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On the Complexity of Searching Maximum of a

Function on a Quantum Computer

Maciej Goćwin1

Abstract

We deal with a problem of finding maximum of a function from the Hölder class

on a quantum computer. We show matching lower and upper bounds on the

complexity of this problem. We prove upper bounds by constructing an algorithm

that uses the algorithm for finding maximum of a discrete sequence. To prove

lower bounds we use results for finding logical OR of sequence of bits. We show

that quantum computation yields a quadratic speed-up over deterministic and

randomized algorithms.

1 Introduction

Quantum algorithms yield a speed-up over deterministic and Monte Carlo algorithms

for many problems. Many papers deal with quantum solution of discrete problems,

starting from the work of Shor [15], followed by database search algorithm of Grover

[6]. Other discrete problems were also studied, such as discrete summation, computa-

tion of the mean, median and kth-smallest element [3],[4],[5],[7],[12].

There is also a progress in studying the quantum complexity of numerical problems. The

first paper dealing with a continuous problem was that of Novak [14], who considered

integration of a function from the Hölder class. The problem of function approximation

on quantum computer was studied by Heinrich [8],[9]. Also path integration [16] and

differential equations [10],[11] on a quantum computer were investigated.

In this paper, we deal with a problem of finding maximum of a function from the Hölder

class on a quantum computer. The complexity of this problem in deterministic and

randomized settings on a classical computer is well known [13].

We present matching upper and lower complexity bounds in the quantum setting. We
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show that quantum computations yield a quadratic speed-up compared to determin-

istic and randomized algorithms over entire range of class parameters. Upper bounds

are shown by constructing a suitable algorithm, which uses the optimal algorithm for

finding maximum of a discrete sequence. To prove the lower bound we use the result

of Nayak and Wu [12] for finding logical OR of sequence of bits.

In the next section necessary definitions are presented. Existing results for searching

maximum of a sequence are shown in Section 3. The main result of this paper is

contained in Theorem 1 in Section 4.

2 Quantum setting

In this section we briefly describe the model of computation. More details about quan-

tum computing can be found in [14]. Suppose that we have a numerical problem given

by a solution operator S : F → G, where F is a subset of a linear function space and G

is a normed space. We are interested in computing an approximation of S(f) for f ∈ F

on a quantum computer. This is done by an algorithm A. The algorithm can access

the input element f only by a quantum query. An output of the algorithm A for a

given f is a random variable A(f, ω). For a detailed discussion of quantum algorithms

and the quantum query operator, the reader is referred to [14].

We know recall what is meant by the error of an algorithm. Let 0 < θ < 1. The local

error of algorithm A on input element f is defined by

equant(S,A, f, θ) = inf{ε : P{‖S(f)−A(f, ω)‖ > ε} ≤ θ}.

The number 1− θ is thus the lower bound on success probability. For ε > 0 the bound

equant(S,A, f, θ) ≤ ε holds iff algorithm A computes S(f) with error at most ε and

probability at least 1− θ. The global error in the class F is defined as

equant(S,A, F, θ) = sup
f∈F

equant(S,A, f, θ).

For θ = 1/4, we denote the error for f by equant(S,A, f) and the error in the class F

by equant(S,A, F ).

The cost of the algorithm on the input element f , cost(A, f) is defined as a number of

accesses to an oracle. In classical settings it is a number of function values or derivative

values that is used to compute maximum of the function. In the quantum setting, by
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an oracle we mean the quantum query operator. The global cost of algorithm is defined

as

cost(A,F ) = sup
f∈F

cost(A, f).

For ε > 0, the ε-complexity is defined as the minimal cost of an algorithm that produces

an ε-approximation:

compquantε (S,F ) = min
A

{cost(A,F )| equant(S,A, F ) ≤ ε}.

In the next section some known results about complexity of finding maximum of a

sequence of numbers in the quantum and classical settings are presented.

