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Abstract

The standard setting of quantum computation for continuous problems uses deter-
ministic queries and the only source of randomness for quantum algorithms is through
measurement. Without loss of generality we may consider quantum algorithms which
use only one measurement. This setting is related to the worst case setting on a classical
computer in the sense that the number of qubits needed to solve a continuous problem
must be at least equal to the logarithm of the worst case information complexity of this
problem. Since the number of qubits must be finite, we cannot solve continuous prob-
lems on a quantum computer with infinite worst case information complexity. This can
even happen for continuous problems with small randomized complexity on a classical
computer. A simple example is integration of bounded continuous functions.

To overcome this bad property that limits the power of quantum computation for
continuous problems, we study the quantum setting in which randomized queries are
allowed. This type of query is used in Shor’s algorithm. The quantum setting with
randomized queries is related to the randomized classical setting in the sense that the
number of qubits needed to solve a continuous problem must be at least equal to the
logarithm of the randomized information complexity of this problem. Hence, there
is also a limit to the power of the quantum setting with randomized queries since we
cannot solve continuous problems with infinite randomized information complexity. An
example is approximation of bounded continuous functions.

We study the quantum setting with randomized queries for a number of prob-
lems in terms of the query and qubit complexities defined as the minimal number
of queries/qubits needed to solve the problem to within ε by a quantum algorithm.
We prove that for path integration we have an exponential improvement for the qubit
complexity over the quantum setting with deterministic queries.

∗This research has been supported in part by the Defense Advanced Research Projects Agency (DARPA)
and the National Science Foundation.
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1 Introduction

One of the challenging problems of computational theory is the study of the power of quantum
computation. By now there seems to be agreement about the standard setting of quantum
computation, see [2, 7, 20]. This setting describes quantum computation as a sequence
of unitary 2k × 2k matrices acting on an initial state followed by a measurement. Here, k
denotes the number of qubits. The unitary matrices in quantum computation are represented
by elementary quantum gates, and one of them may represent a query which depends on the
problem we want to solve. For continuous problems, queries are deterministic and depend
on function values. Quantum algorithms may have many measurements but it is known
that without loss of generality it is enough to consider quantum algorithms with only one
measurement, see Remarks 1 and 2 and papers cited there.

In what follows it is important to stress the difference between the cost of an algorithm
for solving a given problem and the computational complexity of this problem. The com-
putational complexity (for brevity, the complexity) is the minimal computational resources
needed to solve the problem. Examples of computational resources which have been studied
include memory, time, and communications on a classical computer, and qubits, quantum
gates and queries on a quantum computer.

We study quantum computation for continuous problems which are usually defined on
spaces of functions. The quantum complexity of continuous problems has been studied in
many papers and different queries, such as bit, phase and power queries, have been analyzed
in the literature, see e.g., [4, 7, 8, 9, 10, 14, 15, 20, 21, 24, 26, 35]. In this paper we study bit
queries, although some results hold for more general queries. What is important for our study
is that a query for a continuous problem depends on at most 2k function values computed at
a priori given deterministic sample points. This means that in the standard quantum setting
for continuous problems, quantum algorithms depend on at most 2k function values and the
only source of randomness comes through measurement.

The query complexity has been the focus of research. It is defined as the minimal number
of queries needed to solve a given problem to within ε by a quantum algorithm. Since a
critical resource for the foreseeable future is the number of qubits, we also study the qubit
complexity which is defined as the minimal number of qubits needed to solve a given problem
to within ε by a quantum algorithm.

We stress that there could be a trade-off between the query and qubit complexities since
the minimization of queries may lead to a large number of qubits and vice versa. We do
not know of such trade-offs for continuous problems studied so far. It is unknown if such
trade-offs occur for some continuous problems.

To compute the quantum speedup one needs to know the worst case and randomized
complexities on a classical computer. For continuous problems, the worst case and random-
ized classical complexities have been thoroughly studied in information-based complexity, see
[7, 21, 28, 32, 33, 38]. For our purpose, we need the concept of (non-adaptive) information
complexity which is defined as the minimal number of function values needed to solve the
problem to within ε. We included two short sections on these classical settings to the extent
needed in the rest of the paper.

Our first technical result is a relation between the standard quantum setting and the worst

2



case classical setting. Namely, it is relatively easy to see that since quantum algorithms are
based on at most 2k function values, they can not have a quantum error smaller than the
worst case error of a classical algorithm based on these 2k function values. This analogy
is not complete since in the worst case setting we use deterministic algorithms whereas a
quantum algorithm has a random element through measurement. Nevertheless, it is possible
to show that the qubit complexity is bounded from below by the logarithm1 of the worst
case information complexity of the problem which we want to solve to within 2ε. We will
show that this extra factor 2 takes care of randomness of quantum algorithms2. Since the
worst case information complexity usually goes to infinity as ε tends to zero, the number of
qubits must also increase to infinity although at a much slower rate due to the presence of
the logarithm.

We also show that the qubit complexity is bounded from below by the (Kolmogorov)
ε-entropy of the solution set. Hence, problems with large entropy of the solution set require
a large number of qubits.

When the worst case information complexity or the entropy of the solution set is infinite
then a finite number of qubits is not enough and the problem is unsolvable in the standard
quantum setting. This can even happen for problems for which the randomized classical
complexity is small. An example of such a problem is multivariate integration of continuous
d-variate functions defined on, say, [0, 1]d, whose absolute values are bounded by 1. It is
known that in this case the worst case information complexity is infinite but the Monte
Carlo is optimal and the randomized information (as well as the total) complexity is roughly
ε−2 independent of d.

Why can we solve this problem in the classical randomized setting and not in the standard
quantum setting? The reason is that in the randomized setting we use function values at
randomized points and potentially we can compute the function value at any point whereas
in the standard quantum setting we use function values at deterministic points. The number
of these points can be enormous, up to 2k. But if we take a continuous function which
vanishes at these 2k points then we are unable to detect whether this function is zero or
perhaps takes values equal to 1 or −1 at all points except an arbitrarily small neighborhoods
of points at which it vanishes. The true solution may be zero or arbitrarily close to 1 or
to −1. That is why any quantum algorithm in the standard quantum setting must fail.

This negative result is our point of departure. To overcome this bad property of quan-
tum algorithms and to enlarge the power of quantum computation we propose a small mod-
ification of the standard quantum setting by allowing the use of randomized queries and
randomized unitary matrices. The other assumptions are kept intact. We will call this modi-
fication as the quantum setting with randomized queries and refer sometimes to the standard
quantum setting as the quantum setting with deterministic queries.

