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Abstract
The continued growth of both mobile broadband and fixed broadband subscriptions as well as the added deployment of 
Internet of Things devices has led to making 5G networks a reality. More specifically, 5G networks are expected to support a 
diverse set of new applications/services in addition to existing applications/services from previous generations (2G/3G/4G). 
The COVID-19 pandemic has further increased the demand for such services which has resulted in a further surge in the 
Internet usage. Thus, 5G networks are expected to have a highly flexible architecture at all levels including at the radio, 
core, and transport levels. Optical Transport Networks (OTN) have been proposed as one potential and promising supporting 
technology for 5G networks at the transport level, particularly for next generation transport networks featuring large-granule 
broadband service transmissions. This is because it allows for more flexible, efficient, and dynamic networks. However, 
adopting and deploying OTNs in 5G networks comes with its own set of challenges including control, management, and 
orchestration of such networks as well as their security. Accordingly, this paper overviews 5G networks along with their 
requirements and provides a brief summary of OTNs and the corresponding optimization mechanisms. Additionally, this 
work discusses the challenges facing OTNs and their optimization within the context of 5G. Moreover, it outlines some 
of the key research areas and opportunities for innovation stemming from the data-driven intelligent networking paradigm 
using Machine Learning techniques.
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1  Introduction

The continued growth of both mobile broadband and fixed 
broadband subscriptions as well as the added deployment 
of Internet of Things (IoT) devices has led to making 5G 
networks a reality [1]. More specifically, 5G networks are 
expected to support a diverse set of new applications/ser-
vices such as Augmented/Virtual Reality (AR/VR), smart 
factories, and autonomous vehicles. These applications/ser-
vices typically fall under one of three major 5G use cases 
defined by the International Telecommunication Union 
(ITU), namely: Enhanced Mobile Broadband (eMBB), Mas-
sive Machine Type Communication (mMTC), and Ultra-
Reliable Low Latency Communications (URLLC) respec-
tively [2]. This is in addition to existing applications/services 
from previous generations (2G/3G/4G) such as mobile 
voice, messaging, and Internet access [3]. The COVID-19 
pandemic has further increased the demand for such ser-
vices which has resulted in a further surge in the Internet 
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usage. For example, Austria reported that the percentage of 
individuals using the Internet to make audio or video calls 
increased from 41 to 60% between 2019 and 2020 [1]. Thus, 
5G networks are expected to have a highly flexible architec-
ture at all levels including at the radio, core, and transport 
levels [3]. Moreover, this entails having a high automation 
level in the deployment and maintenance of networks, parts 
of a network. or single resources (e.g., network slices).

Optical Transport Networks (OTN) have been proposed 
as one potential and promising supporting technology for 5G 
networks at the transport level, particularly for next genera-
tion transport networks featuring large-granule broadband 
service transmissions [4–8]. This is due to the fact that OTN 
allow for more productive multiplexity and switching of 
high-bandwidth signals and provide the capability of cross 
connect dispatching of wavelengths and sub-wavelengths 
resulting in efficient wavelength utilization [8]. This allows 
for the decoupling of the clients from the Dense Wavelength 
Division Multiplexing (DWDM) line interfaces. In turn, this 
improves the network efficiency because the utilization rate 
of the more costly DWDM links is significantly improved 
which means that we do not have any stranded bandwidth 
[9]. Moreover, it builds on previous technologies such as 
SONETs and SDH, providing an added level of transparency 
as well as end-to-end connection and networking capabili-
ties for WDM with reduced complexity [10, 11]. Addition-
ally, this offers enhanced protection capabilities through the 
use of Forward Error Correction (FEC). OTN also provides 
more flexible service protection functions based on electrical 
and optical layers [10].

However, adopting and deploying OTNs in 5G networks 
comes with its own set of challenges. This is exacerbated 
by the 5G radio access network (RAN) deployment archi-
tecture and the corresponding function splits adopted. One 
such challenge is the added complexity, particularly in terms 
of managing these networks. The control, management, and 
orchestration of such networks continues to evolve for fast 
provisioning of light-paths, fast restoration and high avail-
ability [12]. This is because such networks have to deal 
with dynamic elasticity requirements of new applications/
services. Moreover, they need to effectively and efficiently 
scale with both planned (predictable traffic) and unplanned 
(unpredictable traffic surges) traffic loads that can signifi-
cantly degrade the services’ QoS performance. Since the 
manual configuration of such networks can lead to slow ser-
vice provisioning, automated configuration and management 
of optical networks allows carrier networks based on optical 
paths to become more scalable, dynamic, and manageable 
[12]. In turn, this would allow the networks that are being 
built upon OTNs to reach their full performance potential 
and meet the 5G service requirements by reducing latencies, 
increasing throughput, and improving the reliability of the 
overall architecture [13]. Another challenge is the security 

of OTNs, particularly against both passive and active optical 
attacks. Moreover, with the introduction of new services and 
applications, the potential attack surfaces will also increase, 
resulting in additional security threats. Thus, the security of 
OTNs need to be considered when optimization decisions 
are being made.

Therefore, there are multiple challenges to consider when 
proposing OTN networks as part of future 5G deployments 
that need to be addressed. Accordingly, this paper focuses on 
summarizing the challenges facing the deployment of OTN 
networks in 5G and discussing potential research opportuni-
ties to address these challenges using data-driven paradigms 
and Machine Learning (ML) techniques.

The remainder of this paper is as follows: Sect. 2 provides 
a brief background about 5G in terms of its use cases and 
general architecture. Similarly, Sect. 3 succinctly describes 
the operation and functionality of OTN networks. Sec-
tion 4 presents the major challenges facing the adoption 
and deployment of OTNs in 5G networks. Consequently, 
Sect. 5 discusses some potential research opportunities to 
address these challenges. Lastly, Sect. 6 presents the paper’s 
conclusion.

2 � 5G background

5G promises to support new applications and services as 
well as improved network performance, flexibility and reli-
ability. This is in an effort to deliver an improved end-user 
experience and provide ubiquitous connectivity to every-
thing and everyone [2]. The goal is to build upon the success 
of previous generations (2G/3G/4G) by supporting new ser-
vices and business models, resulting in significant projected 
economic benefits. In what follows, a brief overview of the 
5G use cases and the corresponding 5G architecture (includ-
ing the RAN architecture functional splits) are presented.

