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Reversibility of local transformations of multiparticle entanglement
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We consider the transformation of multisystem entangled states by local quantum operations
and classical communication. We show that, for any reversible transformation, the relative entropy
of entanglement for any two parties must remain constant. This shows, for example, that it is not
possible to convert 2N three-party GHZ states into 3N singlets, even in an asymptotic sense. Thus
there is true three-party non-locality (i.e. not all three party entanglement is equivalent to two-
party entanglement). Our results also allow us to make quantitative statements about concentrating
multi-particle entanglement. Finally, we show that there is true n-party entanglement for any n.

One of the key open issues in quantum information
theory is to understand what the fundamentally differ-
ent types of quantum entanglement are. It has been
known for some time [1] that any pure entangled state
of two parties, Alice and Bob, may be reversibly distilled
to singlets in the sense that in the limit of large N , N
copies of the state ψAB may be transformed reversibly
into NE(ψAB) singlets, where E(ψAB) is the entropy of
the reduced density matrix of either Alice or Bob. Until
recently it was not known whether, in fact, singlets are
the only type of entanglement. This issue was resolved in
[2] where was shown that certain multi-party states can-
not be transformed into singlets reversibly. In particular
the authors of [2] consider the four-party GHZ state:

ψGHZ4
=

1√
2
(|0000〉+ |1111〉) . (1)

Let us imagine that there were a reversible process to
convert N copies of ψGHZ4

into singlets (in the limit of
large N). After the forward version of the process there
would be sAB singlets between Alice and Bob, sBC sin-
glets between Bob and Claire etc. It is straightforward
to calculate the four one-party entropies (e.g. the en-
tropy of Alice versus the Bob-Claire-Daniel system) and
three independent two-party entropies (e.g. the entropy
of the Alice-Bob system versus the Claire-Daniel system)
for both the initial and final pure states.
Since entropy can only decrease during any local pro-

cess, it must be constant during a reversible process.
Thus a necessary condition for the existence of a re-
versible protocol for converting N copies of ψGHZ4

into
singlets is that the entropies of the initial and final states
must be the same. It is not difficult to show that no com-
binations of singlets held between the four parties has the
same ratios of entropies as ψGHZ4

. Thus the four-party
GHZ state cannot be converted reversibly into singlets.
Hence not all four-party entanglement is of the singlet

type.
[2] leaves open many questions. For example, while

the results in [2] show that not all four-party entangle-
ment can be attributed to pair-wise entanglement, the
techniques employed leave open whether or not any new
types of non-locality arise in three-party states. Consider
the three one-party entropies, EA, EB , EC of an arbi-
trary three party pure state. It can easily be checked that
any values of these three entropies which are allowed by
sub-additivity can be matched by suitable choices of the
numbers of singlets held between the three parties.
A particularly important case is that of the three party

GHZ state

ψGHZ3
=

1√
2
(|000〉+ |111〉) . (2)

A simple calculation shows that the one-party entropies
of ψGHZ3

can be matched by having one singlet between
each pair AB, BC, AC for every two ψGHZ3

’s held be-
tween the parties. There is further encouragement for
the suggestion that, in fact, the three party GHZ state
is equivalent to singlets, since it is possible to create sin-
glets between any pair from ψGHZ3

. To see this rewrite
(2) as

ψGHZ3
=

1√
2

[

(|0〉+ |1〉)√
2

(|00〉+ |11〉)√
2

(3)

+
(|0〉 − |1〉)√

2

(|00〉 − |11〉)√
2

]

.

Now let Alice measure her particle in the x-basis,

|+〉x =
(|0〉+ |1〉)√

2
; |−〉x =

(|0〉 − |1〉)√
2

. (4)

If she finds her particle in the +x direction she tells Bob
and Claire to do nothing, if she finds her particle in the
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−x direction she tells Bob to do the unitary transforma-
tion on his particle (a rotation about the z-axis)

|0〉 7→ |0〉; |1〉 7→ −|1〉 (5)

At the end of these operations Bob and Claire share the
state,

1√
2
(|00〉+ |11〉) . (6)

Thus given one three party GHZ state, one singlet be-
tween Bob and Claire can be produced. However the only
known protocol for converting singlets to GHZ states con-
sumes two singlets; for example given singlets between
Alice and Bob and between Bob and Claire, Bob could
create a GHZ state locally and then use the singlets to
teleport to Alice and Claire. Thus while individual copies
of GHZ states can be converted to singlets and vice versa,
the only known protocol is not reversible. Indeed it has
been shown that no reversible protocol exists for finite
numbers of copies [2]. A natural question is whether in
the asymptotic limit any such reversible protocol can ex-
ist. Our results below settle the question.
In this letter we first investigate the three-party case.