In fact, the idea of using randomized queries is not new. A particular kind of randomized
query is used in Shor’s algorithm for factoring of a (large) integer N , see [30] and also [20].
The essential part of Shor’s algorithm is order finding which is solved by the query

Qx|j〉 = |j x modN 〉
1All logarithms in this paper are base 2.
2As indicated in the proof of Theorem 3.1 the extra factor 2 can be often omitted.
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for j = 0, 1, . . . , 2⌈log N⌉ − 1} with a random x from {2, 3, . . . , N − 1}.
The use of randomized queries for continuous problems was also suggested in [24] for

integration of non-smooth functions.
The quantum setting with randomized queries is the same as the standard quantum

setting with the one important exception that queries as well as all unitary matrices used
by a quantum algorithm may now depend on a random element. Hence, we have now two
sources of randomness: one affecting unitary matrices and the other affecting measurement.

The quantum setting with randomized queries is an extension of the standard quantum
setting. Indeed, if one always selects the same unitary matrices including the query, then
we have exactly the standard quantum setting. Obviously, the use of randomized unitary
matrices and randomized queries offers a possibility of much more efficient quantum com-
putation. For some continuous problems, this extension is necessary. For example, we will
show that multivariate integration of bounded and continuous functions, which cannot be
solved in the standard quantum setting, is solvable in the quantum setting with randomized
queries by a quantum algorithm that uses of order ε−1 queries and log ε−1 qubits. Hence,
we have a quadratic speedup over the randomized setting on a classical computer.

We now comment on the error criteria used in the quantum settings with deterministic
and randomized queries. In the standard quantum setting, i.e., in the quantum setting with
deterministic queries, two error criteria are studied:

• the first error criterion is defined by taking the average performance of a quantum
algorithm with respect to measurements for a worst function from the given class,

• the second error criterion is defined by taking the worst case performance of a quantum
algorithm with respect to measurements on a set of measure 1− δ for a worst function
from the given class.

The same error criteria are used in the quantum setting with randomized queries. In this
case, randomization is richer and we take the average performance or a set of measure 1− δ
with respect to “measurements, randomized queries and randomized unitary matrices”. The
first error criterion is studied in the main body of the paper whereas the second one is studied
in the appendix.

We define the randomized (bit) query and qubit complexities analogously to the ran-
domized setting on a classical computer. The randomized query complexity is defined as
the minimum of the average number of randomized queries needed to solve the problem to
within ε by a quantum algorithm. By “to within ε”, we now mean that the error of a quan-
tum algorithm is at most ε which is defined by taking the average performance with respect
to all random elements of the quantum algorithm for a worst function from the given class.

The randomized qubit complexity is defined analogously as the minimal number of qubits
for which there is a quantum algorithm whose error is at most ε. We stress that we assume the
number of qubits is fixed and does not vary during quantum computation. This is probably
a reasonable assumption from a practical point of view since a quantum computer with a
random number of qubits seems too much to be expected in the near future. Nevertheless,
from a purely theoretical point of view it would be interesting to study also the quantum
setting with randomized queries and with random number of qubits and try to minimize the
average number of qubits needed to solve the problem.
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It is not surprising that the quantum setting with randomized queries is related to the
randomized setting on a classical computer in the sense that the randomized qubit complex-
ity is bounded from below by the logarithm of the randomized (non-adaptive) information
complexity on a classical computer. If the randomized information complexity of a problem
is infinite, the problem cannot be solved in the quantum setting with randomized queries.
This happens, for example, for approximation of bounded continuous functions. Of course,
the class of problems with infinite randomized information complexity is smaller that the
class of problems with infinite worst case information complexity. So we extend the limit of
what can be computed by presenting the quantum setting with randomized queries.

We study the quantum setting with randomized queries for a number of problems, and
for some of them we prove an exponential improvement for the qubit complexity compared
to the standard quantum setting. This is especially important since, as already mentioned,
the number of qubits is a critical resource for the foreseeable future. In particular, the
exponential improvement holds for path integration.

In this paper, we study real and Boolean summation, multivariate integration and path
integration. We now briefly state the results obtained for these problems.

The real summation problem lies at the core of many continuous algorithms and plays a
major role in the study of continuous problems in the standard quantum setting. The same
is true in the quantum setting with randomized queries. It is known, see e.g., [7, 21], that the
real summation problem can be reduced to Boolean summation. That is why it is enough
to present in detail results for only the latter problem in which we want to approximate

BN (f) =
1

N

N−1∑

j=0

f(j)

for a Boolean function f : {0, 1, . . . , N − 1} → {0, 1}. Here N is a large integer which can
be assumed to be a power of 2. We want to compute BN (f) to within ε. Without loss of
generality we may consider ε−1 ≪ N . We now present the orders of the query and qubit
complexities in the quantum settings with deterministic and randomized queries.

Deterministic Queries Randomized Queries

Query Complexity ε−1 ε−1

Qubit Complexity log N log ε−1

Figure 1: Boolean Summation

We stress that the minimal numbers of queries and qubits in a given setting are obtained by
essentially the same quantum algorithm. In the quantum setting with deterministic queries,
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this is the Boolean summation algorithm of [5] with seven repetitions as proved in [11]. In
the quantum setting with randomized queries, we first approximate the Boolean mean BN(f)
by the Monte Carlo algorithm,

MCm(f, ω) =
1

m

m∑

j=1

f(ωj),

with m of order ε−2 and with independent and uniformly distributed ωj from {0, 1, . . . , N −
1}, and then use the Boolean summation algorithm with seven repetitions to approximate
MCm(f, ω). It is interesting to notice that this algorithm uses randomized queries but the
remaining unitary matrices are deterministic. This leads to the corresponding upper bounds.
The lower bound proof of the query complexity in the standard case follows from [18]. For
the quantum setting with randomized queries, we use the known fact that the randomized
errors of quantum algorithms are no smaller than the average case errors with respect to
Boolean functions. The latter problem with an appropriate measure on Boolean functions
was solved in [25]. The lower bound proof of the qubit complexity is from the relation to
the randomized information complexity.

We stress that we have the same order of query complexities in both cases. However, by
allowing randomized queries we have an essential improvement in the number of qubits for
solving the Boolean summation problem.

For the real summation problem, we want to approximate

SUMN(f) =
1

N

N−1∑

j=0

f(j),

where f : {0, 1, . . . , N−1} → [0, 1] may now take real values. For completeness, in Section 5
we show how the real summation problem may be reduced to the Boolean summation prob-
lem. In Corollary 5.1 we show that the results presented in Figure 1 also hold for the real
summation problem.

