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Quantum Computing with Trapped Ion Hyperfine
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We discuss the basic aspects of quantum information processing with trapped
ions, including the principles of ion trapping, preparation and detection of hyper-
fine qubits, single-qubit operations and multi-qubit entanglement protocols. Recent
experimental advances and future research directions are outlined.
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1. OVERVIEW

Trapped atomic ions were first proposed as a viable quantum comput-
ing candidate by Cirac and Zoller in 1995.(1) Almost 10 years later,
the trapped ion system remains one of the few candidates that satis-
fies the general requirements for a quantum computer as outlined by
DiVincenzo(2): (i) a scalable system of well-defined qubits, (ii) a method to
reliably initialize the quantum system, (iii) long coherence times, (iv) exis-
tence of universal gates, and (v) an efficient measurement scheme. Most
of these requirements have been demonstrated experimentally with trapped
ions, and there exist straightforward (albeit technically difficult) paths to
solving the remaining problems.

Experimental approaches in ion trap quantum computing can be
divided by the type of qubit, in terms of the qubit level energy splitting,
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and the couplings required to drive quantum logic gates between the qubit
states. The two primary types of trapped ion qubit architectures are optical
qubits derived from a ground state and an excited metastable state sepa-
rated by an optical frequency, and hyperfine qubits derived from electronic
ground-state hyperfine (HF) levels separated by a microwave frequency.
In this paper, we highlight the latter case of HF qubits. For a review
of optical qubits we refer to the paper by R. Blatt included in this vol-
ume. More general accounts and various reviews are given in Refs. 3–16.
Moreover, the Advanced Research and Development Activity (ARDA) has
posted and updated a “roadmap” to highlight accomplishments and prob-
lems with the various possible implementations of quantum information
processing including those based on ion traps; various references can be
found at this site (http://qist.lanl.gov). Many experimental groups world-
wide have addressed various aspects of trapped-ion quantum information
processing; these include groups at University of Aarhus, IBM-Almaden,
NIST-Boulder, University of Hamburg, McMaster University, University
of Innsbruck, Los Alamos, University of Michigan, Max Planck Inst.-
Garching, Oxford University, and NPL-Teddington.

2. ION TRAPS

Ion traps come in various forms(17); for brevity, we restrict our
discussion to the linear RF (Paul) trap shown schematically in Fig. 1. Lin-
ear Paul traps with particular application to quantum information process-
ing are discussed by various groups; see, for example, Refs. 3–16 and 18–
27. The linear trap is essentially a quadrupole mass filter plugged on the
axis by superimposing a static electric potential well. In the x, y plane of
the figure, ions are bound by a ponderomotive pseudopotential

Ux,y(r)= q2

2m�2
T

〈E2(r)〉� q2V 2
0

4m�2
T R4

(x2 +y2), (1)

where q is the ion’s charge, m its mass, E is the RF electric field (resulting
from a potential V0 cos(�T t) applied to the dark electrodes of Fig. 1), r is
the radial distance from the trap axis, and R is the distance between the
trap axis and the nearest electrode surface. The oscillation frequency of an
ion in this pseudopotential is given by

ωx,y � qV0√
2�T mR2

, (2)
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Fig. 1. Electrode configuration for a linear RF (Paul) trap. A common RF potential
V0 cos(�T t) is applied to the dark electrodes; the other electrodes are held at RF ground
through capacitors (not shown) connected to ground. The lower-right portion of the figure
shows the x, y electric fields from the applied RF potential at an instant when the RF
potential is positive relative to ground. A static electric potential well is created (for positive
ions) along the z-axis by applying a positive potential to the outer segments (grey) relative
to the center segments (white).

where we assume the pseudopotential approximation (ωx,y � �T ) and
assume that ωz � ωx,y so that the static radial forces are much smaller
than the pseudopotential forces. From the form of Eq. (1), we see that the
ions seek the region of minimum |E(r)|. As an example, for some typi-
cal experiments using 9Be+ ions,(28) q =1 e,V0 =500V,�T /2π �100 MHz,
and R =200µm, so that ωx,y/2π � 24 MHz.

