the

output port, the burst starts transmission immediately.
If the wavelength is already transmitting another burst

or has scheduled the transmission of a burst waiting in

the FDL, the new packet is buffered using the FDL.

In case the FDL has no available buffering capacity in
that wavelength, the incoming burst is converted to a

different wavelength using one of the available convert-

ers. If there are no idle converters or no wavelengths
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Figure 1 Optical switch with K input/output ports, W wave-
lengths, converters and FDLs

with available buffering capacity, the burst must be
dropped. Thus, to resolve contention the switch first

tries to buffer the signal and only if this is not possible

it tries to convert it, aiming to minimize the converter
usage, as the minConv strategy in [7].

To analyze the performance of the switch we can

focus on a single output port as the incoming traffic

is assumed to be uniformly distributed among the out-
put ports. To describe the state of one of these ports

we consider two types of objects: wavelengths and con-

verters. The state of a single wavelength is described
by the scheduling horizon, which is the time until all

the packets already scheduled for transmission in that

wavelength have left the switch. If the horizon is equal
to 0 and a packet of size L arrives, it can start transmis-

sion immediately and the horizon increases to L. On the

other hand, if the incoming burst finds a horizon equal

to h, it will experience a delay of at least h units before
actual transmission. As the buffering is carried out by

a set of N FDLs, the possible delay a packet can expe-

rience depends on the length of these delay lines. Here
we assume the N FDLs have linearly growing length

with granularity D, i.e., the first line provides a delay

of D time slots, the delay in the second is equal to 2D,
and the last line delays the packet for ND slots. With

this setup an incoming packet that observes a schedul-

ing horizon equal to h has to wait for D
⌈

h
D

⌉

slots, if

h ≤ ND. If the packet is of size L the new value of the
horizon is D

⌈

h
D

⌉

+ L. Notice, in this particular case

the wavelength remains unused during D
⌈

h
D

⌉

− h slots

just prior to the packet transmission, we refer to this
as a gap. If h is greater than ND the packet cannot be

buffered in the FDL using the same wavelength and it

must be reallocated in another wavelength with horizon
less than or equal to ND.

A packet that cannot be buffered in its home wave-

length, called an extra-packet, can be reallocated if there

is both a wavelength with scheduling horizon no greater
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than ND and an available converter. Hence, it is nec-

essary to check the state of all the wavelengths and
the converters. There are C converters per output port

and the state of a single converter is also described by

its scheduling horizon. In this case the converter has
no buffering capacity, therefore its horizon reduces to

the time required by the packet already in service to

be completely converted. Then, if an extra-packet of
size L finds an available converter (and there is a wave-

length with available buffering capacity) the horizon

of the selected converter changes its value from 0 to

L. Naturally, when this conversion occurs the horizon
of the wavelength that receives the burst increases its

value as described previously. An important assump-

tion is that each wavelength with available buffering
capacity can only receive one extra-packet during one

slot, even if it has enough free FDLs to receive more

than one additional packet. Removing this assumption
would complicate both the possible set of wavelength

allocation policies and its corresponding modeling as-

pects. The number of converters C per output port is

determined as a fraction of the number of wavelengths
W , i.e., C = σW , where σ is the conversion ratio. If

σ = 0 (resp. σ = 1) the switch is said to have null (resp.

full) conversion. Here we assume that σ takes values be-
tween 0 and 1, which is called partial conversion. If an

extra-packet finds an idle converter it has to choose a

wavelength among those with horizon less than or equal
to ND. This selection can be made using two different

allocation policies: minimum horizon, which selects the

wavelength with the minimum scheduling horizon; and

minimum gap, which selects the wavelength with a hori-
zon such that the allocation of a new packet generates a

gap of minimum value among all available wavelengths.

Recall, the gap is the difference between the horizon ob-
served by an incoming packet and the actual delay that

a packet assigned to the wavelength must face.

To model the evolution of the switch in a single slot

we consider the following order of events: first, the busy

wavelengths (resp. converters) transmit (resp. trans-
late) part of the packet in service, reducing their hori-

zons by one. Second, a new packet may arrive at each

wavelength with a probability related to the current
state i ∈ {1, . . . ,m} of its arrival process; the packet

is buffered if there is space available in its home wave-

length, otherwise it becomes part of the set of extra-
packets. Third, the extra-packets are converted to a

different wavelength with available buffering capacity.

Any extra-packet that does not find an available con-

verter or a wavelength with buffering capacity must be
dropped. The probability that a packet is dropped is

called the loss probability and is considered the main

measure of performance.

3 Mean Field model

Our model is based on a general result for a system of

interacting objects introduced in [11]. In our case, the

system consists of two types of objects: wavelengths
and converters. To describe the evolution of the sys-

tem during a time slot we start with the state of the

objects at the beginning of the time slot. Then we de-
termine the transition matrices that describe the state

transitions at each of the three steps: transmission, ar-

rivals and reallocation. The matrices associated to these
steps are Sk, Ak and Qk, respectively, where the sub-

script k may be equal to w or c depending on whether

the matrix describes the transition of a wavelength or

a converter. These matrices are then used to build a
complete description of the evolution of the switch at

each time slot. At the beginning of slot t (before packet

transmission) the state of a single wavelength can be
described by the tuple {(H(t), J(t)), t ≥ 0}, with H(t)

the scheduling horizon of the wavelength and J(t) the

phase of its arrival process. Its state space is the set
{(i, j)|0 ≤ i ≤ ND + Lmax, 1 ≤ j ≤ m}. Similarly,

a converter can be described by its scheduling horizon

{H̄(t), t ≥ 0} with state space {i|0 ≤ i ≤ Lmax}. We

now define the evolution matrices for each of the three
steps.

3.1 Step 1, packet transmission

In the first step (S1) the horizon of each busy wave-

length and each busy converter is reduced by one, as
they transmit (translate) part of the scheduled pack-

ets. Let Tn be the (n + 1) × n matrix with entries

[Tn]ij =







1, i = j = 1,

1, j = i − 1, i = 2, . . . , n + 1,
0, otherwise.

Then the evolution of a single wavelength in S1 is given

by the transition matrix Sw = TND+Lmax
⊗Im, where In

is the identity matrix of size n and ⊗ denotes the Kro-

necker product. This product shows that packet trans-

missions affect the horizon value but not the phase of

the arrival process. Accordingly, the matrix Sc = TLmax

contains the transition probabilities for a converter dur-

ing S1.