We now turn to multivariate integration for functions which are r times differentiable and
uniformly bounded. For r = 0, the query and qubit complexities are infinity in the quantum
setting with deterministic queries. For the quantum setting with randomized queries, they
are finite and their orders are given in the following table.

Deterministic Queries Randomized Queries

Query Complexity ∞ ε−1

Qubit Complexity ∞ log ε−1

Figure 2: Multivariate Integration for r = 0
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Hence, in this case the improvement of the quantum setting with randomized queries
over the standard quantum setting is infinite.

We now assume that r ≥ 1. Hence, functions are now at least once differentiable. In this
case the orders of the query and qubits complexities are the same in both cases.

Deterministic Queries Randomized Queries

Query Complexity ε−1/(1+r/d) ε−1/(1+r/d)

Qubit Complexity log ε−1 log ε−1

Figure 3: Multivariate Integration for r ≥ 1

The query complexity in the standard quantum setting is due to [24]. The randomized
query complexity has the same order since Boolean and real summation require roughly
the same queries in both settings. The qubit complexities are of the same order since
the logarithms of the worst case and randomized information complexities of multivariate
integration are both proportional to log ε−1.

Finally, we consider a specific case of path integration studied in [35]. The orders of
query and qubit complexities are presented in the following table.

Deterministic Queries Randomized Queries

Query Complexity ε−1+o(1) ε−1+o(1)

Qubit Complexity ε−2 log ε−1 log ε−1

Figure 4: Path Integration

We thus have the same orders of query complexities and an exponential improvement in
the number of qubits.

We stress that in the randomized classical setting and in the quantum setting with
randomized queries we permit the use of random elements from a set Ω whose cardinality
may be infinite and distribution of points from Ω may be arbitrary. For example, the
classical Monte Carlo with n random points for integration of d-variate functions defined
over, say, [0, 1]d, uses Ω = [0, 1] dn and uniform distribution. Alternatively, it is possible,
also for classical computers, to use a restricted form of randomization based on, for example,
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random bits or a finite set Ω. This obviously restricts the class of randomized algorithms and
it is not clear if positive results for unrestrictive randomization are still true for the restricted
case. There is a very interesting stream of work, see [13, 27], studying the minimal number
of random bits needed for the solution of continuous problems on a classical computer.
There are also general results in [12] showing that as long as Ω is finite then the classical
randomized setting is (roughly) equivalent to the standard quantum setting at the expense of
adding additional qubits. However, if the cardinality of Ω goes to infinity then the additional
number of qubits also goes to infinity. That is why, the standard quantum setting is not
equivalent to the classical randomized setting without a restriction on Ω.

We hope that the quantum setting with (restricted) randomized queries will be studied
for general continuous problems. It would be especially interesting to characterize continuous
problems for which this setting offers an exponential improvement in the number of queries
and/or qubits over the standard quantum setting.

2 Continuous Problems

The computational complexity of approximate solutions of continuous problems has been
studied in information-based complexity, see e.g., [7, 21, 28, 32, 33, 38]. We present a brief
outline of this theory in the worst case, randomized and quantum settings to the extent
needed for this paper.

Let F be a non-empty subset of a linear space of d-variate functions f : Dd → R with
Dd ⊂ R

d. Let G be a normed space with its norm denoted by ‖ · ‖. Consider a (linear or
non-linear) operator

S : F → G.

Our goal is to compute S(f) to within ε for f ∈ F .

Example : Multivariate Integration
We illustrate the concepts of this paper by an example of multivariate integration of smooth
functions. Let Cr([0, 1]d) denote the class of real functions defined on the d-dimensional
unit cube, f : [0, 1]d → R, all of whose partial derivatives up to order r exist and are
continuous. That is, for a multi-index α = [α1, α2, . . . , αd] with non-negative integers αj and
with |α| := α1 + α2 + · · ·+ αd ≤ r we know that

D αf =
∂ |α|

∂tα1

1 ∂tα2

2 · · ·∂tαd

d

f

exists and is continuous. The norm in Cr([0, 1]d) is defined as

‖f‖r = max
α: |α|≤r

max
t∈[0,1]d

|Dαf (t)|.

Then we set
F = Fd,r = { f ∈ Cr([0, 1]d) : ‖f‖r ≤ 1 }

as the unit ball of Cr([0, 1]d), and G = R.
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The multivariate integration problem S = INTd,r : Cr([0, 1]d) → R is defined by

INTd,r(f) =

∫

[0,1]d
f(t) dt.

This is an example of a linear problem since the operator INTd,r depends linearly on f .

The approximate computation of S(f) can be done as follows. First of all, we specify how
information about the function f is used by algorithms. We assume that we can compute
finitely many function values3 f(t) for some sample points t from Dd. That is, any algorithm
may use f(t1), f(t2), . . . , f(tn) for some n and tj . We stress that the choice of the sample
points tj may be adaptive, i.e., t1 is given a priori, whereas tj may depend on the already
computed values f(t1), f(t2), . . . , f(tj−1) for j = 2, 3, . . . , n. The number n can also be chosen
adaptively. The sample points may be chosen deterministically or randomly depending on
the setting, for details see [32]. The specific form of an algorithm also depends on the setting
in which we define the error. We first present two settings for classical computers and then
turn our attention to the quantum setting with deterministic and randomized queries.

2.1 Classical Computers: Worst Case Setting

In the worst case setting, we assume that sample points as well as algorithms are determin-
istic. That is, an algorithm that uses n function values has the form

An(f) = φ (f(t1), f(t2), . . . , f(tn)) (1)

for some mapping φ : Rn → G. If the sample points are given a priori and are the same for all
f from F , then An uses non-adaptive information. Otherwise, it uses adaptive information.

The worst case error of the algorithm An is given by its worst case performance with
respect to f ,

ewor(An) = sup
f∈F

‖S(f)− An(f)‖.

Example : Multivariate Integration (continued)
A typical choice of an algorithm for multivariate integration is a linear algorithm, sometimes
called a quadrature or cubature,

An(f) =

n∑

j=1

ajf(tj)

for some aj ∈ R and tj ∈ [0, 1]d.
For r ≥ 1, it was proven by Bakhvalov already in 1959, see [1] and also [21, 32], that

the minimal worst case error of algorithms using n function values is proportional to n−r/d.
Furthermore, the error of order n−r/d can be achieved by a linear algorithm using non-
adaptive information. Hence, if we want to guarantee that ewor(An) ≤ ε, then n has to be of

3More general information given by arbitrary linear functionals on f has also been extensively studied in
information-based complexity, see e.g., [32]
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order ε−d/r, and is exponential in d. This is called the curse of dimensionality meaning that
multivariate integration is intractable in the worst case setting if d is much larger that r.
The case r = 0 will be considered later.