We will consider general collective actions on any num-
ber, N , of copies of the state (including the asymptotic
limit N → ∞). We derive new conditions that any pro-
cedure involving local quantum operations and classical
communication must satisfy, namely that the increase in
the average relative entropy of entanglement of any pair
of the three parties cannot be greater than the decrease
in the entanglement of the third with the pair. A corol-
lary of this result is that the average relative entropy of
entanglement of any pair of the parties must be constant
in a reversible process. This allows us easily to conclude
that not all three party entanglement is of singlet type
since we can show that there is no reversible process con-
verting the three party GHZ state into singlets, even in
the asymptotic limit. More generally we will show that
there is true n-party entanglement for any n, in the sense
that, for any n there are n-party states which cannot be
transformed reversibly into states in which only k < n

parties are entangled.
It will simplify matters if we consider the entire Hilbert

space at each site including ancilla’s. Thus initially Al-
ice, Bob and Claire share a pure state. They are allowed
to perform local operations and classical communication,
as usual. The state of the system branches according to
the outcome of any measurements performed, but at each
stage the state in a given branch is still pure. The set of
local operations can be broken down into two classes:

• Alice Bob and Claire can do local unitary opera-
tions on their systems, and since they can commu-
nicate, everybody can know what transformations
are done by everybody else. Local unitary trans-
formations cannot increase the entanglement.

• They can perform more general operations, includ-
ing measurements. Communication means that ev-
erybody can know the results of every measurement
performed by anybody.

We note that entanglement between Bob and Claire can
be increased. For example, a measurement performed by
Alice can increase the entanglement of Bob and Claire.
The example of the three-party GHZ state above shows
this since by taking the trace over Alice’s Hilbert space
one can see that Bob and Claire’s relative state is unen-
tangled in the case of the three-party GHZ state. How-
ever after the protocol Bob and Claire’s entanglement is
one e-bit. It is relevant, however (see below) that after
the protocol Alice is unentangled with Bob and Claire.
Our aim below is to calculate how much Bob and

Claire’s entanglement can increase under the most gen-
eral local operations that the three parties can perform.
Specifically we will show that any increase in the Bob-

Claire bipartite entanglement must be paid for by a de-
crease in the entanglement of Alice with the other two—
that is (since we always have a pure state) by a decrease
in Alice’s entropy.
The proof is as follows. Consider an entanglement

manipulation protocol which states with any number of
copies of a three-party entangled state. Consider a par-
ticular stage in the protocol and a particular branch in
which the density matrix of the system is ρABC (note
that the state is pure, and lives in the Hilbert space of
all the original copies including the ancillas); the state of
Bob and Claire’s joint system is ρBC = TrA

(

ρABC
)

. Let
Alice perform a measurement of an operator with spec-
tral projectors Pk. Thus if the outcome k is obtained,
the state of the system is

Pk ⊗ I⊗ IρABCPk ⊗ I⊗ I

Tr (Pk ⊗ I⊗ IρABC)
, (7)

where pk = Tr
(

Pk ⊗ I⊗ IρABC
)

is the probability that
the outcome k is obtained. We note that

ρBC =
∑

k

pkρ
BC
k , (8)

where ρBC
k is the state of Bob and Claire’s joint sys-

tem after the measurement; in other words after Alice’s
measurement, but before she has communicated the out-
come to Bob and Claire, their average state cannot have
changed from what it was before the measurement.
The relative entropy of ρBC with respect to any bipar-

tite state σBC is defined as

S
(

ρBC ||σBC
)

: = (9)

Tr
(

ρBC ln ρBC
)

− Tr
(

ρBC lnσBC
)

Simple algebra shows that the relative entropy satisfies
“Donald’s identity” [3],
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−S
(

ρBC ||σBC
)

(10)

=
∑

k

pk
(

S
(

ρBC
k ||ρBC

)

− S
(

ρBC
k ||σBC

))

.

The relative entropy of entanglement [4] for ρBC is de-
fined as

Er

(

ρBC
)

= min
σBC sep

S
(

ρBC ||σBC
)

(11)

where we’ve minimized over separable σBC . From now
on, let us choose σBC to be the separable density op-
erator that does this minimization for Bob and Claire’s
state ρBC . Then we obtain

∑

k

pkS
(

ρBC
k ||σBC

)

− Er

(

ρBC
)

=
∑

k

pkS
(

ρBC
k ||ρBC

)

,

(12)

which means that
∑

k

pkEr

(

ρBC
k

)

− Er

(

ρBC
)

(13)

≤
∑

k

pkS
(

ρBC
k ||ρBC

)

= S
(

ρBC
)

−
∑

k

pkS
(

ρBC
k

)

= S
(

ρA
)

−
∑

k

pkS
(

ρAk
)

;

the last step is valid since ρABC and ρABC
k are pure.