3.2 Step 2, packet arrivals

The arrival of packets during the second step (S2) has
no influence on the state of a converter; therefore, its

transition matrix in this step is given by Ac = ILmax
.

Similarly, the matrix Aw describes the transition of a
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single wavelength in S2, but its definition is more in-

volved. If after S1 the wavelength has a horizon less
than or equal to ND, it can accept any incoming packet.

On the other hand, if the scheduling horizon is greater

than ND and a packet arrives, it cannot be buffered
and becomes part of the extra-packets. To keep track

of the size of the (possibly empty) set of extra-packets,

the horizon and the phase of the arrival process, we sep-
arate the resulting state space after S2 into two sets.

The first set is {(i, j)|0≤ i≤ND +Lmax, 1 ≤ j ≤ m},

which captures two cases: the horizon was less than or

equal to ND after S1, and the transition in S2 results
in a horizon equal to i and a phase of the arrival process

equal to j; or the horizon was greater than ND but no

packet is received. In this first set the wavelength holds
zero extra-packets. The second set is {(ND + Lmax +

i, k, j)|1 ≤ i ≤ Lmax−1, 1 ≤ k ≤ Lmax, 1 ≤ j ≤ m}, con-

sidering the case where the horizon was equal to ND+i
after S1 and the arrival process (during S2) generates

a packet of size k and makes a transition to phase j.

The two sets of states are put together by imposing a

lexicographic order, resulting in a transition matrix Aw

of size m(ND + Lmax)×m(ND + L2
max + 1) (since the

horizon after step S1 is at most ND + Lmax − 1).

To explicitly describe the matrix Aw we partition
the state space before and after S2 in levels. Before

S2, level i is the set of states {(i, j)|1 ≤ j ≤ m}, for

0≤ i≤ND+Lmax−1. After S2, there are two subsets
of levels, corresponding to the two subsets of the state

space described above: in the first subset, level i is the

set of states {(i, j)|1 ≤ j ≤ m}, for 0 ≤ i ≤ ND +
Lmax; in the second subset, level (i, k) is the set of states

{(ND+Lmax+ i, k, j)|1 ≤ j ≤ m}, for 1 ≤ i ≤ Lmax−1

and 1 ≤ k ≤ Lmax. Let the matrix A
{i,i′}
w contain the

transition probabilities from level i to level i′, for 0≤ i≤

ND +Lmax−1 and 0≤ i′≤ND+Lmax. These matrices
are given by

A{i,i′}
w =







Bi′ , i = 0, 0 ≤ i′ ≤ Lmax,

B0, 1 ≤ i = i′ ≤ ND + Lmax − 1,
Bk, i′ = D

⌈

i
D

⌉

+ k, 1 ≤ i ≤ ND, 1 ≤ k ≤ Lmax.

To define these matrices we consider each case sepa-
rately: in the first case the wavelength is idle and can

start the transmission of a newly arriving packet im-

mediately; in the second case the wavelength is busy
and receives no packet in this slot; in the last case the

wavelength is busy and receives a new packet that can

be buffered, increasing the scheduling horizon. Simi-

larly, let the matrix A
{i,(i′,k′)}
w contain the transition

probabilities from level i to level (i′, k′), for 0 ≤ i ≤

ND +Lmax−1, 1 ≤ i′ ≤ Lmax−1 and 1 ≤ k′ ≤ Lmax.

These matrices are given by

A{ND+i,(i′,k′)}
w = Bk′ ,

for 1 ≤ i = i′ ≤ Lmax − 1 and 1 ≤ k′ ≤ Lmax. These
transitions correspond to the case where the wavelength

is busy and receives a packet that cannot be buffered.

Since all the possible transitions in S2 have been cov-

ered, we now turn to the last step.

3.3 Step 3, packet conversion and reallocation

In this step (S3) the extra-packets that arrived in the

previous step are reallocated using the available con-
verters. To determine the evolution of a single wave-

length or converter it is necessary to consider the state

of the whole system (W wavelengths and C convert-
ers). It is important to stress however that we do not

need to determine the joint evolution of multiple wave-

lengths or converters for the mean field result to ap-

ply. Let wi(t) be the 1 × m vector whose j-th entry
contains the number of wavelengths holding no extra-

packets with horizon equal to i and phase of the arrival

process equal to j after S2, for 0 ≤ i ≤ ND+Lmax and
1 ≤ j ≤ m. Additionally, let the j-th entry of the 1×m

vector w(ND+Lmax+i,k)(t) be the number of wavelengths

at time t with horizon equal to ND + i after S1 that
receive a packet of size k in S2, after which the phase

of the arrival process is equal to j, for 1≤ i≤Lmax−1,

1 ≤ k ≤ Lmax and 1 ≤ j ≤ m. The vector

MW,(w)(t) =
1

W
[w0(t), . . . , wND+Lmax

(t),

w(ND+Lmax+1,1)(t), . . . , w(ND+2Lmax−1,Lmax)(t)]

describes the state of all the wavelengths at time t

before S3 as fractions of the total number of wave-
lengths W . Analogously, let ci(t) be the number of con-

verters with horizon equal to i at time t before S3,

for i = 0, . . . , Lmax. The state of the converters at

time t, as a fraction of the total number of convert-
ers, is therefore contained in the vector MW,(c)(t) =
1
C

[c0(t), . . . , cLmax
(t)]. The superscript W indicates that

the system is composed of W wavelengths and C = σW
converters.

The state of the complete system at time t can be

described by the vector

MW (t) =

[

1

1 + σ
MW,(w)(t),

σ

1 + σ
MW,(c)(t)

]

,

which is called the occupancy vector and contains the

fraction of objects in each state, including both wave-

lengths and converters. The weights 1
1+σ

and σ
1+σ

are
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the proportion of wavelengths and converters, respec-

tively, in relation to the total number of objects. Based
on this vector, we can define the matrices Qw(MW (t))

and Qc(M
W (t)), which contain the transition proba-

bilities in S3 under the minimum horizon policy for
wavelengths and converters, respectively. The matrices

Q̄w(MW (t)) and Q̄c(M
W (t)) contain similar informa-

tion for the minimum gap policy. However, to spec-
ify these matrices it is necessary to first determine the

number and size of the extra-packets that can actually

be converted, regardless the wavelength allocation pol-

icy.