For large d, a popular choice of aj is n−1 which leads to QMC (quasi-Monte Carlo)
algorithms. The sample points are often chosen as low discrepancy points, lattice or shifted
lattice points, see [19, 29]. For some spaces other than Cr([0, 1]d) the error behavior of such
algorithms is only polynomial in d or even independent of d and tends to zero as a positive
power of n−1. This is an active research area of information-based complexity dealing with
high dimensional problems; the reader may consult [23] for a survey.

2.2 Classical Computers: Randomized Setting

In the randomized setting, we allow randomized choices of sample points as well as algo-
rithms. That is, we have a probability space of elements ω from some set Ω which are
distributed according to some probability measure ρ on Ω, ρ(Ω) = 1. Algorithms using n
function values on the average have now the form

An(f ;ω) = φω (f(t1,ω), f(t2,ω), . . . , f(tnω,ω)) , (2)

where tj,ω are randomized sample points from Dd, and φω is a randomized mapping from
R

nω to G. Here, nω is the randomized number of sample points and its average is n, i.e.,

n =

∫

Ω

nω ρ(dω).

We stress that the sample points tj,ω as well as nω can be chosen adaptively as in the worst
case setting. This also means that the probability measure ρ may depend on the function
f through its computed function values, see Chapter 10 of [32] for details. If the sample
points tj,ω are the same for all f from F , then An uses non-adaptive randomized information,
otherwise it uses adaptive randomized information.

The randomized error of the algorithm An is defined by its worst case performance with
respect to f and the average performance with respect to ω,

eran(An) = sup
f∈F

(∫

Ω

‖S(f)−An(f, ω)‖2ρ(dω)
)1/2

. (3)

Here, we choose to study the average performance in the L2-norm; however it is also possible
to study it in a more general case of the Lp-norms with p ∈ [1,∞).

Example : Multivariate Integration (continued)
Probably the most popular and widely used randomized algorithm is the Monte Carlo algo-
rithm

An(f, ω) := MCn(f, ω) =
1

n

n∑

j=1

f(tj,ω),

where tj,ω are independent and uniformly distributed sample points over [0, 1]d. In this case,
Ω = [0, 1]dn and ρ is Lebesgue’s measure. That is, ω = [ω1, ω2, . . . , ωn] with ωj ∈ [0, 1]d
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and tj,ω = ωj. We stress that Monte Carlo uses non-adaptive randomized information with
deterministic n and the deterministic mapping φω = φ given by φ(y) = n−1

∑n
j=1 yj. It is

well known that

∫

[0,1]nd

(∫

[0,1]d
f(t) dt− 1

n

n∑

j=1

f(ωj)

)2

dω1 · · · dωd =

∫
[0,1]d

f 2(t) dt −
(∫

[0,1]d
f(t) dt

)2

n
.

Since for f ∈ Fd,r with r ≥ 0, we have
∫
[0,1]d

f 2(t)dt ≤ 1, then

eran (MCn) ≤ n−1/2.

Hence, eran(MCn) ≤ ε for n = ⌈ε−2⌉ and the curse of dimensionality of the worst case setting
is broken by Monte Carlo in the randomized setting. Bakhvalov also proved, see [1], that
the minimal randomized error of algorithms using n function values is of order n−1/2+r/d,
and the latter error bound is achieved by a linear algorithm using non-adaptive information.
This bound also holds if we use n function values on the average as proven by Novak in [22].
Thus, Monte Carlo almost minimizes the randomized error if d is much larger than r.

The errors of randomized algorithms may be defined differently than (3). This corre-
sponds to the probabilistic errors which are related to the quantum setting error commonly
used in many papers. To simplify the presentation of the paper, we deal with the probabilistic
errors in the appendix.

2.3 Complexity and Information Complexity

As already mentioned, we want to compute S(f) to within ε. That is, we are looking for an
algorithm An whose error in the worst case or randomized setting is at most ε,

ewor/ran(An) ≤ ε. (4)

We would like to guarantee (4) with the minimal cost of computing An(f). This minimal
cost is called the (total) ε-complexity of S, and denoted by compwor/ran(ε, S). The cost of
computing y = An(f) is defined by counting the cost of n function values plus all operations
needed to obtain y. The abstraction typically used in information-based complexity (and in
scientific computation) is the real number model of computation in which we assume we can
perform arithmetic operations and comparisons of real numbers with unit cost independently
of the size of numbers, again see [32, 33] for details. The reader is referred to [31] for
the motivation behind the real number model and comparison with the Turing model of
computation.

As we shall see, for quantum computation the complexity of S is less relevant than the
non-adaptive information complexity. The latter is defined as the minimal number n of
non-adaptive function values in a given setting needed to find an algorithm Anad

n with error
at most ε. More precisely, in the worst case setting, algorithms Anad

n are of the form (1) with
a priori given sample points tj , whereas in the randomized setting, they are of the form (2)
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with sample points tj,ω independent of f and depending only on ω with fixed nω = n. Hence,
the non-adaptive information complexity is defined by

compinf−wor/ran(ε, S) = min
{
n : ∃Anad

n such that ewor/ran(Anad
n ) ≤ ε

}
. (5)

We stress that the minimum in (5) is taken over all algorithms using non-adaptive infor-
mation. That is, over all possible sample points tj and functions φ in (1) in the worst case
setting, and over all probability measures ρ, sample points tj,ω and functions φω in (2) in the
randomized setting.

Surprisingly, for many continuous problems the non-adaptive information complexity is
practically the same as the total complexity. There are, however, continuous problems for
which the use of adaptive information is crucial and the non-adaptive information complexity
is much larger than the total complexity, see [34] pp. 165-170. There are also continuous
problems for which the reverse is true. That is, non-adaptive information complexity is small
but it is impossible to combine it in a finite number of operations, and therefore the total
complexity is infinite, see [36].

Example : Multivariate Integration (continued)
Bakhvalov’s results mean that the total and non-adaptive information complexities of mul-
tivariate integration for the unit ball of Cr([0, 1]d) are of order

ε−d/r in the worst case setting with r ≥ 1,

ε−2/(1+2r/d) in the randomized setting with r ≥ 0.

3 Quantum Setting with Deterministic Queries

We describe the standard quantum setting by presenting a general form of quantum algo-
rithms used in this setting and the definition of their errors. Quantum algorithms can be
characterized, in particular, by the number of queries and qubits they use. If they use n
queries and k qubits, we will denote them by An,k. Queries and qubits are deterministic and
the only source of randomness is through measurement. We stress that quantum algorithms
use non-adaptive information about the functions f .