2.1 � Use cases

The ITU grouped the new applications and services that 5G 
networks are expected to support into three main use cases, 
namely: Enhanced Mobile Broadband (eMBB), Massive 
Machine Type Communication (mMTC), and Ultra-Reliable 
Low Latency Communications (URLLC) respectively [2]. 
Each use case has its own set of requirements and target met-
rics. Figure 1 summarizes these three use cases and briefly 
presents some of the applications/services within each. 

1.	 Enhanced mobile broadband (eMBB) The first use case 
is the enhanced mobile broadband, also commonly 
referred to as eMBB. As the name suggests, this use 
case focuses on applications and services that require 
high data rates and high mobility support. This includes 
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applications such as 3D or Ultra High Definition (UHD) 
video and streaming [14]. To illustrate the performance 
requirement of such applications, it is expected that 5G 
networks are able to provide a mobility interruption time 
less than 4 msec and support video resolutions such 
1080p, 2K, 4K and also 8K video [14, 15].

2.	 Massive machine-type communication (mMTC) The 
second use case defined by the ITU is the massive 
Machine-type Communication, also referred to in the 
literature as mMTC. This use case focuses on support-
ing the communication between devices such as smart 
meters, sensor nodes, and home appliances without 
human intervention [16, 17]. This will result in the crea-
tion of new vertical sector and business models such 

as smart cities, smart utilities, and smart homes [16]. 
Since mMTC is expected to provide massive access to 
a large number of often low-complexity and low-power 
Machine Type Devices (MTDs), it is crucial to care-
fully design and deploy the required technologies and 
infrastructure while considering the varying delay, reli-
ability, energy consumption, complexity, security, and 
throughput requirements of the different applications/
services within this use case category [16, 17].

3.	 Ultra-reliable & low latency communication (URLLC) 
The third use case proposed by ITU for 5G networks is 
the ultra-reliable & low latency communication, com-
monly referred to as URLLC. As part of this use case, 
new applications and services such as Autonomous/
Connected vehicles (AV/CV), industrial automation, and 
tactile Internet for telemedicine/e-Health have emerged 
that introduced new stringent requirements with the 
main performance metrics being latency, reliability, 
and availability [18, 19]. For example, the latency can 
range between 1 and 10 msec for industrial automation 
mission control messaging and AV/CV communication 
in Intelligent Transportation Systems (ITSs) respec-
tively [19]. Similarly, the reliability requirement of such 
applications and services can range between 99.9 and 
99.9999% for ITS-related applications [19].

Figure 2 shows the expected capability enhancements 
from 5G networks in terms of the different performance 
metrics such as peak data rate, spectrum efficiency, energy 
efficiency, and latency.

Fig. 1   5G use cases

Fig. 2   5G expected capability 
enhancement
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2.2 � 5G architecture

As mentioned earlier, one of the main changes brought on 
by 5G is in terms of the adopted architecture. It is worth not-
ing that when talking about 5G architectures, two varying 
concepts emerge, namely the deployment architecture and 
the core architecture. As the name suggests, the deployment 
architecture refers to how 5G infrastructure is deployed, par-
ticularly in terms of its interaction with previous generation 
infrastructure(s). On the other hand, the 5G core architecture 
refers to the manner in which the 5G network is built and 
how its elements interact to offer the service/application. A 
brief summary of both the deployment architecture and core 
architecture is provided. 

1.	 RAN deployment architecture The 3GPP defined two 
main deployment architectures for 5G networks, namely 
the Non-Standalone (NSA) and the Standalone (SA) 
architectures [21, 22]. The NSA architecture refers to 
the scenario where the 5G RAN and its corresponding 
New Radio (NR) interface are used in conjunction with 
the existing LTE and EPC infrastructure core network 
[21]. This allows NR technology to be available with-
out the need to have any network replacements. Con-
sequently, the previously supported 4G services would 
be able to enjoy the capacities offered by the 5G NR 
[22]. In contrast, the SA refers to the scenario where the 
5G RAN and its corresponding NR interface are only 
connected to the 5G core network [21]. This configura-
tion thus allows all the 5G services to be supported. The 
advantage of the SA deployment architecture is that it is 
fully virtualized, facilitates network slicing, and allows 
network operators to offer new services with a variety 
of deployment models (e.g. on-premises private cloud, 
public cloud, or hybrid) [22].

	   Figure 3 illustrates the possible RAN architectures 
including the function splits for the gNBs [20]. Such 
splits offer multiple economic and operational benefits 
including increased flexibility and modularity, simplified 
radio site engineering with reduced space and power 
demands, more efficient radio resource coordination, and 
more efficient fiber plant usage [20].

	   However, depending on the adopted RAN architecture 
and the corresponding function split, the requirements 
on the xHaul (i.e. fronthaul, midhaul, and backhaul) 
may differ. For example, adopting higher-layer func-
tional splits reduces the transport capacity requirements. 
One example of such a split is the Distributed 4G/5G 
RAN architecture. In this case, all baseband process-
ing functionalities are placed within the RU [23]. As 
such, more processing occurs at the RU which means 
that less data has to travel between the RU and the CU. 
In turn, this leads to lower bandwidth requirements from 
the fronthaul with higher latency tolerances. In contrast, 
if the function splits are adopted at lower layers, higher 
transport capacity will be required [23]. An example of 
such a high demanding functional split is the centralized 
5G RAN architecture. In this case, more data has to flow 
between the CU and RU since lower layer functions are 
more data intensive [23]. Additionally, the communica-
tion between some of the lower layer functionalities (e.g. 
Physical layer) and higher layer processes (e.g. hybrid 
ARQ) have stringent latency requirements (as low as 
5ms in some cases [23]). As a result, the bandwidth 
and latency demands are higher and more stringent for 
such architectures. Therefore, the 5G RAN architecture 
adopted needs to be considered when designing and 
optimizing transport networks as it has a direct impact 
on the expected performance requirements.

Fig. 3   5G RAN architecture 
(adapted from [20])
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2.	 Core architecture 5G core networks follow what is 
known as a Service-Based Architecture (SBA). This 
architecture relies on the concept of microservices, an 
approach in which an application is comprised of smaller 
independent services that interact with each other [24]. 
As illustrated in Fig. 4, this architecture assumes that 
each network element performs a particular Network 
Function (NF), with the different NFs communicating 
via well-defined APIs [25]. Moreover, these NFs can 
also communicate with the Data Network (DN) using 
these interfaces. Each of these NFs is composed of a set 
of microservices that can be executed/called on-demand. 
The 5G core SBA architecture can also be viewed in 
terms of a services “consumer” and a service “provider” 
as illustrated in Fig. 5. In this case, one NF can act as the 
service provider by offering a set of microservices to be 
called/requested by other NFs (service consumers).