For the purposes of quantum computing, to a good approximation,
we can view the linear trap as providing a three-dimensional harmonic
well for ion qubits, where the strength of the well in two directions (x and
y in Fig. 1) is much stronger than in the third direction (z). When a small
number of ions is trapped and cooled, each ion seeks the bottom of the
trap well, but the mutual Coulomb repulsion between ions results in an
equilibrium configuration in the form of a linear array, like beads on a
string. To give an idea of array size, two ions in such a trap are spaced by
21/3s, and three ions are spaced by (5/4)1/3s where s ≡q2/(4πεomωz

2)1/3.
Expressed equivalently, for singly charged ions, the spacing parameter in
micrometers is s(µm) = 15.2(M(u)ν2

z (MHz))−1/3, where the ion’s mass is
expressed in a.m.u. and the axial z frequency in MHz. For νz = 5 MHz,
two 9Be+ ions are separated by 3.15µm.

Although simple gate operations among a few ion qubits have been
demonstrated, a viable quantum computer architecture must accomodate
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very large number of qubits. As the number of ions in a trap increases,
several difficulties are encountered. For example, the addition of each ion
adds three vibrational modes. It soon becomes nearly impossible to spec-
trally select the desired vibrational mode unless the speed of operations is
slowed to undesirable levels.(4,29) Furthermore, since error correction will
most likely be incorporated into any large processor, it will be desirable to
reset (or possibly measure) ancilla qubits without disturbing the coherence
of logical qubits. Since ion qubits are typically reset by means of state-
dependent laser scattering, the scattered light from ancilla qubits held in
a common trap may disturb the coherence of the logical qubits.

For these and other reasons, it appears that a scalable ion-trap sys-
tem must incorporate arrays of interconnected traps, each holding a small
number of ions. The information carriers between traps might be pho-
tons,(19,30–32) or ions that are moved between traps in the array. In the
latter case, a “head” ion held in a movable trap could carry the informa-
tion by moving from site-to-site as in the proposal of Ref. 22. Similarly,
as suggested in Refs. 4 and 26, qubit ions themselves could be shut-
tled around in an array of interconnected traps. In this scheme, the idea
is to move ions between nodes in the array by applying time-dependent
potentials to “control” electrode segments. To perform logic operations
between selected ions, these ions are transferred into an “accumulator”
trap for the gate operation. Before the gate operation is performed, it may
be necessary to sympathetically re-cool the qubit ions with “refrigerant”
ions.(4,26,33–35) Subsequently, these ions are moved to memory locations or
other accumulators. This strategy always maintains a relatively small num-
ber of motional modes that must be considered and minimizes the prob-
lems of ion-laser-beam addressing using focused laser beams. Such arrays
also enable highly parallel processing and ancilla qubit readout in a sepa-
rate trapping region so that the logical ions are shielded from the scattered
laser light.

Most gate schemes for trapped ions have a speed that is limited to,
or proportional to, the oscillation frequency of the ions in the trap. From
Eq. 2, we therefore want to maximize V0/R

2. As R becomes smaller it is
more difficult to control the relative dimensions of the electrode structures.
Refs. 3–16 and 18–27 discuss some approaches to making small traps with
accurate dimensions.

3. TRAPPED ION HYPERFINE QUBITS

Ions can be confined for days in an ultra-high vacuum with minimal
perturbations to their internal atomic structure, making particular internal
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states ideal for representing quantum bits. Electric field perturbations are
small, because localized ions experience a vanishing time-averaged electric
field. Although magnetic field perturbations to internal structure can be
important, the coherence between two internal levels can be made mag-
netic field-insensitive (to lowest order) by operating near an extremum of
the energy separation between the two levels with respect to the magnetic
field. Qubit coherence in such atomic ground states has been observed
for times exceeding 10 min in the context of trapped ion frequency stan-
dards.(36,37)

Qubits stored in metastable levels separated by optical frequencies
(1,38) enjoy the simplicity of single-photon optical transitions, provided the
radiative decay rate is sufficiently slow (some weakly allowed optical tran-
sitions in atomic ions have lifetimes �1 s) However, phase-stable narrow-
linewidth lasers are required in order to realize the full benefit of the long
decay times.(39,40) In addition, Stark shifts from coupling to non-resonant
allowed transitions become important for these longer qubit lifetimes since
the laser intensity must be high for appreciable transition rates.(41)