The quantum algorithms An,k are of the following form, see [5, 7, 21]. All computations

are done on unit vectors in the complex space C2k . Here, k denotes the number of qubits.
We assume that the initial state is a unit vector |ψ0〉 from C2k . For f ∈ F , the final state
|ψf〉 is equal to

|ψf 〉 = UnQf Un−1Qf · · · U1Qf U0|ψ0〉, (6)

where U0, U1, . . . , Un are 2k × 2k unitary matrices which are independent of f . Usually it is
required that each Uj is represented by a relatively small number of elementary quantum
gates. This will not be important for our considerations and we permit the use of arbitrary
unitary matrices Uj . Of course, this makes lower bounds on the number of needed queries
and qubits stronger.
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The query Qf is also a 2k×2k unitary matrix and depends on the function f . We assume
in this paper that Qf is a bit query, see [7, 8, 9, 10, 20, 24] although results on the qubit
complexity also hold for more general queries such as phase and power queries studied in
[4, 26].

For a Boolean function f : {0, 1, . . . , 2m − 1} → {0, 1}, with k = m+ 1, the bit query is
defined by

Qf |j〉|i〉 = |j〉|i⊕ f(j)〉
for all i ∈ {0, 1} and j ∈ {0, 1, . . . , 2m − 1}, and ⊕ denotes the addition modulo 2.

For real functions f : Dd → R, we assume4 that k = m1 + m2, where m1 qubits are
needed to code the arguments of f and m2 qubits are used for the values of f . The coding
is done by two mappings

τ : {0, 1, . . . , 2m1 − 1} → Dd,

β : f(Dd) → {0, 1, . . . , 2m2 − 1},

and the bit query takes the form

Qf |j〉|i〉 = |j〉|i⊕ β(f(τ(j))〉

for all j ∈ {0, 1, . . . , 2m1 − 1} and i ∈ {0, 1, . . . , 2m2 − 1}, and ⊕ now means the addition
modulo 2m2, for more details see [7] .

We stress that the bit query depends on at most 2m1 function values computed at some
non-adaptive points tj = τ(j). Furthermore, although we will not use this fact later, these
function values are usually computed with some noise due to the finite range of the coding
function β. Usually, β(f(tj)) is defined as the m2 most significant bits of f(tj). Obviously,
2m1 ≤ 2k. If f(Dd) is bounded then m1 and m2 are usually of the same order. To simplify
further considerations we will use 2k instead of 2m1 .

For our purpose, the most important property of the bit query is that Qf depends on
at most 2k function values taken at some a priori given (non-adaptive) deterministic sample
points tj from Dd,

Qf = Qf(t1),f(t2),...,f(t
2k

). (7)

The results on the qubit complexity will be derived using the property (7). Therefore
they will be valid for all queries satisfying (7) which hold, in particular, for bit, phase and
power queries.

The bit query Qf is a deterministic 2k × 2k unitary matrix, and therefore the final state
|ψf〉 is also a deterministic vector of 2k components which use n times the query Qf based
on non-adaptive information consisting of at most 2k function values at some sample points.
This means that if we consider two functions f1 and f2 both from F such that f1(tj) = f2(tj)
for j = 1, 2, . . . , 2k then the queries Qf1 and Qf2 are the same, and therefore we obtain the
same final states

|ψf1〉 = |ψf2〉
for both f1 and f2.

4For simplicity we do not consider ancilla qubits.
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The only source of randomness is through measurement. That is, we obtain an index j ∈
{0, 1, . . . , 2k − 1} with probability pf,j which depends on the final state |ψf 〉. As before, pf,j
depends on the function f only through its values f(t1), f(t2), . . . , f(t2k), and

∑2k−1
j=0 pf,j = 1.

Knowing the index j, we compute on a classical computer

An,k(f, j) = φ(j) (8)

for some mapping φ : {0, 1, . . . , 2k − 1} → G. The algorithm An,k is called a quantum
algorithm.

We stress that the quantum algorithm that uses k qubits takes at most 2k different values
independently of the number n of queries used.

Remark 1: We add that, in principle, we may use hybrid algorithms that are combinations
of classical algorithms using bit operations on classical computers and quantum algorithms
with many measurements. However, it is known, see e.g., [3, 7], that such algorithms may
be rewritten in the form (6) and (8) with one measurement at the end of computation by
linearly increasing the number of queries and qubits. It is also known, see Lemma 1 in [8],
that we can sample Γ(f) instead of f if Γ(f) depends on κ function values of f . Then the
query QΓ(f) can be simulated by a quantum algorithm that uses 2κ queries on f . Therefore,
without loss of generality we may consider only quantum algorithms with one measurement
of the form (6) and (8).

We stress that this is true if hybrid algorithms use only bit operations on classical com-
puters. If we use the real number model of computation then not every algorithm can be
written in the form (6) and (8). One reason of this is that we may have infinitely many out-
puts in the real number model of computation which is impossible to obtain in the quantum
setting.

We now discuss the error of a quantum algorithm. There are at least two natural ways to
define the error. One of them is by taking the worst case performance of a quantum algorithm
with respect to f and the average case performance with respect to the index j. The other
is to take the worst case performance with respect to f and the worst case performance with
respect to the index j modulo a set of measure δ for some (usually small) positive δ. For
some problems, when S is a linear functional, it is enough to take, say, δ = 3/4 and increase
the probability of success by running the quantum algorithm a couple of times and by taking
the median as the final result.

We will study both definitions of the error of a quantum algorithm. In the main body of
the paper we choose the first option since it is directly related to the error usually studied
in the randomized classical setting. The other error, which is probably more popular in the
quantum literature, is called the probabilistic error and is studied in the appendix.

Hence, by the error of the quantum algorithm An,k we mean

equa−std(An,k) = sup
f∈F




2k−1∑

j=0

pf,j‖S(f)− An,k(f, j)‖2



1/2

. (9)

This concludes the definition of the standard quantum setting which can be summarized by
the general form of a quantum algorithm (6) and its error (9).
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We are interested in finding quantum algorithms with error at most ε. We would like to
achieve this goal with the minimal number of queries and/or qubits.

By the query complexity in the standard quantum setting we mean

compque−std(ε, S) = min
{
n : ∃An,k such that equa−std(An,k) ≤ ε

}
. (10)

By “there exists An,k” we mean a quantum algorithm using n queries and k qubits with a
finite k which can be, however, arbitrarily large. Hence, it may happen that the minimization
of the number of queries will be possible at the expense of the number of qubits.