Let di(M
W (t)) be the number of extra-packets of

size i, for 1 ≤ i ≤ Lmax, which is given by

di(M
W (t)) =

Lmax−1
∑

k=1

w(ND+Lmax+k,i)(t)1m,

where 1m is a column vector of size m with all its
entries equal to one. Therefore, the total number of

extra-packets is d(MW (t)) =
∑Lmax

i=1 di(M
W (t)). Also,

let WND(MW (t)) be the number of wavelengths with

horizon less than or equal to ND after S2, i.e.,

WND(MW (t)) =

ND
∑

i=0

wi(t)1m.

The number of extra-packets that can actually be con-

verted (d̂(MW (t))) is given by the minimum of three
quantities: the number of packets to convert, the num-

ber of wavelengths with available buffering capacity,

and the number of available converters, i.e.,

d̂(MW (t)) = min{d(MW (t)),WND(MW (t)), c0(t)}.

Since each wavelength with available buffering capac-
ity receives at most one extra-packet, d̂(MW (t)) is also

the number of wavelengths that receive an extra-packet

in S3. The selection of these d̂(MW (t)) wavelengths is
done using the minimum horizon or minimum gap poli-

cies. Once a wavelength is chosen to receive an extra-

packet, the selection of the packet is done randomly

among the d(MW (t)) extra-packets. This means that
the probability that a selected wavelength receives a

packet of size k, for 1 ≤ k ≤ Lmax, is pk(MW (t)) =
dk(MW (t))
d(MW (t))

. Relying on these definitions, the purpose of
the following subsections is to determine the transition

matrices for both wavelength allocation policies.

3.3.1 Minimum Horizon

To determine the wavelengths that, under the minimum

horizon (minH) policy, will receive the d̂(MW (t)) extra-

packets, we need to define the quantities αi(M
W (t)) as

the number of wavelengths with horizon less than or

equal to i after S2, i.e., αi(M
W (t)) =

∑i

k=0 wk(t)1m,
for 0 ≤ i ≤ ND. As the extra-packets are assigned to

the wavelengths with the smallest horizons, we need to

find an h(MW (t)) such that

αh(MW (t))−1 < d̂(MW (t)) ≤ αh(MW (t)).

This means that the wavelengths with horizon strictly

less than h(MW (t)) receive one extra packet each, while

those with a horizon strictly greater than h(MW (t))

receive no extra-packets. The packets that cannot be
accommodated in the wavelengths with horizons up to

h(MW (t))− 1 are randomly assigned among the wave-

lengths with horizon equal to h(MW (t)). Let θ(MW (t))
be the probability that a wavelength receives a packet

in S3 if its horizon is equal to h(MW (t)). This is given

by

θ(MW (t)) =
d̂(MW (t)) − αh(MW (t))−1

wh(MW (t))(t)1m

.

Now we can define ri(M
W (t)), the probability that

a wavelength with horizon equal to i receives an extra-
packet in S3 under the minH policy, as

ri(M
W (t)) =







1, 0 ≤ i < h(MW (t)),

θ(MW (t)), i = h(MW (t)),
0, h(MW (t)) < i ≤ ND.

Let uii′(M
W (t)) be the probability that a wavelength

with horizon i and holding no extra-packets after S2

ends up with a horizon equal to i′ after S3, for 0 ≤

i ≤ ND + Lmax and 0 ≤ i′ ≤ ND + Lmax. These

probabilities are given by

uii′(M
W (t)) =















1 − ri(M
W (t)), 0 ≤ i = i′ ≤ ND,

ri(M
W (t))pk(MW (t)), 0 ≤ i ≤ ND,

i′ = D
⌈

i
D

⌉

+ k,

1, ND < i = i′ ≤ ND + Lmax.

Now let u(i,k),i′(M
W (t)) be the probability that a wave-

length with horizon ND + i after S1 and that received

a packet of size k in S2, ends up with a horizon equal
to i′ after S3, for 1 ≤ i ≤ Lmax − 1, 1 ≤ k ≤ Lmax and

0 ≤ i′ ≤ ND + Lmax. Since such a wavelength keeps

its horizon independently of whether the extra-packet

is successfully reallocated or not, the transition proba-
bilities are given by

u(i,k),ND+i′(M
W (t)) =







1, 1 ≤ i = i′ ≤ Lmax − 1,

1 ≤ k ≤ Lmax,

0, otherwise.
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Let U(MW (t)) be the (ND+L2
max+1)×(ND+Lmax+1)

matrix that describes the evolution of the horizon dur-
ing S3. The first ND + Lmax + 1 rows of this matrix

have entries uii′(M
W (t)), for 0 ≤ i ≤ ND + Lmax. The

remaining (Lmax − 1)Lmax rows are made by the en-
tries u(i,k),i′(M

W (t)) in lexicographic order, for 1 ≤ i ≤

Lmax − 1 and 1 ≤ k ≤ Lmax. Therefore, the transition

matrix for a single wavelength during S3 is

Qw(MW (t)) = U(MW (t)) ⊗ Im,

making explicit that the allocation of extra-packets has

no effect on the phase of the arrival process.

With regard to the converters, only those with hori-

zon equal to 0 may be affected during S3 since these
can be used to translate the d̂(MW (t)) extra-packets.

Let bi(M
W (t)) be the probability that an idle converter

receives a packet of size i in S3, for 1 ≤ i ≤ Lmax. Also,

let b0(M
W (t)) be the probability that the converter re-

mains idle. Clearly,

bi(M
W (t)) =







c0(t)−d̂(MW (t))
c0(t)

, i = 0,
d̂(MW (t))

c0(t)
pi(M

W (t)), 1 ≤ i ≤ Lmax.

Therefore, the entries of the Lmax×(Lmax+1) transition

matrix for a single converter in S3 can be defined as

[Qc(M
W (t))]ij =







bj(M
W (t)), i = 0, 0 ≤ j ≤ Lmax,

1, 1 ≤ i=j ≤ Lmax−1,

0, otherwise.