3 Searching maximum of a sequence

We recall results on a discrete maximization (minimization) problem. Consider the

following problem: given a sequence X = (x0, x1, . . . , xn−1) of real numbers in [0, 1],

find the number xi = max(min){xj : j = 0, 1, . . . , n − 1}. The cost of an algorithm is

defined as a number of accesses to the oracle, which returns the input number xi, i =

0, 1, . . . , n− 1. Another possibility is to count a number of comparisons. In this model

the oracle returns the logical value of a comparison xi < xj , where i, j ∈ {0, 1, . . . , n−1}.
Clearly, the complexity of this problem on a classical computer is

compworst(n) = Θ(n) , comprand(n) = Θ(n), (1)

where by comp(n) we mean the minimal cost of an algorithm computing the maximum

(minimum) value from the sequence of n numbers in suitable setting. Better results

can be obtained on a quantum computer. In 1996 C. Dürr and P. Høyer in [5] pre-

sented comparison quantum algorithm for finding the minimum. This algorithm finds

minimum value from the list of n items with probability greater than 1/2 and its run-

ning time is O(
√
n). They based their algorithm on quantum exponential searching

algorithm [2], which is a generalization of Grover’s search algorithm introduced in [6].

This result establishes the upper bound on the complexity of the problem of finding

maximum of a discrete sequence on a quantum computer.

Lower bounds on this problem were established by A. Nayak and F. Wu in [12]. They

examine the more general problem: for X = (x0, , x1, . . . , xn−1) ∈ [0, 1]n and ∆ > 0
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compute ∆-approximate kth-smallest element, i.e., a number xi that is a jth-smallest

element of X for some integer j ∈ (k −∆, k +∆).

If ∆ = 1 (or less) this problem reduces to the problem of finding kth-smallest element

exactly. For k = n− 1 kth-smallest element is the maximum value from the sequence.

In [12], a quantum algorithm has been presented with the cost O(N log(N) log log(N)),

where N =
√
n/∆+

√
k(n− k)/∆. The algorithm is inspired by the minimum finding

algorithm of Dürr and Høyer [5], and uses exponential search algorithm of Boyer et al.

[2]. It finds ∆-approximation of kth-smallest element for any k ∈ {0, . . . , n − 1} and

∆ ≥ 1 with probability at leat 2/3.

Nayak and Wu in [12] established essentially matching lower bounds for this problem.

To derive the bounds they used polynomial method introduced by R. Beals et al. in

[1].

These results show that the complexity of searching maximum of n elements on a

quantum computer is of order

compquant(n) = Θ(
√
n). (2)

The comparison of this result with (1) shows that quantum computers make a quadratic

speed-up over classical computers for this problem.

4 Searching maximum of a function

We consider the problem of finding the maximum of a function from the Hölder class

F r,ρ
d =

{
f : [0, 1]d → R | f ∈ Cr, ‖f‖ ≤ 1,

∣∣∣D(r)f(x)−D(r)f(y)
∣∣∣ ≤ ‖x− y‖ρ ∀x, y ∈ [0, 1]d, ∀D(r)

}
,

where D(r) run through the set of all partial derivatives of order r, r ∈ N0, 0 < ρ ≤ 1

and ‖ · ‖ = ‖ · ‖∞. We want to find a number

M(f) = max
t∈[0,1]d

f(t)

up to some given precision ε > 0, for any function f from class F r,ρ
d with probability

not less than 3/4.

The complexity of this problem on a classical computer in the deterministic and ran-

domized settings is presented in [13]. We shall recall these results for a further com-

parison.
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In the deterministic worst-case setting the local error of algorithm A on input function

f ∈ F r,ρ
d is defined by

eworst(M,A, f) = |M(f)−A(f)|

and the global error by

eworst(M,A,F r,ρ
d ) = sup

f∈F r,ρ

d

eworst(M,A, f).

In the randomized setting, algorithm A = (A(ω))ω∈Ω is a random variable on some

probabilistic space (Ω, B,m). The local error of this algorithm is defined by

erand(M,A, f) =

∫

Ω
|M(f)−A(ω)(f)|dm(ω),

and the global error by

erand(M,A,F r,ρ
d ) = sup

f∈F r,ρ

d

erand(M,A, f).

The cost of an algorithm in the deterministic and randomized settings is meant as a

number of function values accessed by an algorithm. In the randomized setting, points

where f is evaluated can be chosen randomly.