By the qubit complexity in the standard quantum setting we mean

compqub−std(ε, S) = min
{
k : ∃An,k such that equa−std(An,k) ≤ ε

}
. (11)

In this case, by “there exists An,k” we mean an arbitrary choice of the number n of queries.
Obviously, k in (10) must be at least as large as compqub−std(ε, S), and n in (11) must be at
least as large as compque−std(ε, S).

Although we do not pursue this point in the paper, it is also reasonable to minimize both
queries and qubits. For example, we may want to minimize k n or n+β k, for a given positive
number β, over all quantum algorithms using n queries and k qubits whose quantum error
is at most ε. Here, if we choose β small then our emphasis will be on the number of queries,
and if β is large then our emphasis will be on the number of qubits.

Remark 2: We stress that query and qubit complexities are defined by minimizing the
number of queries/qubits needed to solve the problem by a quantum algorithm with one
measurement.

Suppose we have quantum computation which requires the use of a sequence of quantum
algorithms Anj ,kj each with one measurement and uses nj queries and kj qubits for j =
1, 2, . . . , p. Then the total number of queries is n =

∑p
j=1 nj which is of the same order when

all Anj ,kj are transformed as a quantum algorithm A with one measurement which uses O(n)
queries.

The situation is, however, different for qubits since to run all quantum algorithms Anj ,kj

it is enough to have k = maxj=1,2,...,p kj qubits whereas the quantum algorithm A would
require of order

∑p
j=1 kj qubits. Obviously, as long as p does not depend on ε, it does not

really matter since k must be at least of the same order as the qubit complexity. If, however,
p is large and depends on ε, then the qubit complexity needed for quantum algorithms with
one measurement may be improved by many measurements.

There is one case for which the size of p does not matter. Namely, when the qubit
complexity is infinite which can happen as we see in the next section.

It would be tempting to redefine the qubit complexity as the minimal number of qubits
needed to solve the problem by a hybrid algorithm which performs classical and quantum
operations with possible many measurements. This minimum is, however, zero since we could
simulate all quantum operations on a classical computer with no qubits but at exponential
cost of classical operations.

We choose to study the qubit complexity of quantum algorithms with one measurement
to eliminate such a possibility.
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Example : Multivariate Integration (continued)
For the class F = Fd,r with r ≥ 1, the minimal error equa−std(An,k) of quantum algorithms
An,k is of order n−1−r/d and is achieved by an algorithm that uses of order log ε−1 qubits.
This result follows from reduction of the integration problem to real and then to Boolean
summation, and from the fact that the Boolean summation algorithm of [5] using n bit
queries with seven repetitions has the error for worst f and average j also proportional to
n−1 as proved in [11]. This implies that

compque−std(ε, S) = Θ
(
ε−1/(1+r/d)

)
and compqub−std(ε, S) = O

(
log ε−1

)
. (12)

3.1 Lower Bounds on Qubit Complexity

We now prove lower bounds on the qubit complexity in the standard quantum setting in
terms of the non-adaptive information complexity in the worst case setting as well as in
terms of the (Kolmogorov) ε-entropy of the set S(F ). Based on these bounds, we conclude
that some continuous problems S cannot be solved in the standard quantum setting.

Theorem 3.1.
compqub−std(ε, S) ≥ log compinf−wor(2ε, S).

Proof.
Take an arbitrary quantum algorithm An,k such that equa−std(An,k) ≤ ε with the minimal
number of qubits k = compqub−std(ε, S). We have

ε2 ≥ equa−std(An,k)
2 = sup

f∈F

2k−1∑

j=0

pf,j‖S(f)−An,k(f, j)‖2.

The final state as well as probabilities pf,j of the quantum algorithm An,k are based on
the non-adaptive information

N(f) = [f(t1), f(t2), . . . , f(t2k)]

for some sample points tj ∈ Dd. Therefore we can write

An,k(f, j) = Φ(f(t1), f(t2), . . . , f(t2k); j) ∀ f ∈ F, ∀ j ∈ {0, 1, . . . , 2k − 1},

for some mapping Φ : R2k × {0, 1, . . . , 2k − 1} → G.
For an arbitrary f ∈ F , take two functions f1 and f2 such that N(f1) = N(f2) = N(f).

The final state as well as all probabilities pf,j will be the same for f1 and f2, and aj =
An,k(f1, j) = An,k(f2, j) for all j. Hence, for any f ∈ F , we have

2ε2 ≥
2k−1∑

j=0

pf,j
(
‖S(f1)− aj‖2 + ‖S(f2)− aj‖2

)
.

16



Observe that

‖S(f1)− S(f2)‖2 ≤ (‖S(f1)− aj‖+ ‖S(f2)− aj‖)2 ≤ 2
(
‖S(f1)− aj‖2 + ‖S(f2)− aj‖2

)
.

Multiplying both sides by pf,j and summing up with respect to j, we conclude

‖S(f1)− S(f2)‖2 ≤ 4ε2.

Taking the supremum with respect to f ∈ F and f1, f2 from F with N(f1) = N(f2) we have

sup
f∈F

sup
f1,f2∈F,N(f1)=N(f2)=N(f)

‖S(f1)− S(f2)‖ ≤ 2ε.

The left-hand side of the last inequality is equal to the diameter of information N , see
[32] p. 45, which in turn is bounded from below by the radius of information, denoted by
rad(N). Hence, rad(N) ≤ 2ε which can hold only if the cardinality of N is at least equal to
compinf−wor(2ε, S), see [32] p. 54. Thus, 2k ≥ compinf−wor(2ε, S), as claimed.

We add in passing that for many cases we have d(N) = 2rad(N). This holds, in particular,
if G = R. Then rad(N) ≤ ε and the extra factor 2 can be omitted.

Theorem 3.1 states that the number of qubits needed to solve S in the standard quantum
setting is related to the non-adaptive information complexity in the worst case setting. For
most continuous problems S, the non-adaptive information complexity goes to infinity as
ε approaches zero. Then Theorem 3.1 says that the number of qubits also goes to infinity
although much more slower due to the presence of the logarithm. We illustrate this point
by continuing our example.

Example : Multivariate Integration (continued)
Consider F = Fd,r with r ≥ 1. We know that

compinf−wor(2ε, S) = Θ
(
ε−d/r

)
.