3.3.2 Minimum Gap

In this section we determine the matrices Q̄w(MW (t))
and Q̄c(M

W (t)) to describe the evolution of the system

during S3 under the minimum gap (minG) policy. Since

the wavelength allocation policy has no effect on the
state of the converters, Q̄c(M

W (t)) = Qc(M
W (t)). To

specify the transition matrix for a single wavelength we

start by defining the gap function v(h) = D
⌈

h
D

⌉

− h,

which is the size of the gap created when assigning a
packet to a wavelength with horizon h, for 0 ≤ h ≤

ND. Now we can define gi(M
W (t)) as the number of

wavelengths with v(·) = i, which is given by

gi(M
W (t)) =

∑

{j|v(j)=i}

wj(t)1m, 0 ≤ i ≤ D − 1.

In a similar way as in the previous section, we define
γi(M

W (t)) as the number of wavelengths with v(·) ≤ i,

i.e., γi(M
W (t)) =

∑i

j=0 gj(M
W (t)), for 0 ≤ i ≤ D − 1.

In this case we need to find an x(MW (t)) such that

γx(MW (t))−1 < d̂(MW (t)) ≤ γx(MW (t)).

Thus, γx(MW (t))−1 extra-packets can be assigned to

the wavelengths with v(·) < x(MW (t)). The packets
that cannot be accommodated in these wavelengths are

distributed among those with v(·) = x(MW (t)), while

the rest of the wavelengths receive zero extra-packets.
In this case, however, we use the minH policy to al-

locate the remaining d̂(MW (t)) − γx(MW (t))−1 extra-

packets among the wavelengths with v(·) = x(MW (t))
(as opposed to randomly). Since the horizon h can be

expressed as h = D
⌈

h
D

⌉

− v(h) and the wavelengths

that may receive a packet have v(·) = x(MW (t)), we

only need to focus on l(h) =
⌈

h
D

⌉

, which takes values
between 0 and N . Let fi(M

W (t)) be the number of

wavelengths with horizon h such that v(h)=x(MW (t))

and l(h) = i, for 0 ≤ i ≤ N . Also, let φi(M
W (t)) =

∑i

j=0 fj(M
W (t)) be the number of wavelengths with

horizon h such that v(h) = x(MW (t)) and l(h) ≤ i, for

0≤ i ≤N . We then need to find a y(MW (t)) such that

φy(MW (t))−1 < d̂(MW (t)) − γx(MW (t))−1 ≤ φy(MW (t)).

Then, among the wavelengths with horizon h such that
v(h) = x(MW (t)), one extra-packet is assigned to the

wavelengths with l(h) < y(MW (t)), no extra-packet is

assigned to those with l(h) > y(MW (t)), and the re-
maining extra-packets are randomly assigned among

the wavelengths with l(h) = y(MW (t)). Therefore, the

probability that a wavelength with horizon h such that
v(h) = x(MW (t)) and l(h) = y(MW (t)) receives an

extra-packet during S3 is

η(MW (t))=
d̂(MW (t)) − γx(MW (t))−1 − φy(MW (t))−1

fy(MW (t))(MW (t))
.

Now we can define r̄i(M
W (t)) as the probability

that a wavelength with horizon equal to i receives an

extra-packet in S3 under the minG policy, given by

r̄i(M
W (t)) =































1, 0 ≤ v(i) < x(MW (t)),

1, v(i) = x(MW (t)),
l(i) < y(MW (t)),

η(MW (t)), v(i) = x(MW (t)),

l(i) = y(MW (t)),
0, otherwise.

Based on these probabilities we can build the matrix

Ū(MW (t)) in the same manner as we did with the ma-

trix U(MW (t)) for the minH policy, but replacing the
ri(M

W (t)) by r̄i(M
W (t)), for 0 ≤ i ≤ ND. Thus, the

transition matrix of a wavelength in S3 under the minG

policy is Q̄w(MW (t)) = Ū(MW (t)) ⊗ Im.
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3.4 Computation of MW (t) for large W

In the previous sections we built the transition matrices

related to each of the three main events (steps) in a

slot, for wavelengths and converters separately. These
matrices can be combined to describe the evolution of a

single object as a discrete-time Markov chain (DTMC).

We will observe the system just after S2 and, therefore,

the state of the wavelengths (resp. converters) at time
t is described by the vector wW (t) (resp. cW (t)). Since

the order of the events is S3, S1 and S2, the transition

matrices of a single wavelength or converter under the
minH policy are

KW
k (m̄) = Qk(m̄)Sk Ak, k ∈ {w, c},

where m̄ is an occupancy vector that represents any
particular value of MW (t). The superscript W refers

to the total number of wavelengths in the system. We

now combine these two matrices into KW (m̄) to de-
scribe the evolution of a single object, which can be a

wavelength or a converter, as a DTMC with two non-

communicating classes

KW (m̄) =

[

KW
w (m̄) 0

0 KW
c (m̄)

]

.

A similar construction can be made to determine the

matrix K̄W (m̄) for the minG policy.

We now consider the framework in [11] to com-

pute MW (t) when W is large. The discussion is for
the minH policy, but it applies mutatis mutandis for

the minG policy. In [11] the authors show that, under

some mild conditions, a system of interacting objects

converges to its mean field when the number of objects
is large. The mean field is a time-dependent determin-

istic system that can be used to approximate the be-

havior of a system with a large number of objects. The
first condition for this result to hold is that the entries

of the transition matrix of a single object [KW (m̄)]ij
converge uniformly to some [K(m̄)]ij on the set of all
occupancy vectors when W (1 + σ) → ∞. In our model

the transition matrix KW (m̄) is actually independent

of the number of objects W (1 + σ). This can be seen

by dividing all the quantities involved in the computa-
tion of the probabilities uii′(M

W (t)) and bi(M
W (t)) by

W (1 + σ). This means that K(m̄) = KW (m̄). The sec-

ond condition is that [K(m̄)]ij must be continuous in
m̄, which also holds for both allocation policies. Since

both conditions are valid for the model described by

the matrix K(m̄), we can approximate the evolution
of the system by means of the mean field, which is

described by the vector µ(t), for t ≥ 0. Let µ(t) =
[

1
1+σ

µ(w)(t), σ
1+σ

µ(c)(t)
]

, for t ≥ 0. The initial state of

the wavelengths is defined as µ(w)(0) = [πB , 0, . . . , 0],

where the 1 × m vector πB is the stationary probabil-
ity distribution of the Markovian arrival process. Sim-

ilarly, the vector µ(c)(0) = [1, 0, . . . , 0] describes the

initial state of the converters. The initial distribution
is independent of the number of objects and estab-

lishes that all the wavelengths and converters are idle

at time 0. Now, let the mean field model evolve as
µ(t + 1) = µ(t)K(µ(t)), then, by [11, Theorem 4.1],

for any fixed time t, almost surely,

lim
W→∞

MW (t) = µ(t).