It is shown in [13] (pp. 34 and 59) that the complexity of function maximization in the

Hölder class in both worst-case and randomized settings is given by

compworstε (M,F r,ρ
d ) = Θ

((
1

ε

) d
r+ρ

)
and comprandε (M,F r,ρ

d ) = Θ

((
1

ε

) d
r+ρ

)
.

We now pass to the quantum setting. In the following result we prove that a significant

improvement is achieved on a quantum computer.

Theorem 1 Let ε > 0. The quantum ε-complexity of computing maximum of a func-

tion from Hölder class F r,ρ
d is

compquantε (M,F r,ρ
d ) = Θ

(
ε
−

d
2(r+ρ)

)
.
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Proof:

First we prove the upper bound. We divide each edge of the cube [0, 1]d into n subin-

tervals of equal length. We get N = nd cubes Ki, i = 1, . . . , N . Let ti denote the center

of cube Ki. On every cube Ki we use Taylor’s expansion of f . For t ∈ Ki we have

f(t) = wi(t) +Rr(t, t
i),

where

wi(t) =
r∑

k=0

1

k!
f (k)(ti)(t− ti)k,

and

Rr(t, t
i) =

∫ 1

0

(
f (r)(θt+ (1− θ)ti)− f (r)(ti)

)
(t− ti)r

(1− θ)r−1

(r − 1)!
dθ.

Let

mi(f) = max
t∈Ki

wi(t).

We consider the algorithm A∗ of the form

A∗(f) = max
i=1,...,N

m̃i(f),

where m̃i(f) is an approximation of mi(f) computed by some classical algorithm. We

assume that

|m̃i(f)−mi(f)| ≤ ε1 ∀i = 1, . . . , N,

for some ε1 > 0 independent of i and f . To compute m̃i(f) on a classical computer

we do not need any new evaluations of f or its partial derivatives, so that information

cost does not increase. (Of course, it is still not an easy task to compute m̃i(f) and

it increases combinatory cost of the algorithm.) The maximum of the discrete set of

numbers m̃1(f), . . . , m̃N (f) we compute on a quantum computer, with probability not

less than 3
4 . This is done by the optimal algorithm described in Section 3.

We now estimate the error of the algorithm defined above

equant(M,A∗, f) = |M(f)−A∗(f)| = | max
t∈[0,1]d

f(t)− max
i=1,...,N

m̃i(f)|

= | max
i=1,...,N

max
t∈Ki

f(t)− max
i=1,...,N

m̃i(f)|

≤ max
i=1,...,N

|max
t∈Ki

f(t)− m̃i(f)|

≤ max
i=1,...,N

(
|max
t∈Ki

f(t)−mi(f)|+ |mi(f)− m̃i(f)|
)
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= max
i=1,...,N

|max
t∈Ki

f(t)−max
t∈Ki

wi(t)|+ ε1

≤ max
i=1,...,N

max
t∈Ki

|f(t)− wi(t)|+ ε1. (3)

For t ∈ Ki we have

|f(t)− wi(t)| = |Rr(t, t
i)|

=

∣∣∣∣∣

∫ 1

0

(
f (r)(θt+ (1− θ)ti)− f (r)(ti)

)
(t− ti)r

(1− θ)r−1

(r − 1)!
dθ

∣∣∣∣∣

≤ sup
θ∈[0,1]

|f (r)(θt+ (1− θ)ti)− f (r)(ti)| ‖t− ti‖r
∫ 1

0

(1− θ)r−1

(r − 1)!
dθ

≤ H sup
θ∈[0,1]

‖θt+ (1− θ)ti − ti‖ρ ‖t− ti‖r

= H ‖t− ti‖r+ρ ≤ H

(
1

n

)r+ρ

.

The constant H depends on d and r but not on n. From this, and inequality (3) we

get the error bound

equant(M,A∗, f) ≤ H

(
1

n

)r+ρ

+ ε1.

We now choose ε1 = (1/n)r+ρ. Then for some constant G independent of n we have

equant(M,A∗, f) ≤ G

(
1

n

)r+ρ

. (4)

We examine the cost of algorithm A∗.