Then Theorem 3.1 supplies a lower bound on the qubit complexity,

compqub−std(ε, INTd,r) ≥ d
r
log ε−1 + Ω(1)

with the term Ω(1) independent of ε but dependent on d and r.
As we already discussed, d

r
was the exponent of the worst case complexity of the integra-

tion problem INTd,r and caused the curse of dimensionality. Its role for the qubit complexity
is mitigated since it effects the lower bound on the qubit complexity only linearly.

Due to (12) the lower bound on the qubit complexity is sharp with respect to ε, and we
have

compqub−std(ε, INTd,r) = Θ
(
log ε−1

)
.

The dependence on ε is very weak although for ε tending to zero, the qubit complexity slowly
goes to infinity.

Remark 3: Theorem 3.1 was formally proved for the class of quantum algorithms with one
measurement. We now show that a similar result holds for the much more larger class of
hybrid algorithms which use non-adaptive or adaptive function values on a classical computer
and many measurements on a quantum computer. More precisely, consider the following class
of hybrid algorithms:
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• For i = 1, 2, . . . , p do

– Use a classical algorithm with mi non-adaptive or adaptive function values to get
an initial state |ψ0,i〉,

– Use a quantum algorithm Ani,ki with one measurement starting with the initial
state |ψ0,i〉 and with ni bit queries and ki qubits, and let

Ani,ki(f, j) = φi(j)

with a function φi which can now be dependent on ℓi non-adaptive or adaptive
function values.

Observe that the total number of function values used by the hybrid algorithm is at most

N :=

p∑

i=1

(
mi + 2ki + ℓi

)
,

and up to
∑p

i=1(mi + ℓi) of them can be computed adaptively. The hybrid algorithm uses k
qubits, where

k = max
i=1,2,...,p

ki.

Assume that the error of the hybrid algorithm is ε. Then as in the proof of Theorem 3.1 we
conclude

N ≥ compinf−wor(2ε, S),

where now compinf−wor(2ε, S) stands for the worst case (adaptive) information complexity
defined as in (5) with the exception that now Anad

n is replaced by an arbitrary algorithm An

using at most n adaptive function values.
Hence, as long as there are two positive numbers a1 and a2 such that

N ≤ a1 2
a2 k

then
k ≥ a−1

2 log compinf−wor(2ε, S) − log a1.

Hence, even for hybrid algorithms, the logarithm of the worst case (adaptive) information
complexity is essential and tells us how many qubits are needed.

We now consider the case when compinf−wor(ε, S) = ∞, i.e., when we cannot solve the
problem in the worst case setting. Then the qubit complexity is also infinite. We summarize
this fact in the following corollary.

Corollary 3.1. If the non-adaptive information complexity of S in the worst case setting is
infinity then S cannot be solved in the standard quantum setting.

We illustrate Corollary 3.1 by multivariate integration for r = 0.

Example : Multivariate Integration (continued)
Assume now that r = 0. Hence, F = Fd,0 is the unit ball of continuous functions with the
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norm ‖f ||0 = maxx∈[0,1]d |f(t)| bounded by one. It is known, and easy to see, that for any
algorithm An we have

ewor(An) ≥ 1 ∀n.
Indeed, as already explained in the introduction, it is enough to take two continuous functions
from F vanishing at the sample points tj used by the algorithm An, j = 1, 2, . . . , n, such
that the integral of the first function is almost 1, and the integral of the other function is
almost −1. Since these functions are indistinguishable for the algorithm An, the best we can
do is to approximate their integrals by zero with error arbitrarily close to one. Hence, the
worst case error of any algorithm is at least one, as claimed. This implies that

compinf−wor(ε, S) = ∞ ∀ ε < 1.

Theorem 3.1 says that multivariate integration for r = 0 is unsolvable in the standard
quantum setting.

As already mentioned, this problem is, however, easy in the randomized setting. The ran-
domized error of the Monte Carlo is bounded by n−1/2 which is optimal due to lower bounds
of Bakhvalov and Novak. Therefore the non-adaptive randomized information complexity as
well as the total randomized complexity are both of order ε−1/2.

So why does the standard quantum setting fail for the problem which is relatively easy
in the randomized setting? As we shall see in the next section, the reason is that we use
deterministic queries in the standard quantum setting. This bad property will disappear if
we allow the use of randomized queries also in the quantum setting.

Before we proceed to the quantum setting with randomized queries, we briefly present
another lower bound on the qubit complexity in the standard quantum setting. This bound
relates the qubit complexity to the (Kolmogorov) ε-entropy of the set S(F ). We first recall
the notion of ε-entropy in normed spaces, see e.g., [17]. Let B be a subset of G. We want to
cover the subset B by the minimal number of subsets of G whose diameters do not exceed 2ε.
That is, let

n(ε, B) = min
{
n : ∃Bj ⊂ G such that diam(Bj) ≤ 2ε, B ⊂ ∪n

j=1Bj

}
,

where diam(Bj) = supb1,b2∈Bj
‖b1 − b2‖. Then the ε-entropy of B is

Ent(ε, B) = log n(ε, B).

It is easy to prove the following theorem.

Theorem 3.2.
compqub−std(ε, S) ≥ Ent(ε, S(F )).

Proof.
The proof relies on the fact that in the standard quantum setting any quantum algorithm
which uses k = compqub−std(ε, S) qubits produces at most 2k different elements An,k(f, j) =
φ(j) from G for j = 0, 1, 2, . . . , 2k − 1 with φ independent of f .
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We take an arbitrary quantum algorithm An,k with error equa−std(An,k) ≤ ε. For any
f ∈ F , we have

min
j=0,1,...,2k−1

‖S(f)− φ(j)‖ ≤




2k−1∑

j=0

pf,j‖S(f)− φ(j)‖2



1/2

≤ ε.

Let B(φ(j), ε) = {g ∈ G : ‖g − φ(j)‖ ≤ ε } be the ball in G of center φ(j) and radius ε.

Obviously, diam(B(φ(j), ε)) ≤ 2ε. Then S(f) ∈ ∪2k−1
j=0 B(φ(j), ε) and therefore S(F ) ⊂

∪2k−1
j=0 B(φ(j), ε). This means that 2k ≥ n(ε, S(F )), and k ≥ log n(ε, S(F )), as claimed.

The essence of Theorem 3.2 is that S(F ) must have a finite ε-entropy in order to have S
solvable in the standard quantum setting. In particular, this means that the closure of S(F )
must be compact. Otherwise, the ε-entropy is infinite and the finite number of qubits is not
enough to solve S. We summarize this in the following corollary.

Corollary 3.2. If the closure of S(F ) is not compact then S is not solvable in the standard
quantum setting. In particular, if S(F ) is unbounded then S is not solvable in the standard
quantum setting.