	   This SBA architecture again builds on the foundations 
of SDN and NFV technologies/paradigms to offer bet-
ter network management, flexibility, and scalability that 
allows 5G networks to support the different emerging 
applications and services.

3 � OTN optimization background

3.1 � OTN preliminaries & technologies

Optical Transport Networks (OTNs) were defined as a 
standard by the International Telecommunications Union 
in report ITU-T Rec. G.709 [26]. This standard proposes 
using Wavelength Division Multiplexing (WDM) to bet-
ter multiplex a substantial number of signals onto a single 
fiber [26]. This had several advantages. More specifically, 
OTNs reduced the complexity for transport applications 
and incorporated overhead that is optimized for transport-
ing signals over WDM-based networks [27]. In turn, this 
reduced the corresponding transport network operations 
expenses. Moreover, OTNs provided a more scalable and 
cost-efficient solution for carrying high-speed Wide Area 
Network (WAN) data clients including Ethernet and Stor-
age Area Network (SAN) protocols [27]. As such, opti-
mizing OTN networks is a crucial component to allow 
providers to reap its benefits.

One of the fundamental components of OTN networks 
are optical Data Units (ODUs). ODUs are basically the 
data structures generated and monitored by OTNs from 
one source node to the destination node [28]. This struc-
ture offers multiple functionalities such as tandem con-
nection monitoring (TCM) support, path monitoring (PM) 
and end-to-end path supervision and client adaptation 
[29]. However, due to the emergence of more diverse 5G 
applications and to better support diverse client services, 
OTNs have progressed towards the use of service-based 
constructs referred to as Optical Service Units (OSUs) 
[30–33]. OSUs allow for greater flexibility and more fine-
grained resource scheduling [30–33]. This is because they 
create flexible containers that can be either multiplexed 
into lower order ODUs and then multiplexed into higher 
order ones or directly be multiplexed into higher order 
ODUs [30–33]. For example, it would be inefficient to 
carry a client request with a bit rate less than 1 Gbps using 
ODUs since the smallest ODU has a rate of approximately 
1.25 Gbps. However, using OSUs, flexible bandwidth 
allocations with approximately 2 Mbps granularity can be 
achieved, thus increasing the OTN bandwidth utilization 
when carrying requests with bit rates ranging between 2 
and 500 Mbps [30–33]. This makes OSUs a crucial build-
ing block for OTNs in 5G networks due to the diverse 
nature of service requests expected in such networks.

One important technology currently being used in 
OTNs is space-division multiplexing (SDM). SDM refers 
to the set of technologies that allow for the transmission 
of individual data signals over different paths spatially 
using a shared optical fiber channel. The benefit of these 
technologies is that they multiply the information carrying 

Fig. 4   5G SBA core architecture—global view

Fig. 5   5G SBA core architecture—granularity view
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capacity of optical fibers [34]. Additionally, SDM can help 
decrease the energy consumption of the optical nodes as 
well as improve the overall network efficiency [34]. The 
utilization of SDM technologies gained more popularity 
within the last decade due to the fact that single-mode 
fiber systems based on WDM started to reach their theo-
retical capacity limits [35]. As a result of the surge in 
research focusing on developing SDM technologies, it 
has been illustrated (for example by Soma et al.) that it is 
possible to achieve a combined data rate greater than 10 
Pbps using systems with more than 100 spatial channels 
with each channel supporting hundreds of WDM channels 
[36]. Based on the aforementioned benefits, SDM has been 
increasingly proposed in the literature as a crucial compo-
nent of OTNs [37, 38]. This is attributed to the fluctuat-
ing nature of the traffic that OTNs need to transport. This 
requires an increase in the capacity and an improvement 
in the efficiency of the currently deployed WDM systems 
[38]. Hence, SDM addresses those challenges by signifi-
cantly increasing the capacity of the fiber and improving 
the transmission efficiency [38].

3.2 � OTN optimization problem description

In general, OTN optimization refers to the problem of deter-
mining the number and placement location of the OTN inter-
faces needed along the available physical links to satisfy the 
incoming aggregate traffic. The goal is often to minimize the 
number of interfaces (connecting to OTN nodes) in order to 
reduce the corresponding cost. This is illustrated in Fig. 6 in 
which the OTN layer receives the aggregate traffic and tries 
to find the least number and optimal location for the OTN 
interfaces to be deployed on the WDM layer below it that is 
capable of meeting the incoming traffic requirement. Hence, 

it is assumed that the physical topology of the WDM layer 
and the incoming traffic matrix of services is known a priori. 
The goal is to determine the least number of OTN interfaces 
needed to serve all requests within the traffic matrix.

Mathematically speaking, this can be modeled as follows: 
Assume we have a traffic matrix consisting of R requests to 
be served, a set of OTN nodes O, a set of WDM nodes W, a 
set of OTN links/interfaces LO with capacity CO , and a set 
of optical links LW with capacity Cw . Using this information, 
the optimization problem becomes:

•	 Objective function: min
x

∕max
x

f (x) where f(x) is the 
objective function to be minimized/maximized. This 
function can be a single function or a multi-objective 
function such as (but not limited to):

•	 Capex cost
•	 Resiliency/Survivability
•	 Resource Utilization

•	 Constraints: The optimization problem is subject to a 
variety of constraints including (but not limited to):

–	 Link capacity: 
∑

l

demand l ≤ Cl where demand l is 

the demand/traffic routed on link l and Cl is the total 
capacity on the link where l ∈ LO or l ∈ LW . In other 
words, the aggregate demand along each link 
(whether at the OTN layer or WDM layer) should not 
exceed the link’s total capacity

–	 Flow conservation: 
∑

n

flow n = − demand r (if n is 

source node of request r) or 
∑

n

flow n = demand r 

(if n is destination node of request r) or 
∑

n

flow n = 0 

(if n is an intermediate node for the path of request 
r) where flow n is the aggregate (incoming and out-
going) flow for node n ∈ O or n ∈ W and r ∈ R . This 
means that the flow needs to be conserved at each 
node (whether at the OTN or WDM layer) between 
source and destination.

These problems are often formulated and modeled as Integer 
Linear Programming (ILPs) problems as per the description.