Ground state hyperfine levels, or states of nuclear vs. electronic spin,
typically separated by microwave frequencies, have extremely long radiative
lifetimes. Trapped ion HF levels are arguably the most attractive choice for
qubit states, and form the thesis of this paper. Figure 2 displays the lowest
energy levels of the 111Cd+ ion, for concreteness (nuclear spin I =1/2). We
will be interested primarily in two electronic states, the 2S1/2(F = 1,mF =
0) and 2S1/2(F = 0,mF = 0) hyperfine ground states (denoted by |↓〉 and
|↑〉 respectively), separated by frequency ωHF (ωHF/2π � 14.53 GHz for
111Cd+). These long-lived spin states will form the basis for a quantum
bit. Other candidate ions with similar HF structure (non-zero nuclear spin)
include 9Be+, 25Mg+, 43Ca+, 87Sr+, 137Ba+, 173Yb+, and 199Hg+.

3.1. Qubit Initialization and Detection

Standard optical pumping techniques allow the HF qubits to be ini-
tialized into either |↓〉 or |↑〉 states. Subsequent detection of the spin
states can be accomplished using the technique of quantum jumps.(42) For
example, in 111Cd+, a circularly polarized laser beam resonant with the
2S1/2 −2 P3/2 transition near λ � 214.5 nm (Fig. 2) scatters many pho-
tons if the atom is in the |↓〉 spin state (a “cycling” transition), but
essentially no photons when the atom is in the |↑〉 spin state. Even if
a modest number of the scattered photons are detected, the efficiency
of discrimination between these two states approaches 100%. In general,
the HF qubit detection efficiency with such cycling transition is given by
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Fig. 2. Electronic (internal) energy levels (not to scale) of the 111Cd+ion. The
2S1/2(F = 1,mF = 0) and 2S1/2(F = 0,mF = 0) hyperfine ground states (denoted by |↓〉
and |↑〉 respectively), separated in frequency by ωHF /2π � 14.53 GHz, and magnetic field
insensitive to first order, form the basis of a quantum bit. Detection of the internal HF
state is accomplished by illuminating the ion with a σ+-polarized “detection” beam near
λCd � 214.5 nm and observing the fluorescence from the cycling transitions between |↓〉 and
the 2P3/2|(F =2,mF =2)〉 state. The excited P state has radiative linewidth γe/2π �47 MHz.
Also drawn are a pair of σ+-polarized Raman beams that are used for quantum logic gates.

1 − (M/εphot)(γe/ωHF)2, where M includes appropriate atomic branching
ratios and is of order unity, and εphot is the photon detection efficiency of
the ion fluorescence. In Fig. 3, the number of photons scattered in 0.2 ms
by a single 111Cd+ion (net quantum-efficiency εphot ∼ 10−3) is plotted for
the “bright” (|↓〉) and the “dark” (|↑〉) states. By placing the discriminator
between two and three detected photons, a HF qubit detection efficiency
of 99.7% is realized.

3.2. HF Qubit Rotations: Single Qubit Gates

Single-qubit rotations of HF states can be accomplished by either
applying microwave radiation tuned to the energy splitting between the
two levels ωHF, or by driving stimulated Raman transitions (SRT) with
two laser fields that are properly detuned from an excited state and differ
in frequency by ωHF.

When microwaves are used, it is necessary to efficiently couple radia-
tion with ∼cm wavelengths into a sub-millimeter size ion trap. Low gain
microwave horns (with small opening angles) provide reasonable means of
generating a strong beam of microwaves. Rabi frequencies approaching 100
kHz have been achieved with modest microwave powers (<1 W) applied
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Fig. 3. Detection histograms of a single trapped 111Cd+ ion. The white bars correspond
to the distribution of the number of fluorescence photons detected by a CCD camera for
a 111Cd+ion prepared initially in the |↓〉 state upon application of a σ+-polarized detection
laser for 0.2 ms. The black bars correspond to the photon distribution for the ion initially
prepared in the |↑〉 state under the same conditions. The very small overlap between the two
distributions corresponds to a detection efficiency of >99.7%.

through a horn within 10 cm of the ion. Microwave qubit rotations can
easily be made very clean by using stable RF sources, and are useful for
joint rotations of all qubits. However, individual addressing of trapped
ions with microwaves is difficult, unless magnetically sensitive qubit states
are employed and substantial magnetic field gradients are applied.(44)