Using the mean field model we can compute the
state of the system at time t by performing t vector-

matrix multiplications, where the vector is of size 1 ×

m(ND + L2
max + Lmax + 1). Additionally, at each time

slot the matrix Q(m̄) (or Q̄(m̄)) must be computed

since it depends on the value of the occupancy vector.

However, if the packet-size distribution is independent

of the arrival process the description of the system after
S2 can be simplified. In this case the probability distri-

bution of the extra-packets’ size is equal to the original

packet-size distribution. Therefore it is not necessary
to keep track of the size of the extra-packets but only

their number, reducing the size of the occupancy vector

to 1×m(ND +3Lmax). Also, the structure of the tran-
sition matrices in S1 can be exploited to further reduce

the computation times.

In addition to approximate the state of a switch with

a large number of wavelengths at any finite time t, we
are particularly interested in its long-run behavior, but

the mean field model is time-dependent and gives no in-

formation about the steady-state, if it exists. However,
we have numerically observed that when the conversion

ratio is large enough to prevent losses caused by the

lack of available converters, the state of the system con-
verges to a unique steady state. When the conversion

ratio is not enough to avoid packet losses the system

shows a stationary periodic behavior. The length of the

period has been observed to be the greatest common di-
visor of the possible packet sizes. Even though we do not

provide a formal proof of this fact, the results presented

in the next section, as well as many others not included
here, support this observation. Actually, a formal proof

appears to be hard since the evolution of the sequence of

occupancy vectors {µ(t)t ≥ 1} is determined by a non-
homogeneous Markov chain, whose transition probabili-

ties at time t are a nonlinear function of the occupancy

vector. Moreover, it must be shown that {µ(t)t ≥ 1}

converges either toward a single point (if the number
of converters is enough to prevent losses), or toward a

set of points that the sequence will visit cyclically (if

there are losses because of the lack of converters). Let
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δ be the greatest common divisor of the possible packet

sizes. As we do not know in advance if the conversion
ratio is enough to prevent losses or not1, we observe the

system every δ time slots to check the difference in the

entries of the occupancy vector, and we let it evolve un-
til this difference is less than ǫ = 10−10. For each of the

δ steady states we compute the performance measures,

as shown in the next section, and their average is the
value of the steady-state performance measures.

3.5 Computation of the performance measures

If time t corresponds to a steady state, then d(MW (t))

is also the number of packets requiring conversion per
slot in this steady state, which we call the spill rate.

Similarly, d̂(MW (t)) is called the conversion rate, while

d(MW (t))− d̂(MW (t)) is the loss rate. In a system with
W wavelengths the total arrival rate is Wλ, where λ is

the arrival rate at each wavelength, given by

λ = πB

Lmax
∑

k=1

Bk1m = πB(Im − B0)1m.

Therefore the spill probability pspill, i.e., the probability

that an incoming packet requires conversion, is given by

pspill = d(MW (t))
Wλ

. Dividing the numerator and denomi-

nator by the number of objects W (1 + σ), we get

pspill =
δ(MW (t))

λ
1+σ

,

where δ(MW (t)) = d(MW (t))
W (1+σ) is independent of the num-

ber of objects. In a similar manner, we define δ̂(MW (t))

as d̂(MW (t))
W (1+σ) , which allows us to define the conversion

probability pconv and the loss probability ploss as

pconv =
δ̂(MW (t))

λ
1+σ

, ploss =
δ(MW (t)) − δ̂(MW (t))

λ
1+σ

.

4 Results

The purpose of this section is two-fold: first, we illus-
trate the time-dependent behavior of the mean field

model as well as its convergence toward a state that

matches well with the results obtained by means of sim-
ulation. This will be considered in Section 4.1. Second,

we make use of the mean field model to analyze the

effect of the switch parameters on its performance. We
consider the loss probability as the main measure of

performance and put special emphasis on the minimum

1 Actually, by running the mean field model once with σ = 1,

we can determine the required σ value at once.
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Figure 2 Time-dependent behavior of a switch with N = 3,
ρ = 0.8, D = 10, geometric inter-arrival times and packet size
equal to 10

conversion ratio required to attain zero loss probability,
referred to as σ∗. In a switch with a finite number of

wavelengths, the goal is to determine a conversion ratio

such that the loss probability stays below a certain pre-
defined threshold. Since there are no analytical models

available to determine the exact loss probability in a

switch with a large number of wavelengths, FDLs and

partial wavelength conversion, the only alternative is to
rely on simulation. However, to estimate a very small

loss probability using simulation requires long compu-

tation times since the event that must be observed (a
packet loss) becomes very unlikely. One of the main

advantages of the mean field model is the fast compu-

tation of the approximate loss probability and σ∗ for
any particular scenario with a large number of wave-

lengths. This allows the analysis of the effect that the

various switch parameters have on these performance

measures. Sections 4.2 and 4.3 deal with these issues,
where the latter is concerned with the effect of the ar-

rival process’ burstiness on σ∗.

4.1 Validation

Given the time-dependent character of the mean field

model, there is a natural interest in the behavior of the
state vector µ(t) as a function of time. In Figure 2 we

illustrate this behavior using the fraction of converters

with horizon equal to 5, i.e., µ
(c)
5 (t). The selection of

this value is arbitrary as all the other entries in the

state vector behave in a similar manner. To fix the ar-

rival rate we use the load ρ = λE[L], where E[L] is
the expected value of the packet size. In this scenario

the switch has N = 3 FDLs per output port, the load

ρ is 0.8, the granularity is D = 10, the burst length

equals 10, the inter-arrival times (IATs) follow a geo-
metric distribution (meaning B0 = 1 − 0.8/10 = 0.92

and B10 = 0.8/10 = 0.08), the policy is minG and the

conversion ratio is between 0.1 and 0.3. As can be seen
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(a) minimum horizon policy

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Granularity

Lo
ss

 P
ro

ba
bi

lit
y

Mean Field
Sim W=50
Sim W=100
Sim W=200
Sim W=500

(b) minimum gap policy

Figure 3 Mean field model vs. simulation for a switch with N =
5, ρ = 0.8, σ = 0.1, packet size equal to 10 and geometric inter-
arrival times

in Figure 2, when the conversion ratio is equal to 0.1

the state of the converters is highly variable and after
a short warm-up period it adopts a periodic behavior.