3.3 � Related works

Based on the aforementioned benefits of deploying OTNs, 
significant interest and effort has been given towards opti-
mizing OTNs with multiple works from the literature tack-
ling it [39–49]. As illustrated in Fig. 7, these works fall 
into one of three main categories, namely: mathematical 
optimization-based solutions, metaheuristic solutions, and Fig. 6   OTN over WDM general optimization problem
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low complexity heuristic solutions. Table 1 summarizes the 
OTN optimization techniques/solutions from the literature.

Katib and Medhi proposed a three-layer architecture 
consisting of the IP/MPLS layer, the OTN layer, and the 
Dense Wave Division Multiplexing (DWDM) layer [39]. 
As illustrated in Fig. 8, the authors presented an integrated 

multilayer optimization model that aimed at reducing the 
total network planning cost while adhering to multiple con-
straints such as tunneling, Internet Protocol/Multiprotocol 
Label Switching (IP/MPLS) layer capacity, IP/MPLS flow, 
OTN layer capacity, OTN flow, and DWDM layer capacity 
constraints [39]. The authors also developed a low complex-
ity heuristic algorithm to solve the optimization model for 
large networks. Their simulation results showed the impact 
of each layer’s resources and corresponding costs on the 
neighboring lower layers. The authors extended their work 
by providing a protection mechanism at each layer [40]. The 
proposed optimization design model guaranteed the multi-
layer network survivability when facing three simultaneous 
link failures (i.e., one single failure at each layer) [40]. In 
addition to the optimization model formulated, the authors 
again proposed a three-phase low-complexity algorithm 
that provided protection at each layer. Simulation results 
showed that the protection capacity was larger than its reg-
ular capacity. This was particularly evident at the DWDM 
layer because of the longer protection paths at that layer and 
its larger granularity [40].

In a similar fashion, Govardan et al. proposed a heuris-
tic algorithm to reduce the capital expenditure of a multi-
layer OTN over DWDM network architecture [41]. In this 
architecture, the end-to-end services are provisioned while 
considering the functionalities of both OTN and DWDM 
technologies. The authors adopted an Integrated OTN-
DWDM system which eliminated the fiber interconnections 
[41]. The heuristic algorithm consisted of five modules. The 
Input module was made up of the network topology. The 
topology consists of the input traffic matrix (the demands 
between OTN nodes) as well as the set of fiber-connected 
nodes at Layer 0 (DWDM). The Shortest Path module imple-
mented Yen’s K-shortest path algorithm. The Amplifier 
Placement and OSNR Computation module arranged the 
K shortest paths for each source and destination pair based 
on the OSNR value. More specifically, the paths are sorted 
in decreasing value of OSNR computed. The Multilayer 
Switching Implementation module realized the end-to-end 
traffic demands on OTN over DWDM network. Finally, the 
Cost computation module determined the cost of a demand 
traversing the OTN over DWDM system [41]. Simulation 
results showed that the proposed heuristic found a balanced 
path between opaque and transparent network over all traffic 
volumes. Moreover, they illustrated the suitability of this 
heuristic for metro networks where the demand relative to 
the network is typically high.

Zefreh et al. also focused on optimizing IP/optical net-
works [42]. To that end, the authors developed a Mixed 
Integer Linear Programming (MILP) problem that aimed 
at minimizing the CAPEX cost while satisfying the dif-
ferent constraints. This includes flow conservation, num-
ber and configuration of input/output ports, number and 

Fig. 7   OTN optimization techniques from the literature

Table 1   Summary of OTN optimization related works

OTN optimization methodology List of related works

Mathematical optimization-based solutions [39, 40, 42–45, 48, 49]
Metaheuristic solutions [46–49]
Heuristic solutions [39–41, 43, 44]

Fig. 8   IP/MPLS over OTN over DWDM network architecture and 
design approach [39, 40]
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configuration of routers, number of transponders and wave-
lengths, number and capacity of multiplexers and demulti-
plexers, and network cost constraints. Moreover, the authors 
developed a sub-optimal model that separated the routing 
from the provisioning to reduce the complexity of the opti-
mization model. Simulation results showed that the proposed 
sub-optimal model closely followed the optimal solution 
for a wide range of traffic scaling factors, highlighting its 
effectiveness.

On the other hand, Papanikolaou et al. hypothesized that 
following shorter upgrade cycles and adopting a multipe-
riod network planning approach is more suitable modern, 
flexible, and software-driven networks [43]. To that end, 
the authors formulated the incremental multilayer planning 
problem of an IP over elastic optical network as an Integer 
Linear Programming (ILP) optimization model. The mod-
el’s objective was to minimize both the CAPEX and OPEX 
by deploying the minimum number of additional network 
equipment (to deal with traffic changes) while simultane-
ously minimizing the transitioning changes [43]. Simulation 
results highlighted the impact of each layer’s reconfigura-
tion capabilities on the total network cost. Furthermore, they 
illustrated that short network periods can result in significant 
reductions in costs due to being able to closely capture the 
dynamic nature of the traffic [43].

Xing et al. proposed a low-complexity heuristic algorithm 
that aims at minimizing the network cost by effectively pro-
visioning the resources of the multi-layered OTN network 
[44]. The authors modeled the network traffic streams as 
a combination of constant bit-rate and Variable Bit-Rate 
(VBR) traffic streams. Moreover, the authors adopted a 
shortest path routing-based solution at each layer in order 
to address the architectural and traffic requirements [44]. 
The proposed heuristic followed an iterative approach by 
provisioning the resources link-by-link in each layer. Simula-
tion results showed that the proposed heuristic algorithm can 
provision the available resources while considering efficient 
traffic management. Moreover, it provided insights that tel-
ecommunications providers can use as guidance with regard 
to their choice of technologies for future multi-layered net-
works [44].

Moniz et al. proposed a network design framework that is 
dependent on the real-time performance monitoring of the 
OTN over DWDM network [45]. More specifically, the focus 
is on effectively operating the OTN network with smaller 
performance margins. To that end, the authors developed 
an Integer Linear Programming (ILP) problem that aims to 
minimize the capital expenditures and reduce the traffic dis-
ruption [45]. Simulation results showed that the proposed 
ILP model was capable of reduce the number of interfaces 
by up to 32% and the number of mandatory client rerouting 
by up to 68%, highlighting its effectiveness in meeting its 
desired objective.