To compute m̃i(f) we need to know the value of f and the values of all its partial

derivatives of order up to r at point ti. So the cost of computing m̃i(f) is

cost(m̃i) =
r∑

k=0

(
d+ k − 1

k

)
=

(d+ r)!

d! r!
,

which is independent on n.

Due to (2) the cost of computing the maximum of numbers m̃1(f), . . . , m̃1(f) on quan-

tum computer is O(
√
N) = O(

√
nd) accesses to the numbers m̃i(f). Thus, the total

cost is

cost(A∗, f) ≤ C nd/2 (5)

for some constant C. Due to (4), to obtain equant(M,A∗, f) ≤ ε it suffices to take

K ε
−

d
2(r+ρ) function and derivative values, where K is a constant. This completes the

proof of the upper bound.
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We now prove the lower bound. Assume that A is any algorithm that computes

M(f) = maxt∈[0,1]d f(t) for any f ∈ F r,ρ
d up to the error ε with probability not less

than 3
4 . We denote the cost of this algorithm by c(ε).

For ε1 > 0, the class F r,ρ
d contains n = Θ

(
ε
−

d
r+ρ

1

)
functions f1, . . . , fn with disjoint

supports such that maxt∈[0,1]d fi(t) = ε1 (see [13], p. 35).

Let ε1 = 4ε. Let X = (x1, . . . , xn) be any sequence such that xi ∈ {0, 1} ∀i = 1, . . . , n.

Then the function

fε1 :=
n∑

i=1

xifi

belongs to the class F r,ρ
d . Thus, algorithm A applied to fε1 computes maxt∈[0,1]d fε1(f)

up to the error ε = ε1
4 , with the cost c(ε) = c(ε14 ). That is

| max
t∈[0,1]d

fε1(t)−A(fε1)| ≤
ε1
4

(6)

with probability not less than 3
4 , and cost c(ε) = c(ε14 ).

From the definition of fε1 we see that

max
t∈[0,1]d

fε1(t) =





ε1 if maxi=1,...,n xi = 1

0 if maxi=1,...,n xi = 0
. (7)

If A(fε1) ≥ 3
4 , then due to (6)

max
t∈[0,1]d

fε1(t) ≥ A(fε1)−
1

4
ε1 ≥

1

2
ε1.

So, in this case, due to (7), maxt∈[0,1]d fε1(t) = ε1 and maxi=1,...,n xi = 1 with probability

at least 3
4 . Similarly, with probability at least 3

4 , ifA(fε1) ≤ 1
4ε1, then maxt∈[0,1]d fε1(t) =

0 and maxi=1,...,n xi = 0.

Based on algorithm A, we now define an algorithm Ã, which finds the maximum of a

sequence X = (x1, . . . , xn). This algorithm is constructed as follows:

if 3
4ε1 ≤ A(fε1) ≤ 5

4ε1 , then we put Ã(X) = 1, and

if −1
4ε1 ≤ A(fε1) ≤ 1

4ε1 , then we put Ã(X) = 0.

In the other cases we put Ã(X) = 0. With probability at least 3
4 , we have that

maxi=1,...n xi = 0 and Ã(X) = 0, or maxi=1,...n xi = 1 and Ã(X) = 1. Hence, the

algorithm Ã computes the maximum of n numbers x1, . . . , xn, such that xi ∈ {0, 1}
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(logical OR of the input bits), with probability not less than 3
4 . From [12] (see proof of

Theorem 1.5 in the case of xi ∈ {0, 1}) we know that the cost of such an algorithm is

Ω(
√
n). The cost of the algorithm A is not less than the cost of the algorithm Ã. Since

n = Θ

((
1

ε1

) d
r+ρ

)
= Θ

((
1

ε

) d
r+ρ

)
,

we have that

c(ε) = Ω
(√

n
)
= Ω

((
1

ε

) d
2(r+ρ)

)
.

This completes the proof of the theorem.

Comparing this to the classical deterministic or random complexity of this problem,

which is Θ

(
ε
−

d
r+ρ

)
, we see that a quantum computer makes a quadratic speed-up

over classical settings. This is achieved over the entire range of r, ρ and d. For the

integration problem, a quadratic speed-up over the randomized setting holds only for

(r + ρ)/d small.
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