When the conversion ratio rises to 0.2 the warm-up pe-

riod becomes longer and the state of the converters is
clearly less variable, but the period is exactly the same

and equal to the packet size, in this case 10 slots. Fi-

nally, if the conversion ratio is equal to 0.3 no losses are

caused by a lack of converters. In this case the warm-up
period is even longer but the system reaches a unique

steady state. A similar behavior has been observed in

all the experiments performed, with a periodic steady
state and period equal to the greatest common divi-

sor of the possible packet sizes. This periodic behavior

arises when the conversion ratio is not enough to pre-
vent packet losses. This is an important observation as

it indicates that an underdimensioned number of WCs

leads to a periodic system behavior. If there are plenty

of converters to translate any extra-packet, the system
converges to a unique steady state, as in Figure 2 for

σ = 0.3.

Since the mean field model tends toward a (pos-
sibly periodic) steady state, we can use this state to

compute the performance measures of the system as

indicated in Section 3.5. A first question to address is

how the mean field model approximates the behavior

of a finite system. In Figure 3 we compare the results
of the mean field model with results from simulation

of a switch with 50, 100, 200 and 500 wavelengths.

The estimates from simulations have confidence inter-
vals with half width less than 1% of the mean, obtained

with the batch-means method. As can be expected, the

simulations require long execution times to obtain a
small confidence interval for the loss probability. Fig-

ure 3 shows how the performance of the finite system

tends to that of the mean field model, getting closer

as the number of wavelengths increases. In this sce-
nario, as in many others, the convergence for the minG

policy, shown in Figure 3(b), is smoother than for the

minH policy, shown in Figure 3(a). For both policies,
the accuracy of the mean field approximation depends

on the granularity, being almost exact for granularities

well above the packet size. For granularities between 2
and 10, the performance of the finite system smoothly

converges to that of the mean field for the minG policy.

On the other hand, the convergence for the minH policy

shows different patterns for different granularity values.
Notably, when D = 14 the performance of the finite sys-

tem does not appear to converge to the mean field. We

have observed that, in this case the loss probability of
a sequence of finite systems with increasing number of

wavelengths first increases and then decreases toward

the loss probability of the mean field, but this only oc-
curs when the finite system has a few thousand wave-

lengths. On the other hand, the minG policy aims at

minimizing the gaps in the FDLs, and an increase in the

number of wavelengths directly implies more options
to allocate an extra-packet while creating the small-

est possible gap. Therefore, increasing the number of

wavelengths will reduce the loss probability under this
policy and the convergence will be smoother than un-

der the minH policy. As a result, when approximating

the performance of a finite system with a given num-
ber of wavelengths, the mean field model is expected to

be less accurate under the minH than under the minG

policy.

4.2 Combined effect of FDLs and WCs

One of the main characteristics of the mean field model
is its ability to include both partial wavelength conver-

sion and buffering as solutions for contention resolution.

We exploit this feature in this section by analyzing the

effect of three main parameters: the conversion ratio σ,
the number of FDLs N and their granularity D, as well

as the wavelength allocation policy. The arrival process

is assumed to be geometric as the effect of burstiness
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Figure 4 Comparison of policies for a switch with N = 3, ρ =
0.8, D = 10, geometric arrivals and packet size equal to {8, 12}

in the arrival process will be the topic of the next sec-
tion. We start by comparing the spill, conversion and

loss probabilities for both allocation policies. In Figure

4 these three quantities are shown for a switch with
N = 3 FDLs, granularity D = 10, load equal to 0.8

and packet size with equally probable values 8 and 12.

For both policies the conversion probability increases
linearly with the number of converters up to a point

from which it no longer increases. During the interval

where this probability increases the converters are the

bottleneck of the system, and therefore they are busy
all the time. When the switch has enough converters to

translate any extra-packet, i.e., when spill and conver-

sion probabilities are equal, the switch no longer experi-
ences losses due to the lack of converters. Notice, we can

determine the σ value where the loss rate becomes zero

(σ∗) by running the mean field model once with σ = 1
and noting the percentage of busy converters, solving

the dimensioning problem of WCs in a single run. From

the figure we observe that the minG policy requires a

smaller conversion ratio than the minH policy to reach
the point where spill and conversion probabilities are

the same. Furthermore, from this point on the spill

probability under minH is larger than under minG,
confirming the well-known result that minH is less ef-

ficient in managing the buffering resources (FDLs).

An observation that can be made from Figure 4,

also found in Figure 5 as well as in many other exper-

iments, is the existence of jumps in the spill and loss
probabilities as a function of the conversion ratio, for

the minH policy. These jumps are closely related to the

discrete nature of the FDLs and the way the minH pol-
icy reallocates the extra-packets. As this policy selects

the wavelengths with minimum horizon, the reallocated

packets go first to the wavelengths with horizon 0 and,

if the number of converted packets is larger than the
number of wavelengths with horizon 0, the packets are

sent to the wavelengths with horizon equal to 1. How-

ever, this allocation creates large gaps (of size D − 1)
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Figure 5 Comparison of policies for a switch with ρ = 0.8, D =
10, geometric arrivals and packet size equal to {5, 15}

in the wavelengths that receive the converted packets.
This implies that the gap size distribution is affected in

a bad manner, reducing the capacity of the wavelengths

and causing the spill probability to increase. Hence, the
jump in the spill probability, and therefore in the loss

probability, is caused by an increase in the conversion

ratio that makes the system able to convert more pack-
ets than the wavelengths with horizon equal to 0 are

able to admit. This jump can be seen in Figure 4 when

σ goes from 0.12 to 0.13. The other jumps occur sim-

ilarly when the conversion ratio goes from a value in
which the reallocated packets can be handled by the

wavelengths with horizon less than or equal to iD to a

value in which they cannot, for 1 ≤ i ≤ N . Notice that
the number of jumps is at most equal to N but might

be less than this value.