In contrast, Da Silva et al. proposed a metaheuristic-based 
methodology for OTN over DWDM network planning [46]. 
Specifically, the authors focused on minimizing the cost 
of OTN interfaces (the element with the most significant 
cost) in the network while simultaneously meeting the per-
formance as well as resiliency requirements [46]. To that 
end, the authors proposed a Multi-Objective Evolutionary 
Algorithm (MOEA)-based solution, namely Non-dominated 
Sorting Genetic Algorithm II (NSGAII). The proposed algo-
rithm aimed at minimizing two conflicting objectives. The 
first is the number of network interfaces and the second is 
the number of failures in the restoration processes while 
considering all the possible combination of double failures 
[46]. Simulation results results illustrated the promise of 
the proposed NSGAII solution as they showed that it has 
the potential to obtain optimized solutions for multi-layer 
scenarios.

The authors further extended their work by proposing 
a heuristic-based solution for OTN over DWDM network 
planning [47]. To that end, the authors developed two vari-
ations of their heuristic. The first variant delivered a robust 
solution but did not guarantee that the minimum number 
of resources is used. The second variant simultaneously 
minimized the number of resources used and maximized 
the resilience by better reusing the available components 
[47]. Simulation results showed that the proposed heuristics 
closely matched those of the exhaustive-based solution for 
all traffic conditions in small network sizes. Moreover, in 
the case of large networks, the heuristics achieved consider-
able network cost savings (up to 20%) in the different traffic 
scenarios considered.

In a similar fashion, De Oliveira et al. also proposed a 
meta-heuristic solution for the OTN over DWDM optimiza-
tion problem [48]. More specifically, the authors considered 
the case where the traffic matrix between the demand nodes 
is known beforehand. The authors first formulated the prob-
lem as an ILP with the objective of minimizing the cost. 
Then, the Firefly algorithm, a swarm-based meta-heuristic 
algorithm, was proposed to solve the aforementioned ILP 
problem. Simulation results showed that the proposed Firefly 
algorithm outperformed the standard genetic algorithm and 
had close-to-optimal performance.

The authors extended their work further by proposing 
a hybrid meta-heuristic solution that combines the Firefly 
algorithm with the standard genetic algorithm [49]. The goal 
again was to minimize the cost of the OTN over DWDM 
network planning. Simulation results showed that the pro-
posed hybrid firefly-genetic algorithm outperformed the 
standalone firefly algorithm and standalone genetic algo-
rithm [49]. Moreover, the hybrid meta-heuristic achieved 
close-to-optimal performance while having a significantly 
lower execution time, particularly for large network sizes. 
This highlighted the proposed algorithm’s effectiveness and 
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efficiency in solving the OTN over DWDM network plan-
ning problem.

4 � Challenges facing OTN optimization in 5G 
networks

Although OTN networks provide significant advantages such 
as reduced complexity and network expense cost, optimizing 
them also comes with its own set of challenges that need to 
be considered and addressed [50–52]. These challenges are 
further exacerbated when using OTNs in the context of 5G 
networks due to the heterogeneous and dynamic nature of 
such networks. Figure 9 highlights some of the major chal-
lenges facing OTN networks and their optimization, particu-
larly in the context of 5G networks.

4.1 � Control & management

One of the main challenges facing OTN optimization in 5G 
networks is how to control and manage the OTNs [51]. In 
layman terms, this refers to the question “who will control 
and manage the network resources?”. This is emphasized 
further when dealing with the SDN paradigm, a pillar of 
5G networks. In this case, different potential control archi-
tectures can be considered such as centralized, distributed, 
and hybrid [51]. However, each of these architectures has 

its merits and limitations. For example, centralized archi-
tectures provide a more comprehensive view of the network 
and thus can lead to more optimal solutions. However, this 
comes at the expense of higher computational complexity 
and signaling overhead. Additionally, a centralized controller 
represents a single point of failure [53]. In contrast, adopting 
a distributed control architecture reduces the computational 
complexity and signaling overhead since each controller 
would only communicate with a portion of the network 
nodes. However, the resulting management decisions may 
be sub-optimal due to the controller having a reduced view 
of the network status [51, 53]. Moreover, the synchroniza-
tion between controllers and the exchange of control data 
between them is an added issue to consider.

4.2 � Orchestration

A second challenge facing OTN optimization is the effec-
tive and efficient orchestration of the available resources. 
Orchestration can be defined as “the selection of resources to 
satisfy service demands in an optimal way, where the avail-
able resources, the service demands and the optimization 
criteria are all subject to change.” as per the Open Network 
Foundation [54]. Within the context of NFV, ETSI defines 
orchestration as “the coordination of the resources and net-
works needed to set up cloud-based services and applica-
tions” [55]. Simply speaking, this refers to the question “how 
to allocate the network resources?”. In the case of OTN, 
orchestration decisions refer to the allocation of lightpaths 
and wavelengths in such a manner that a particular objective 
is maximized or minimized [56]. For example, the objective 
can be to minimize the request rejection rate or to maximize 
the resource utilization to avoid bandwidth fragmentation 
[50]. The challenge lies in the potentially conflicting objec-
tives and stringent performance constraints/requirements of 
5G traffic as well as the highly elastic nature of 5G applica-
tions/services. As such, this is a significant challenge that 
needs to be addressed.

4.3 � Network slicing

In addition to the control, management, and orchestration 
challenges mentioned, a new related challenge exists. More 
specifically, dealing with the different network slices is a 
critical factor for OTNs [57, 58]. Network slicing can be 
defined as the process of creating multiple logical (virtual) 
and isolated networks on top of a common physical network 
infrastructure with each logical network/slice being tailored 
for a particular use case [59]. A network slice represents 
the “set of run-time network functions, and resources to 
run these network functions, forming a complete instan-
tiated logical network to meet certain network character-
istics required” [60]. Each slice may be fully or partially, Fig. 9   Challenges facing OTN optimization in 5G networks
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logically or physically, isolated from other network slices 
and is comprised of a set of physical and logical resources 
[60]. Additionally, each slice has its own distinct policies 
and configurations based on the application/service/use case 
it is created/tailored for [60].

Since network slicing is a key feature of 5G networks, 
the challenges that this concept poses in terms of network 
management and resource monitoring/provisioning need to 
be addressed to guarantee the end-to-end service delivery 
[57]. This is particularly important when considering that 
different network slices have different Quality of Experience 
(QoE) and Quality of Service (QoS) requirements. Moreo-
ver, network slice deployments typically operate across 
several domains and network segments, requiring continu-
ous monitoring and inter-slice isolation as well as effective 
coordination and precise synchronization to guarantee the 
QoE/QoS requirements [58]. Thus, the implications of sup-
porting the network slicing concept need to be considered 
when optimization the OTNs.