Now we consider a further step in which Alice com-
municates to Bob and Claire the results of her measure-
ment and then Bob and Claire perform unitary rotations
on their states with operators which depend on the out-
come; we also allow Alice to perform rotations on her
state which depend on the outcome of the measurement.
We will denote by ρ̃BC

k and ρ̃Ak the states after the trans-
formations i.e.

ρBC
k 7→ ρ̃BC

k = UB
k ⊗ UC

k ρ
BC
k ⊗

(

UC
k

)†
; (14)

ρAk 7→ ρ̃Ak = UA
k ρ

A
k

(

UA
k

)†
.

These transformations do not change S
(

ρAk
)

. Er

(

ρBC
k

)

is also left unchanged by these transformations since
the set of separable states is invariant under local uni-
tary transformations (i.e if σBC is separable, then so is
U ⊗ V σBCU † ⊗ V †) so that we find

∑

k

pkEr

(

ρ̃BC
k

)

− Er

(

ρBC
)

(15)

≤ S
(

ρA
)

−
∑

k

pkS
(

ρ̃Ak
)

;

Thus, the average increase in Er for the Bob-Claire sys-
tem is no greater than the average decrease in the entropy

of Alice’s system (and thus Alice’s entanglement with the
joint Bob-Claire system).
Inequality (15) is also true in a step of an extended

protocol in which Bob performs a measurement commu-
nicates to Alice and Claire, and then all three parties per-
form unitary transformations dependent on the outcome
of the measurement. For again we consider a particular
stage in the protocol and a particular branch in which
the density matrix of the system is ρABC (recall that the
state is pure). Let Bob perform a measurement of an
operator with spectral projectors Pk. Thus, as before, if
the outcome k is obtained, we denote the state of the sys-
tem ρABC

k and pk is the probability that the outcome k
is obtained. Alice’s reduced state after the measurement
is

ρAk = TrBC

(

ρABC
k

)

. (16)

Before Bob communicates to her, her average state is

ρA =
∑

pkρ
A
k . (17)

Thus the convexity of entropy shows that

S
(

ρA
)

≥
∑

k

pkS
(

ρAk
)

. (18)

Now Bob communicates the outcome of his measurement
and Alice performs a unitary transformation which de-
pends on this outcome:

ρAk 7→ ρ̃Ak = UA
k ρ

A
k

(

UA
k

)†
. (19)

These transformations do not change S
(

ρAk
)

. Thus, dur-
ing this step of the protocol,

S
(

ρA
)

≥
∑

k

pkS
(

ρ̃Ak
)

. (20)

It is a key property of the relative entropy of entan-
glement that it does not increase under local operations
and classical communication (see for example [4]) so that

Er

(

ρBC
)

≥
∑

k

pkEr

(

ρ̃BC
k

)

. (21)

Thus (20) and (21) imply that (15) is true for any step
in the protocol.
If we consider an extended protocol in which Alice, Bob

and Claire perform many rounds of local measurement,
classical communication and unitary transformations, we
may apply the above inequality to each round for each
branch. We can then deduce that for any local protocol,
the average increase in Er for the Bob-Claire system is
no greater than the average decrease in the Alice’s entan-
glement with the joint Bob-Claire system. i.e. we may
write
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〈Er (BC)〉final − Er (BC)
initial

≤ S (A)
initial

− 〈S (A)〉
final

. (22)

The general question we are interested in is reversible
procedures for converting a given state to some specified
states. For a reversible process we know that average en-
tropy cannot change since entropy can only stay constant
or decrease under local operations. Thus in a reversible
process the right-hand-side of (22) is zero and so in such
a process the average relative entropy of entanglement of
the Bob-Claire system must be constant.
This form of the result makes it very easy to show that

it is not possible to convert GHZ states reversibly into
singlets between Alice and Bob, Bob and Claire, and Al-
ice and Claire. This is because the relative entropy of
entanglement of GHZ states between Bob and Claire is
zero, but clearly singlets between Bob and Claire have
non-zero relative entropy of entanglement.
The results above lead us to our second main point

namely to make quantitative statements about multi-
party entanglement. Having established that GHZs and
singlets are not interconvertible it is natural to ask, fol-
lowing [2] whether three party pure states can be trans-
formed reversibly into singlets and three-party GHZ’s.
That is, perhaps singlets and three-party GHZ’s consti-
tute the irrreducible types of entanglement into which
any three party entanglement can be transformed re-
versibly. We do not know whether this is possible in
general. However for those states φABC for which it is
possible, our results easily show how many singlets and
GHZ’s can be extracted. This is since the one-party en-
tropies and the relative entropy of entanglement of the
reduced two-party density matrices are conserved as we
have shown. Thus if g is the number of GHZ’s that can
be extracted per individual copy of φABC , and if sAB,
sBC , and sAC are the number of singlets, then