In the case of 2S1/2 HF qubit rotations with SRT,(5) two co-propagat-
ing laser fields are applied to the ion, each with a detuning 	� γe from
an excited 2P1/2 or 2P3/2 state, denoted by |e〉 with radiative linewidth γe.
The difference frequency of the two fields is set to the HF qubit reso-
nance, resulting in an effective field that coherently rotates the HF qubit
similar to the microwave case, except because the SRT laser beams can
be focussed, individual ions can be addressed. The SRT Rabi frequency
is given by �SRT = g1g

∗
2/	, where gi are the resonant Rabi frequencies

for the two laser beams respectively driving transitions to the excited state
|e〉. The probability of spontaneous emission from off-resonant excitation
to the state |e〉 during a SRT π -pulse decreases with increasing 	 as
Pse �γe/	.

However, 	 cannot be increased indefinitely. In order for SRT to
effectivly couple HF states and effectively flip the state of electron +
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nuclear spin, the excited state |e〉 must be populated for a sufficient time
so that the spin-orbit interaction allows the spin to flip. In the case of
S1/2 hyperfine ground state qubits coupled to excited atomic P1/2 or 2P3/2
states, this time-scale is set by the inverse fine-structure splitting 1/	FS,
and we find that the probability of spontaneous emission in a given qubit-
dependent operation is roughly Pse � γe/	FS, which can be as low as
10−5 in candidate ion species.(13)

3.3. Interactions Between HF Qubits: Entangling Qubit Gates

Trapped ion qubits can be controllably coupled through their mutual
Coulomb interaction. While the internal HF qubit states are essentially
unaffected by the Coulomb interaction directly, external control fields can
generate an effective coupling between qubits that relies on a qubit state-
dependent force. This external control field can thus entangle trapped ion
qubits through the “data bus” represented by the Coulomb interaction.

For a qubit stored in atomic S1/2 HF ground states |↓〉 and |↑〉, the
coupling to an ion’s position x̂ proceeds via a dipole coupling of one (or
both) qubit states to an excited atomic P1/2 or P3/2 state |e〉 having the
form

HI =−(µ̂↑,e + µ̂↓,e) ·E(x̂). (3)

Here, µ̂S,e is the electric dipole operator between qubit state |S〉 and |e〉,
and E(x̂) is the electric field of the laser as a function of the position of
the ion x̂. This interaction can be sequentially or simultaneously applied
to different trapped ion qubits in order to generate entanglement. While
the ion position is thus used to entangle trapped ion qubits, successful
gate schemes rely on the quantum state of position not becoming ulti-
mately entangled with the qubit states following the gate. Below we discuss
two of the most common methods for coupling the qubit and position
of trapped ions: motion-sensitive stimulated Raman transitions, and qubit
state-dependent forces.

3.3.1. Motion-sensitive stimulated Raman transitions

Optical stimulated Raman transitions are not only useful for sim-
ple HF qubit rotation operations as discussed above, but can be critical
for coupling qubit states to the external motional state of the ions. In
this case, the two Raman beams are directed onto the ion(s) with a non-
zero wavevector difference δk along the relevant direction of motion to be
coupled. For a single ion, the resulting coupling under the rotating wave
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approximation(4) is

H =η�SRT(σ+eiη(a +a†) +σ−eiη(a +a†)), (4)

where η = δk ·x0 is the Lamb–Dicke parameter associated with the coor-
dinate x and x0 = (�/2mω)1/2 is the 0-point spread of the ion wavepacket.
The raising and lowering operators for the qubit (motion) are given by σ+
and σ− (a† and a). The Lamb–Dicke parameter η sets the scale for the
coupling between the light field and the position of the ion, related to the
gradient of the light field experienced by the ion.