4.4 � Multi‑tenancy support

A related challenge to the network slicing challenge dis-
cussed above that OTNs, as an enabling technology for 5G 
networks, have to address is supporting multi-tenancy [61, 
62]. More specifically, the logical separation between dif-
ferent network slices as well as between different virtual 
network operators within the same network slice is challeng-
ing. This is because this requires the efficient and effective 
monitoring and allocation of the available resources [62]. 
Moreover, ensuring that the traffic is separated between the 
different tenants and different slices is a must. Thus, it is 
important to take into consideration the need for multi-ten-
ancy support when optimizing the OTN network.

4.5 � Dynamicity

Another challenge facing OTN optimization is the dynamic 
and heterogeneous nature of 5G networks and traffic. As 
shown in many of the previous work on OTN optimization, 
network architectures were assumed to be static with a fixed 
number of nodes and links. Moreover, traffic was typically 
assumed to be static and known a priori [41, 44]. However, 
5G networks are expected to be dynamic both in terms of 
architecture and traffic [63, 64]. This is due to the supporting 
technologies enabling 5G including SDN and NFV as well 
as the new services and applications being offered such as 
Intelligent Transportation Systems (ITSs), Content Delivery 
Networks (CDNs), e-Health, and industrial automation. The 
resulting traffic from these new services and applications is 
expected to be highly dynamic and continuously changing 
[65]. As such, this dynamicity of network status (in terms 

of network architecture and traffic) needs to be considered 
when making OTN optimization decisions.

4.6 � Legacy networks cooperation/compatibility

A sixth challenge facing OTNs is being compatible/coopera-
tive with legacy networks [66–69]. This is because the move 
to 5G is a gradual process. This is further highlighted by the 
massive amount of 4G infrastructure/equipment currently 
available/deployed [67]. These equipment and correspond-
ing infrastructure are performing very well and therefore 
are expected to remain in function for some number of com-
ing years [69]. Hence, an essential guiding principle in 5G 
networks is being able to co-exist and work with the legacy 
systems [69]. As such, as part of the continued 5G roll-out 
and deployment efforts, OTNs need to be compatible and 
cooperative with legacy networks to ensure that the transi-
tion is seamless. This means OTNs need to effectively man-
age both legacy networks as well as 5G networks including 
different network tenants and slices.

4.7 � OTN switching

Another challenge facing OTNs is the complexity of the 
OTN switching process, particularly when dealing with 
rates higher than 100 Gbps [70]. OTN switching refers to 
the process of facilitating wavelength and sub-wavelength 
switching within an OTN node through fast optical-electri-
cal-optical (OEO) conversion [4]. As a result, OTN switch-
ing helps improve the bandwidth utilization rate and reduces 
the number of wavelengths needed to transport packets [4]. 
However, as the required data rates grow higher, this switch-
ing process becomes more complex due to the technical 
limitations of creating digital wrappers [70]. This issue is 
exacerbated in the case of 5G traffic, especially for eMBB 
traffic type in which extremely high data rates are required 
[14, 15]. Consequently, other mechanisms such as Layer 3 
traffic grooming become essential to support these higher 
data rates [70].

To address the complexity problem for OTN switch-
ing, several switching architectures have been previously 
proposed in the literature [4–6]. For example, Eramo et al. 
proposed a scalable low-complexity switch core. The 
switch core uses space switching fabric to route at higher 
rate (high-order optical channel data unit (ODU)) and an 
OTN time-space switching fabric to route both signals at a 
lower rate (low-order ODU) and a higher rate (high-order 
ODU) (lower rate ODUs carried by higher rate ODUs) [4]. 
The underlying assumption was that the number of OTN 
switches was known apriori. The authors then extended their 
work by considering the problem of minimizing the num-
ber of required OTN switches [5]. The authors’ simulation 
results showed that if the traffic requiring OTN switching 
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is less than 45% of the total traffic, the proposed integrated 
WDM/OTN architecture achieved up to 25% of savings. The 
authors further extended their work by considering the same 
integrated WDM/OTN switch architecture and studying the 
impact of switch blocking on the network performance in the 
case of static and dynamic traffic [6]. The simulation results 
conducted showed that the switch blocking ratio increases 
in the case of dynamic traffic scenarios, particularly in net-
works with large average node degrees [6].

Despite the efforts from previous works, they mostly 
focused on separating the traffic based on the underlying 
ODUs carrying them (higher-order and lower-order ODUs). 
However, they did not propose architectures that address the 
main technical limitation introduced by the digital wrapping 
process at extremely high rates (>100 Gbps). Accordingly, 
this needs to be explored in the case of 5G traffic due to 
the high data rates expected for different 5G applications/
services.

4.8 � Security

Last but not least, security is a major concern in OTNs [52, 
71]. This is because OTNs are prone to a variety of attacks 
such as passive eavesdropping attacks, in-band jamming, 
out-of-band crosstalk attacks, and amplifier attacks [52]. 
There is also the potential for signal insertion attacks, which 
may lead to service disruption [71]. This issue is further 
emphasized with the introduction of new devices that are 
connected to the network. These new connected devices 
introduce a new set of potential attack surfaces [72]. As a 
result, ensuring the security and resiliency of the OTN net-
work needs to be considered as part of any optimization 
process.

5 � Data driven‑based opportunities 
for innovation

As next-generation networks take shape, the QoS require-
ments of new and emerging use cases get increasingly strin-
gent. Consequently, Network Service Providers (NSPs) are 
tasked with adhering to these new requirements while simul-
taneously ensuring their internal business objectives are met. 
These conflicting objectives, coupled with the increasing 
complexity of future networks, create a unique opportunity 
for innovation in network Management and Orchestration 
(MANO). Specifically, the transition from conventional net-
working to the paradigm-shifting data-driven intelligent net-
working is a promising solution to address many of the chal-
lenges faced by NSPs. To support this transition, Machine 
Learning (ML) has been identified as a candidate technol-
ogy due to its ability to learn patterns and policies from 
network-generated data and reduce the run-time complexity 

of traditional solutions [73, 74]. The following section will 
outline some of the key research areas and opportunities for 
innovation stemming from this emerging paradigm, particu-
larly in the context of OTN in 5G networks. These opportu-
nities are summarized in Fig. 10.