A relevant issue in the design of an optical switch is

the influence of the number of FDLs on the loss proba-

bility. Figure 5 shows the loss probability as a function
of the conversion ratio, for a variable number of FDLs

and both allocation policies. The packet size can be 5

or 15 with equal probability, the load is 0.8 and the
granularity is 10. The effect of adding FDLs on the loss

probability depends on the conversion ratio. If the con-

version ratio is large enough, then adding more FDLs

has no effect. However, the conversion ratio σ where the
loss rate drops to zero does depend on N . For instance,

in Figure 5, having N = 1 FDLs allows us to use signifi-

cantly fewer WCs compared to having zero FDLs, while
increasing N to 2 has a smaller effect, and an additional

FDL has no effect (as a buffer capacity of N = 2 suffices

with C = 0.3W WCs). If σ is such that the switch has
losses due to the lack of converters, then the addition

of buffering capacity might reduce the losses substan-

tially. However, adding an extra FDL might also have

no effect at all, even if the switch presents losses. This
is clear in Figure 5 for σ = 0.25, where the loss with

two FDLs is lower than with one, but the addition of a

third makes no difference.
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Figure 6 Comparison of policies for a switch with D = 9, geo-
metric arrivals and packet size uniformly distributed between 5
and 15

As stated before, we can determine the value of σ
at which the loss probability drops to zero (σ∗) in a

single run of the mean field model. In Figure 6 we il-

lustrate how the load affects the value of σ∗ for both

policies. In this case the IATs follow a geometric dis-
tribution, the packet size is uniformly distributed be-

tween 5 and 15, and the granularity is 9. As expected,

a higher load implies a larger σ∗. Also, for high loads
the minG policy requires a smaller conversion ratio to

achieve zero losses than the minH policy. In relation

to the number of FDLs, it is clear that the addition of
one FDL reduces the value of σ∗ for the minG policy,

but the effect of additional FDLs depends on the load.

For high loads, there is no difference in having one or

more FDLs, while for middle and low loads the addi-
tion of FDLs may reduce the value of σ∗. This behavior

can be explained as follows. If the switch has enough

converters to prevent losses and the load is one, the
probability that a wavelength has a horizon less than

ND after S1 is almost zero in steady state. When the

load diminishes, the probability that the horizon is be-
tween (N −1)D and ND−1 smoothly increases, but

for values less than (N−1)D it remains close to zero.

To obtain a positive probability of having a wavelength

with horizon less than (N−1)D it is necessary for the
load to go below a certain threshold, which in Figure

6 corresponds to 0.83. This behavior is independent of

the value of N , explaining why the addition of more
than one FDL has no effect on the conversion ratio re-

quired to achieve zero losses for loads over 0.83 in this

scenario. Similar thresholds can be found for the val-
ues of the load required to have a positive probability

that a wavelength has a horizon between (i − 1)D and

iD − 1, for 1 ≤ i ≤ N . Hence, for loads above these

thresholds having more than N − i+1 FDLs has no ef-
fect on σ∗. These thresholds coincide with the location

of the jumps for the minH policy, but under this policy

the probability of having a horizon less than ND is zero

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 7 Effect of the granularity on σ∗ for a switch under minG

policy, geometric arrivals and three FDLs

if σ ≥ σ∗ and the load is greater than 0.83. If the load

goes below this value, the probability of a horizon be-

tween (N−1)D and ND−1 suddenly becomes positive

and takes similar values to those of the minG policy.
Therefore, both policies reach a similar σ∗ at ρ = 0.83,

but the minG policy does it in a smooth manner while

the minH policy shows a big reduction in σ∗ when the
load goes from from 0.84 to 0.83. We may conclude that

incorporating one or two FDLs may result in a signifi-

cant cost reduction, as fewer WCs are needed. However,
the results suggest that additional FDLs have little use

as they affect the required number of FDLs in a less pro-

found manner, especially for higher loads. The effect of

the number of FDLs on σ∗ will be discussed again in
the next section when looking at the effect of burstiness

in the arrival process.

The granularity of the FDL is a parameter with

a significant influence on the loss probability for the
single-wavelength buffer, as shown in [3, 9, 19]. In Fig-

ure 7 we illustrate the effect of the granularity on σ∗

for two different packet-size distributions. For clarity

reasons the results are only shown for the minG policy.
The corresponding results for minH have a similar be-

havior as a function of D but include the jumps already

shown in previous figures, redounding in a worse per-
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Figure 8 Comparison of policies for a switch with an ON-OFF
arrival process, three FDLs, D = 8 and packet size equal to
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formance. In Figure 7(a) we consider the case where the
packet size is fixed and equal to 10 slots. Here we can

identify two main regions depending on the load. In the

first region, low and mid loads, the optimal granularity
is D = 9, as has been suggested before for fixed packet

size. However, in the second region (high loads) this is

no longer the case. At a load around 0.7 there is a pro-

nounced change in the slope of the curve corresponding
to D = 12. This change rapidly puts this curve above

the others, making it the one with the highest require-

ments in terms of converters. A similar change in slope
is suffered by the other curves, in an order that is in-

versely proportional to the granularity. Therefore, for

high loads (in this case above 0.85) a lower granular-
ity means a smaller σ∗. A similar behavior is observed

in Figure 7(b), where the packet size can be 5 or 15

with equal probability. In this case however there is al-

most no difference among the granularities between 6
and 12 along the first region of the load range. This

result agrees with previous observations related to the

larger set of optimal granularities when the packet size
is not fixed. Therefore, among the best possible values

for the granularity in the first region, the results just

described favor the selection of a small granularity since
this requires fewer converters to attain a near-zero loss

probability at high loads.