We provide two specific examples of SRT couplings from Eq. 4 that
can be exploited for entangling the quantum state of a single ion with a
collective mode of motion. Subsequently, similar operations can be applied
to other ions sharing the motion, resulting in a net entangling quan-
tum gate between ion qubits. In the original Cirac-Zoller proposal,(1) the
difference frequency between the two stimulated Raman fields is tuned
to a “motional sideband” at frequency ωHF ± kω, where k is an inte-
ger describing the sideband order. Raman sideband operations coherently
rotate the HF qubit state while simultaneously affecting the quantum state
of motion. The resulting coupling for the first lower sideband (k = −1)
takes the form of the classic Jaynes–Cummings Hamiltonian:

H−1 =η�SRT(σ+a +σ−a†). (5)

The above expression assumes that the ion is confined to within the
Lamb–Dicke limit, although this is not essential. For a single trapped ion
initially prepared in the vibrational ground state (|0〉), this coupling results
in the mapping of an arbitrary qubit state (α|↓〉 + β|↑〉)|0〉 to |↓〉(α|0〉 +
β|1〉). This interaction is the basis for the Cirac-Zoller(1) and Mølmer-
Sørensen(46,47) quantum logic gate schemes.

When a pair of non-copropagating Raman beams are tuned to the
carrier transition, multi-qubit entangling gates can also be realized. In
this case, we find that qubit transitions are driven without accompanying
motional state transitions, although the qubit Rabi frequency acquires a
dependence upon the motional state of the form

�n,n =η�SRTe−η2/2Ln(η
2), (6)

where Ln(X) is the Laguerre polynomial of order n. For the lowest three
values of n, we have L0(η

2)= 1, L1(η
2)= 1 −η2, and L2 = 1 − 2η2 +η4/2.

This motion-dependent qubit rotation can be used to construct quantum
logic gates(51,52)
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3.3.2. Spin-dependent optical forces

An alternative method for coupling hyperfine qubits with the ion
motion is to use laser beams to generate a dipole force that depends upon
the state of the qubit |S〉 through atomic selection rules and appropriate
polarization of the light. As an example, we consider the case of an optical
coupling between S1/2 and excited P1/2 states, with a nuclear spin I = 1/2.
In this case, there are four ground states and four excited states, as depicted
in Fig. 2. If the S1/2 qubit states are |↑〉 and |↓〉 states, then a σ+-polarized
laser beam will couple the |↑〉 to the excited state, with |↓〉 decoupled.

Such a “spin-dependent force” can take many forms. For instance, the
ion can be placed in an intensity gradient of a laser beams through focus-
ing or through application of a standing-wave.(22) Alternatively, off-reso-
nant laser beams with a difference frequency near the trap frequency ω

can be applied to the ion (a “walking wave” field), resulting in a reso-
nant (qubit state-dependent) displacement of the motional state in phase
space.(53,56,57) Spin-dependent optical forces underly the “push” gate of
Ref. 22 and the geometric phase gate discussed below(53). Finally, we
note the possibility of applying pairs of counterpropagating light pulses of
duration τ �1/γe, that resonantly drive transitions from one qubit state to
the excited P state and back down, accompanied by a 2�k impulse from
the recoil of the absorption.(55) This is the basis for the fast gate scheme
proposed by Garcia-Rippol et al..(54)

3.3.3. Comparison of couplings

The above two methods can be considered as formally equivalent,
both involving a qubit state-dependent interaction with the ion coordinate
that can be subsequently coupled to another ion through the Coulomb
force. The original Cirac-Zoller coupling(1) requires the preparation of the
quantum state of ion motion to the |n=0〉 ground state, whereas most of
the other couplings require preparation of the motion to within the Lamb-
Dicke regime, where η2(〈n〉 + 1) � 1, where 〈n〉 is tha average number of
(thermal) vibrational quanta in the ion motion.

HF qubit gates based on SRT couplings allow the creation of entan-
gling quantum gates that change the qubit state, such as the CNOT gate,
whereas spin-dependent optical forces generally provide gates that do not
change the qubit state, such as the phase gate. Therefore, spin-dependent
optical force gates can provide better isolation from errors associated with
qubit rotations such as the residual coupling to spectator atomic levels. In
particular, this imples that the gate speed for this method can be higher
than that of SRT-based gates.(54) However, spin-dependent optical forces
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appear to be applicable only to magnetically sensitive HF qubit states,
thus the qubits in this case may be more susceptable to fluctuating mag-
netic fields. Moreover, HF qubit rotations must ultimately be applied in
any case for universal quantum logic, so it is likely that both methods
will be important in future work. As mentioned in the case of single qubit
rotations based on stimulated Raman transitions, a common fundamental
source of error in all coupling schemes is spontaneous emission from the
excited state |e〉 (lifetime 1/γe) during the laser-induced coupling. We find
that the probability of spontaneous emission per entangling gate is roughly
Pse �γe/η	FS, which can be as low as10−4 (13) for certain ion candidates.