5.1 � Traffic prediction

One of the main advantages of ML implementations in net-
works is the ability to forecast network traffic. This ability is 
especially advantageous as it allows NSPs to plan resource 
allocation and service provisioning in advance and take 
appropriate measures to ensure end-user needs are met. 
Moreover, traffic prediction can also assist NSPs “anticipate 
capacity exhaustion and degradation, or to predict and local-
ize failures” [75]. Additionally, given the new and emerging 
types of network traffic generated by next-generation use 
cases, predicting traffic can help optimize the future aggre-
gation of network traffic to maximize network performance 
and reduce operational costs. This should be done while con-
sidering the impact of features such as network slicing and 
multi-tenancy support including:

•	 Traffic separation between network slices and multi-
tenant networks

•	 Tenant authorization levels
•	 Service level agreement requirements
•	 Data isolation and authenticity

Regarding traffic forecasting, it is critical to examine and 
understand the characteristics of both legacy networks and 
5G network traffic as well as consider the constantly chang-
ing end-user behaviour. Once the domain knowledge is built 
and understood, accurate traffic prediction models can be 

Fig. 10   Research opportunities for innovation
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built to assist in network MANO tasks. The benefit of traffic 
prediction in optical-based networks has been illustrated in 
[76] in which the author proved through simulations that 
traffic prediction achieved closed to optimal performance by 
reducing the request blocking probability to optimal levels. 
Similarly, the authors in [77] showed that accurate traffic 
prediction improved the resource allocation process and 
consequently, reduced the operational expenditure (OPEX) 
of the network.

The traffic prediction process can be performed at mul-
tiple levels within the network. For example, as shown in 
Fig. 11, the ML-enabled traffic prediction module can be 
deployed at different locations within the network, namely at 
the network edge level or at the core level. More specifically, 
when deployed at the network edge, 5G gNBs can collect the 
data from the users/devices generating requests for different 
applications and services belonging to different slices. Using 
this data, the gNB can predict the incoming traffic resulting 
from the user requests using various supervised ML tech-
niques. Based on this predicted traffic, the gNB can better 
allocate the wireless resources to the users. Additionally, it 
can share the aggregate of these predictions with the core 
network to help in the allocation of the optical resources at 
the OTN layer. On the other hand, another potential architec-
ture is to deploy the ML-enabled traffic prediction module at 
the core. This is done to reduce the computational require-
ment at the gNBs and offload it to the core. In this case, the 
module would collect the aggregate traffic from multiple 
gNBs and locations to train the ML model. Then, using this 
model, the OTN layer can better plan how to allocate its 
resources based the predicted incoming traffic volume.

The advantage of the edge level traffic prediction is that 
it allows for the prediction to be done at a finer granularity 

and provides better planning and allocation of the wireless 
resources. However, this prediction may not allow for opti-
mal planning at the OTN level since the gNBs are often una-
ware of the traffic patterns in adjacent and other locations. In 
contrast, the advantage of the core level traffic prediction is 
that it can provide more accurate prediction of the traffic that 
will is expected to be handled by the OTN. This is because 
it has a more global view of the network. More specifically, 
it is better able to estimate the spatial dimension charac-
teristics of the traffic while also analyzing and accounting 
for the time dimension characteristics. Accordingly, it can 
better plan the allocation decisions of the optical resources 
for the whole network. However, this comes at the expense 
of added computational complexity due to the larger size of 
data to deal with.

5.2 � Quality of transmission estimation

To ensure the efficient and effective management of the net-
work, in addition to the aforementioned incoming traffic, a 
second perspective to consider is the channel characteris-
tics and the corresponding quality of transmission. This is 
because having a better understanding and insights into the 
expected channel conditions can help with improved net-
work resource allocation and management based on both 
the traffic as well as the channel conditions. To that end, 
ML algorithms and paradigms can play a pivotal role in 
accurately estimating the quality of transmission for better 
resource allocation and management.

Despite some earlier efforts to incorporate ML algorithms 
for quality of transmission estimation [78–81], further work 
can be done. This is because many of the previous works 
relied on simple or traditional classifiers. Moreover, previous 

Fig. 11   Potential ML-enabled 
traffic prediction architectures
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works often used synthetic datasets to train the models. This 
can lead to biased models that may not be indicative of the 
true quality of transmission observed/experienced in real-
world networks. Therefore, to have more effective and effi-
cient network management decisions, more accurate mod-
els need to be considered. To that end, more complex ML 
algorithms can be investigated. For example, deep neural 
network learning models such as convolutional neural net-
works can be developed to explore their estimation capabili-
ties with regard to optical transmission quality. In a similar 
fashion, algorithms such as recurrent neural networks and 
long-short term memory (LSTM) can also be investigated 
as they are able to account for the time-varying nature of the 
optical transmission quality. Hence, they have great potential 
in providing accurate optical transmission quality estimation 
over the time dimension. Again, in a similar vein to the traf-
fic prediction case, these models can be deployed at both the 
edge or network core depending on the transmission quality 
estimation granularity desired.

5.3 � Network health

One of the main properties distinguishing 5G and beyond 
networks from previous network generations is the notion 
of self-healing networks. This property entails the sensing 
of network conditions and the mitigation of any faults or 
failures that emerge as well as any potentially contradicting 
configuration rules (due to multi-tenancy). ML will be at the 
forefront of this effort as its ability to make quick and effec-
tive decisions will allow NSPs to ensure the continual per-
formance of their networks while reducing the impact of out-
ages on the end-users. Recently, Spark, in association with 
Ciena, has started the deployment of a self-healing OTN, 
which enables the automation of light signal path changing 
after a fault [82]. The ability to provide self-healing capabili-
ties to networks will ultimately improve network health and 
result in more resilient and adaptable networks.

Additionally, ML has a significant role to play in provid-
ing added security to next-generation networks, particularly 
for transport networks [83]. ML has already shown great 
potential as an effective and efficient approach for different 
network security applications including network anomaly 
detection and intrusion detection [84–91]. Thus, similar 
approaches can be adopted at the transport network layer to 
further improve the security and resiliency of the OTN, par-
ticularly with the added potential attack surfaces due to 5G 
and beyond networks. ML models can be developed to detect 
the various OTN attacks and alert NSPs to take actions to 
mitigate the impact of these attacks. Moreover, ML models 
can also be used to detect and isolate contaminated insider 
traffic. In turn, this again will help improve the network 
health as it becomes more secure and resilient to failures as 
well as attacks.