SA(φ
ABC) = g + sAB + sAC (23)

SB(φ
ABC) = g + sAB + sBC

SC(φ
ABC) = g + sAC + sBC

Er(ρ
AB) = sAB

Er(ρ
BC) = sBC

Er(ρ
AC) = sAC,

where ρAB etc. are the reduced density matrices of
φABC . i.e. the number of singlets between each pair
AB, BC, AC that can be extracted per state asymptot-
ically is equal to the relative entropy of entanglement of
the reduced density matrices. We note that (23) shows
that for states which are convertible into GHZ’s and sin-
glets, there are relations between the one-party entropies
and relative entropies.
One interesting case is the state

φ1 = α|000〉+ β|111〉. (24)

The conservation laws above suggest that the number of
GHZ’s that can be extracted is equal to

H(α2) = −α2 logα2 − β2 log β2. (25)

Indeed a simple extension of the standard purification
protocol [1] shows that this is indeed possible.
A second interesting case is

φ2 = α|0〉Ψ+ + β|1〉Ψ−, (26)

where Ψ± = 1√
2
(|00〉 ± 11〉). It is very tempting to think

that this state can indeed be transformed asymptotically
into GHZ’s and singlets, and the arguments above lead to
a conjecture for the numbers of these states which can be
extracted, namely H(α2) GHZ’s and 1 −H(α2) singlets
between Bob and Claire, per copy of φ2. At present there
is no protocol known to perform this transformation.
Our argument can be extended to situations in which

multisystem entanglement is shared among more than
three separated parties. Suppose n parties share n quan-
tum systems in a joint entangled state. As long as n ≥ 3,
we can partition the n parties into three non-empty
groups, which will play the roles of Alice, Bob and Claire.
Local operations by any of the n parties will necessarily
be local operations with respect to the Alice/Bob/Claire
partition. Any increase in the relative entropy of en-
tanglement between the Bob and Claire groups due to
operations by the Alice group will necessarily involve an
irreversible reduction in the entropy of the Alice group,
and thus a reduction in the entanglement of the Alice
group with the others.
Any entangled pure state of k parties must show bi-

partite entanglement between some subset of the k par-
ties and the complementary subset. This fact allows us
to draw conclusions about the reversible transformations
of many-particle entanglement. For instance, a GHZ
state shared among n parties has the property that for
k < n, no k parties are entangled among themselves.
Thus, n-party GHZ’s cannot be reversibly transformed
into any combination of k-party entangled pure states,
for all k < n.
Finally we point out that in our derivation of (22), we

had in mind the definition of relative entropy of entan-
glement given by

Er

(

ρBC
)

= min
σBC sep

S
(

ρBC ||σBC
)

. (27)

That is, the set of states Σ over which we minimize is
the set of separable states. However, the only property
of that set necessary for the proof was the invariance

of that set under local transformations, that is unitary
transformations and measurements (in particular [4] the
invariance under measurements enters in the derivation
of (21)). For two parties, a natural such set is the set
of separable states. For larger numbers of parties, more
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general choices are possible (see for example [4]), and can
provide new measures of multisystem entanglement.
For example for four parties, we can take the states in

Σ to be mixtures of pure states of the form
∣

∣ψABC
〉

⊗
∣

∣φD
〉

, or we could take mixtures of these states and sim-
ilar states with ABCD permuted. Or we could take Σ to
be mixtures of pure states of the form

∣

∣ψAB
〉

⊗
∣

∣φCD
〉

and
permutations etc. In any of these cases the set Σ is invari-
ant under local transformations. We can therefore use it
to define EΣ(ρ

ABCD), the relative entropy “distance” of
a state ρABCD from the set Σ. Similar reasoning to that
given earlier allows us to derive inequalities similar to
(15):

∑

k

pkEΣ

(

ρ̃BCDE
k

)

− EΣ

(

ρBCDE
)

≤ S
(

ρA
)

−
∑

k

pkS
(

ρ̃Ak
)

; (28)

More generally for any n we can consider the set Σ to
be states which are mixtures of pure states with any given
partitioning of all the parties. A heirarchy of entangle-

ment measures emerges, each member of which must be
conserved in reversible transformations.
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