4. GATE SCHEMES AND DEMONSTRATIONS

The basic elements of the original Cirac-Zoller gate,(1) a CNOT gate
between the motion and the internal state of a single trapped ion was
implemented in 1995.(45) The full Cirac-Zoller gate on two ions was
implemented with about 70% fidelity in 2003.(38) In 1999, Sørensen and
Mølmer(46,47) and also Solano et al.(48) suggested an alternative gate
scheme. Compared to the original Cirac and Zoller gate,(1) the latter pro-
posal has the advantages that (i) laser-beam focusing (for individual ion
addressing) is not required, (ii) it can be carried out in one step, (iii) it
does not require use of an additional internal state, and (iv) it does not
require precise control of the motional state (as long as the Lamb–Dicke
limit is satisfied). Based on this approach, the NIST group realized a uni-
versal gate between two spin qubits(49,50) that was also used to demon-
strate a particular four-qubit gate.(49)

A variation of the original Cirac-Zoller gate was demonstrated in
2002, relying on Raman carrier operations as discussed above. Here, the
Lamb–Dicke parameter η was set so that the carrier operations depended
upon the motional state in a particular way(51,52), resulting in a π -phase
gate with a single pulse of light. Compared to the previously realized
CNOT gate between motion and spin,(45) this gate has the advantages that
(i) it requires one step instead of three, (ii) it does not require an auxiliary
internal state, and (iii) it is immune to Stark shifts caused by off-resonant
sideband couplings.(4)

In 2003, the NIST group demonstrated a π -phase gate between two
trapped ion qubits(53) based on a qubit state-dependent force; with this
gate a Bell state with 97% fidelity was generated. The gate realized the
transformations: |↓〉|↓〉→|↓〉|↓〉, |↓〉|↑〉→ eiπ/2|↓〉|↑〉, |↑〉|↓〉→ eiπ/2|↑〉|↓〉,
and |↑〉|↑〉→|↑〉|↑〉. Combined with single bit rotations, this operation can
yield either a π -phase gate or the CNOT operation.
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Fig. 4. Schematic representation of the displacements of the axial stretch-mode
amplitude in phase space for the four basis states of the two spin qubits. The
detuning and amplitude of the displacements are chosen to give a π/2 phase shift
on the |↓〉|↑〉 and |↑〉|↓〉 states while the |↓〉|↓〉 and |↑〉|↑〉 states are unaffected
because the optical dipole forces for these states do not couple to the stretch
mode.

The gate relies in part on properties of motional states as they are dis-
placed in phase space. For a closed trajectory in phase space, the overall
quantum state acquires an phase shift that depends on the area enclosed
by the path. The second element required for the gate is to make the path
area be spin-dependent. This is accomplished by making the displacement
in phase space with a spin-dependent optical dipole force as was done in
previous experiments.(56,57)

To implement this gate on two ions, the Raman transition beams were
separated in frequency by

√
3ωz + δ, where

√
3ωz is the stretch-mode fre-

quency for two ions and δ is a small detuning (below). The separation of
the ions was adjusted to be an integer multiple of 2π/	k so that the opti-
cal-dipole force (from the “walking” standing wave) on each ion was in
the same direction if the ions were in the same spin state but, due to the
choice of laser polarizations, in opposite directions if the spin states were
different. This had the effect that the application of the laser beams to the
|↓〉|↑〉 and |↑〉|↓〉 states caused excitation on the stretch mode but the |↓
〉|↓〉 and |↑〉|↑〉 states were unaffected. The detuning δ and duration of the
displacement pulses were chosen to make one complete (circular) path in
phase space with an area that gave a phase shift of π/2 on the |↓〉|↑〉 and
|↑〉|↓〉 states. This is shown schematically in Fig. 4.

5. CONCLUSION

The trapped ion system is arguably one of the most attractive can-
didates for large-scale quantum computing. Here, we have concentrated
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on the use of atomic hyperfine ground states as qubits, the most stable
quantum bit known. With a rich variety of schemes for generating entan-
gling quantum logic gates between HF qubits based on externally applied
laser fields, it appears that the scale up procedure is now limited by the
fabrication of more complex trap arrays and the precise control of laser
fields to produce high fidelity gates.
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