5.4 � Intelligent orchestration

While many implementations for ML-assisted intelligent 
network MANO have been explored in recent studies, not 
all ML is made equal. Ideally, for a highly dynamic network 
that is constantly prone to changes, an ML technique capable 
of realizing and adapting to these types of changes is nec-
essary. This includes being able to account for the various 
QoS and prioritization levels in addition to the tunneling 
protocols that accurately reflect these parameters (due to 
network slicing and multi-tenancy). This can be done by 
the continuous resource slicing and monitoring as well as 
logging and reporting various networks service metrics. To 
solve this problem, the use of advanced intelligence tech-
niques, such as federated and reinforcement learning, has 
been proposed [92, 93]. Reinforcement learning has been 
identified as a candidate specifically for its ability to learn 
policies through experience. This type of learning can be 
used to learn optimal network MANO decisions and execute 
them with a much lower run-time complexity compared to 
traditional methods. Federated learning, on the other hand, 
has been praised for its ability to leverage intelligence from 
highly distributed systems and provide a decentralized and 
privacy-preserving method of developing a global system 
model. As a result, the network management and orchestra-
tion process can be automated and delegated accordingly.

As an illustrative example, Fig. 12 shows how reinforce-
ment learning can be deployed and utilized as effective 
learning mechanism of the environment. In this case, the 
learning agent can learn the optimal policy for OTN opti-
mization based on the data collected and experience gained 
from the OTN network. More specifically, the agent would 
collect the data corresponding to the optical resource alloca-
tion decisions and the associated reward as well as the status 
of the OTN network. Using this data, the learning agent can 

Fig. 12   Potential RL-enabled network orchestration architecture
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determine the optimal network MANO policy and imple-
ment it for future decisions.

This builds on the two earlier opportunities, namely “traf-
fic prediction” and “Quality of Transmission Estimation”. 
More specifically, RL can be deployed/implemented as 
illustrated in Fig. 12 to perform both traffic prediction and 
quality of transmission estimation tasks. Combining these 
two tasks and having an accurate estimate of both will result 
in a more efficient, effective, and intelligent orchestration 
as it will have more information about the current network 
state. Consequently, it can make better informed decisions 
and allocate the available resources in an optimized manner 
to maximize the utility by maximizing the network resource 
utilization and throughput while minimizing the network 
cost. It is worth noting that such an RL-enabled system/
framework can be deployed/implemented regardless of the 
OTN supporting technology used. This means whether the 
OTN uses a traditional ODU-based architecture or a more 
advanced OSU-based one, the RL module can perform both 
the traffic prediction and quality of transmission estimation 
tasks to take efficient orchestration decisions by allocat-
ing the appropriate ODUs or OSUs to the client demands. 
Hence, the described RL system/framework is agnostic to 
the OTN supporting technology used.

5.5 � Domain adaptability

As with any ML application, a changing domain has the 
potential to impact the performance of a model. This is 
especially pertinent to the next-generation networks and use 
cases as they are highly dynamic systems. When implement-
ing intelligence in such a system, extreme caution must be 
taken to ensure the detection and mitigation of performance 
degradation caused by a changing domain (known as model 
drift) that can impact the system’s stability. To this end, 
ML implementations should include model drift detection 
mechanisms and provide a course of action to remediate 
a detected drift. This is especially pertinent in the case of 
network security as new threats emerge, the landscape of 
known threats changes effectively, causing many models to 
drift. Novel research into the ability of a system to detect and 
mitigate model drift, especially in security applications [94], 
while ensuring constant performance, is a clear indication 
of the future direction of this field and its applicability to 
network systems.

5.6 � Distributed decision‑making

The final opportunity is based on the concept of distrib-
uted decision-making. As the network size and complex-
ity increases, the ability to perform rapid intelligent deci-
sions to improve the network’s performance is required. 
To this end, leveraging insights from multiple regions in a 

communication-efficient way is critical. The aforementioned 
technique of federated learning is a critical step towards 
achieving this as it efficiently enables the cooperation of 
multiple intelligent agents without the need for sharing or 
transferring large amounts of data. As such, by placing mul-
tiple agents throughout the network, they can both learn the 
individual properties of their region while also leveraging 
intelligence and insights from other regions. Developing and 
deploying intelligent agents throughout the network and lev-
eraging cooperative insights will enable increased levels of 
automation and improve performance and the efficiency of 
network MANO activities.

Figure 13 provides a potential FL-enabled OTN architec-
ture. In this case, the local models and parameters trained at 
each location about the status of the network and is shared 
with the FL global learning agent. Using these models and 
parameters, the agent develops a global model through the 
aggregation of the local models and parameters. This allows 
each gNB to leverage the insights gained both by itself and 
that of other gNBs. In turn, this can help them make better 
local network management and orchestration decisions.

6 � Conclusion

5G networks have become a reality with added development 
and deployment efforts due to the continued growth of both 
mobile broadband and fixed broadband subscriptions as 
well as the added deployment of Internet of Things (IoT) 
devices. 5G networks are expected to support a diverse set 
of new applications/services, in addition to existing applica-
tions/services from previous generations (2G/3G/4G). The 

Fig. 13   Potential FL-enabled OTN architecture
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COVID-19 pandemic has further increased the demand for 
such services which has resulted in a further surge in the 
Internet usage. Therefore, 5G networks are expected to have 
a highly flexible architecture at all levels (radio, core, and 
transport levels). Moreover, this requires a high automation 
level in the deployment and maintenance of networks, parts 
of a network, or single resources (e.g. network slices).

Optical Transport Networks (OTNs) have been proposed 
as one potential and promising supporting technology for 5G 
networks at the transport level, particularly for next genera-
tion transport networks featuring large-granule broadband 
service transmissions. However, this introduces a fresh set of 
challenges. One such challenge is the added complexity, par-
ticularly in terms of managing these networks. The control, 
management, and orchestration of such networks continues 
to evolve for fast provisioning of light-paths, fast restoration 
and high availability. Another challenge is the security of 
OTNs against the different passive and active optical attacks. 
Additionally, new security threats have emerged due to the 
introduction of new services and applications resulting in 
additional potential attack surfaces. Thus, OTN security is 
a prime concern to consider.

To that end, this work provided a brief overview of 5G 
networks and their requirements. It also summarized the 
advantage of OTNs and surveyed some of the previous work 
proposed for optimizing such networks. Additionally, this 
work presented the challenges facing OTNs and their optimi-
zation within the context of 5G. Moreover, it outlined some 
of the key research areas and opportunities for innovation 
stemming from the data-driven intelligent networking para-
digm using ML techniques. This includes opportunities such 
as the use of ML to predict OTN network traffic, improve 
network health, offer intelligent orchestration, and provide 
distributed decision-making processes.
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