4.3 Effect of the arrival process’ burstiness

In this last section we analyze the effect of the bursti-
ness in the arrival process on the minimum conversion

ratio to attain zero losses σ∗. This is possible due to the

versatility of the arrival process assumed by the model

(MAP). In particular we consider an ON-OFF process
with two states, where in one state the process gen-

erates arrivals with geometric IATs while in the other

state no arrivals are generated. This kind of arrival pro-
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Figure 9 σ∗ for a switch under minG policy with an ON-OFF
arrival process, D = 9 and packet size uniformly distributed be-

tween 5 and 15

cess has been previously used to model the arrival pro-

cess in an optical switch [15,19,20]. The duration of the

ON and OFF periods (the sojourn time of the chain in
each state) is geometrically distributed with the mean

duration of the OFF periods being κ times that of the

ON periods. A simple measure of the burstiness of an
arrival process is the ratio between its peak rate and its

mean rate [12, 17]. For geometric IATs these two rates

are equal and the ratio is one. For the ON-OFF pro-
cess the peak rate is q (the rate of the geometric IATs

during the ON periods), the mean rate is q
κ+1 and the

ratio is κ+1. Therefore, increasing the value of κ while

keeping the load fixed increases the burstiness of the
process, which is expected since the same number of ar-

rivals will occur in shorter time intervals (ON periods),

followed by longer silent (OFF) periods. Figure 8 shows
the effect of the burstiness on σ∗. As expected, the in-

crease in the burstiness implies a higher conversion ra-

tio to attain zero losses, with a large difference for the
range of mid loads. Here again the minH policy shows

large jumps when increasing the load, compared to the

smooth behavior of the minG policy. In this case how-

ever we can compare the effect of the allocation policy
versus that of the burstiness. From Figure 8 we see that

when the load goes above 0.85 the conversion require-

ments for the minH policy under geometric arrivals be-
comes up to 50% higher than those for the minG policy

under an ON-OFF arrival process with κ = 5. This is

an important difference in conversion requirements and
reveals a significantly worse performance of the minH

policy even under non-bursty traffic.

We have seen that the minG policy requires signif-

icantly less conversion resources than its minH coun-

terpart. Therefore, we now focus on the minG policy

and analyze the effect of the number of FDLs under
bursty traffic, as illustrated in Figures 9 and 10. Figure

9 shows this effect for a switch where the packet size is

uniformly distributed between 5 and 15, and the gran-
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ularity is 9. This is the same scenario as in Figure 6,

the only difference being that now the arrival process

is ON-OFF with κ = 5. A first comparison between the

two figures yields the expected result of higher σ∗ when
the arrival process is ON-OFF instead of geometric. A

more relevant observation is that the addition of FDLs

under bursty traffic has a more significant effect than
it had under geometric arrivals. For instance, adding a

second or a third FDL produces a larger reduction on σ∗

under bursty traffic. As well as in the geometric case,
this difference vanishes when the load becomes suffi-

ciently high, giving no advantage in placing additional

FDLs. However, the range of loads for which placing ad-

ditional FDLs makes a difference is larger in the bursty
traffic case. An example of this is the placement of the

second FDL. While placing a second FDL makes no

difference for loads below 0.83 under geometric IATs,
it is worth doing so for loads up to 0.92 under bursty

traffic. Therefore, the addition of FDLs under bursty

traffic not only reduces the conversion requirements in
a more significant manner than under non-bursty traf-

fic, but this reduction is valid for a larger range of loads,

increasing the value of additional FDLs.

We conclude by taking a final look at the effect of
the FDLs on the minimum conversion ratio to attain

zero losses. From Figure 10 it is evident that increasing

the number of FDLs, in this case from one to three,
has a significant effect on reducing σ∗. Furthermore,

this reduction is as strong as to make the conversion

requirements for the case with N = 1 and κ = 1 similar
to those of the case with N = 3 and κ = 5. Conse-

quently, it is possible, at least in part, to compensate

the effect of the burstiness on σ∗ by including addi-

tional FDLs, supporting a switching solution that com-
bines both conversion and buffering resources to resolve

contention, especially under bursty traffic.

References

1. Akar, N., Karasan, E., Dogan, K.: Wavelength converter
sharing in asynchronous optical packet/burst switching: an

exact blocking analysis for markovian arrivals. IEEE J. Sel.
Areas Commun. 24, 69–80 (2006)

2. Akar, N., Karasan, E., Rafaelli, C.: Fixed point analysis of

limited range share per node wavelength conversion in asyn-
chronous optical packet switching systems. Photonic Net-
work Communications 18, 255–263 (2009)

3. Callegati, F.: Approximate modeling of optical buffers for
variable length packets. Photonic Network Communications
3, 383–390 (2001)

4. Callegati, F., Cerroni, W., Corazza, G., Develder, C., Pick-

avet, M., Demeester, P.: Scheduling algorithms for a slotted
packet switch with either fixed or variable lengths packets.
Photonic Network Communications 8, 163–176 (2004)

5. Callegati, F., Cerroni, W., Rafaelli, C., Zaffoni, P.: Wave-

length and time domain exploitation for QoS management
in optical packet switches. Computer Networks 44, 569–582
(2004)

6. Dogan, K., Gunulay, Y., Akar, N.: A comparative study
of limited range wavelength conversion policies for asyn-
chronous optical packet switching. Journal of Optical Net-
working 6, 134–145 (2007)

7. Gauger, C.M.: Optimized combination of converter pools and
FDL buffers for contention resolution in optical burst switch-
ing. Photonic Network Communications 8, 139–148 (2004)

8. Latouche, G., Ramaswami, V.: Introduction to Matrix Ana-

lytic Methods in Stochastic Modeling. ASA-SIAM Series on
Statistics and Applied Probability. SIAM, Philadelphia, PA
(1999)

9. Laevens, K., Moeneclaey, M., Bruneel, H.: Queueing analysis
of a single-wavelength fiber-delay-line buffer. Telecommuni-
cation Systems 31, 259–287 (2006)

10. Lambert, J., Van Houdt, B., Blondia, C.: Queues with cor-

related inter-arrival and service times and its application to
optical buffers. Stochastic Models 22(2), 233–251 (2006)

11. Le Boudec, J., McDonald, D., Mundinger, J.: A generic mean

field convergence result for systems of interacting objects.
In: Proc. 4th Int. Conf. on the Quantitative Evaluation of
SysTems (QEST 2007), pp. 3–15. Edinburgh, UK (2007)

12. Michiel, H., Laevens, K.: Teletraffic engineering in a broad-

band era. In: Proceedings of the IEEE, vol. 85, pp. 2007–2033
(1997)
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