The unboundedness of S(F ) can happen even for problems with relatively small worst
case complexity as shown in the following example. This example also shows that lower
bounds based on the ε-entropy of S(F ) presented in Theorem 3.2 may be quite different
than lower bounds based on the non-adaptive information complexity in the worst case
setting presented in Theorem 3.1.

Example: Unbounded S(F )
Consider the univariate integration problem for Lipschitz functions, i.e.,

F = { f : [0, 1] → R| |f(x)− f(y)| ≤ |x− y| ∀ x, y ∈ [0, 1] },

and S(f) =
∫ 1

0
f(t) dt with G = R.

Since all constant functions belong to F , we have S(F ) = R and therefore Ent(ε,R) = ∞.
It is well known that the worst case complexity is roughly 1/(4ε), see e.g., [33], and the linear
algorithm

An(f) =
1

2n
f

(
1

2n

)
+

1

n

n−1∑

j=2

f

(
2j − 1

2n

)
+

1

2n
f

(
2n− 1

2n

)

with n = ⌈ε−1/4⌉ minimizes the worst case error among all algorithms using n function
values, and has error at most ε. Observe that for constant functions, f(t) ≡ c, we have
An(f) = c which may be arbitrary large.

In the worst case setting with the real number model, the sizes of numbers do not matter
and do not affect the cost analysis. In the standard quantum setting, the situation is different
since we can only work on unit vectors and the scaling of numbers does matter. That is why
we cannot solve unscaled problems in the standard quantum setting.

In many cases, we may rescale the problem by changing F to a set F̃ such that S(F̃ )
is bounded and its closure is compact. This idea works for our example as follows. For
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f ∈ F , define g(x) = f(x)− f(0) for x ∈ [0, 1]. Then g(0) = 0 and |g(x)| ≤ x ≤ 1. Hence,
−x ≤ g(x) ≤ x and therefore S(g) ∈ [−1

2
, 1
2
], and both bounds are sharp. Define

F̃ = {g : [0, 1] → R| g(0) = 0, g ∈ F}.

Then f ∈ F iff g ∈ F̃ for g(x) = f(x)− f(0), and S(f) = S(g)− f(0).

We now have S(F̃ ) = [−1
2
, 1
2
] and therefore

Ent(ε, S(F̃ )) = log ε−1 +O(1).

Hence, the number of qubits for approximations of S(g) is now bounded by roughly log ε−1.
In fact it is sharp, since S(g) can be approximated to within ε in the standard quantum
setting by An,k(q) using roughly n = ε−1/2 bit queries and k = log ε−1 qubits as shown
in [24].

Finally, we may approximate S(f) for f ∈ F by running An,k(g) for g(x) = f(x)− f(0),
and computing f(0)+An,k(q) on a classical computer. Note that the last step on a classical
computer may involve an arbitrarily large number f(0) which is of no relevance as long as
we use the real number model of computation.

4 Quantum Setting with Randomized Queries

Modulo measurements, the standard quantum setting for continuous problems is similar to
the worst case setting with non-adaptive information. All unitary matrices including queries,
as well as the number of qubits used by quantum algorithms are deterministic. The potential
speedup of the standard quantum setting for continuous problems over the worst case setting
relies on the fact that quantum algorithms with k qubits may use an exponential number
up to 2k function values with cost proportional to a small power of k. If 2k functions values
are not enough to solve the problem in the worst case setting then the problem remains
unsolvable also in the standard quantum setting. As we indicated before, this may happen
even for problems with small randomized complexity. Such examples suggest studying more
general quantum settings.

In this section, we describe the quantum setting with randomized queries in which all
unitary matrices including queries may be randomized. Modulo measurements, the quantum
setting with randomized queries for continuous problems will be similar to the randomized
setting with non-adaptive information. We assume that the number of qubits is fixed and
does not depend on randomization. As we already mentioned in the introduction the exten-
sion to randomized qubits is left for future study.

We generalize (6) by allowing unitary matrices Uj as well as the query Qf to be randomly
chosen similarly as in the randomized classical setting of Section 2.2. That is, we have random
elements ω distributed accordingly to some probability measure ρ on Ω with ρ(Ω) = 1. We
stress that ρ does not depend on f and we will be using the same randomization for all f
from F .

First we choose k as the number of qubits, take a random element ω, choose a unit vector
|ψ0,ω〉 from C2k as the initial state, and obtain the final k qubit state

|ψf,ω〉 = Unω ,ωQf,ω Unω−1,ωQf,ω · · · U1,ωQf,ω U0,ω|ψ0,ω〉. (13)
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For a fixed ω, we have the same situation as in the standard quantum setting. That is,
matrices Uj,ω are arbitrary 2k × 2k unitary matrices which are independent of f , and the
query Qf,ω, which is also a 2k × 2k unitary matrix, depends on at most 2k sample points
which are independent of f and depend only on ω,

Qf,ω = Qf(t1,ω),f(t2,ω),...,f(t
2k,ω

).

Hence, Qf,ω is a randomized query depending on at most 2k function values at randomized
sample points. In full analogy with the standard quantum setting, the measure ρ and
sample points tj,ω are the same for all f from F . That is, we use non-adaptive randomized
information with fixed cardinality at most 2k. Let

n =

∫

Ω

nω ρ(dω)

be the average number of queries used to obtain the final states.
We then perform a measurement which for a fixed ω is the same as for the standard

quantum setting. That is, we obtain an index j ∈ {0, 1, . . . , 2k − 1} with probability pf,j,ω

depending on the final state |ψf,ω〉, where
∑2k−1

j=0 pf,j,ω = 1 for all ω ∈ Ω. As before, the
dependence on f is only through function values,

pf,j,ω = pf(t1,ω),f(t2,ω),...,f(t
2k

,ω),j,ω.

Knowing the index j, we compute on a classical computer

An,k(f, ω, j) = φω(j)

for some mapping φω : {0, 1, . . . , 2k − 1} → G. The algorithm An,k is called a quantum
algorithm using randomized queries, or just a quantum algorithm if it is clear from the
context that we are using randomized queries.

Analogously to the standard quantum setting, we consider the error of a quantum algo-
rithm by taking the average performance with respect to both j and ω, see also the appendix
where the probabilistic error is discussed. That is, the error of an algorithm in the quantum
setting with randomized queries An,k is defined by

equa−ran(An,k) = sup
f∈F



∫

Ω

2k−1∑

j=0

pf,j,ω‖S(f)−An,k(f, ω, j)‖2ρ(dω)




1/2

.

Observe that if we choose all matrices Uj,ω and Qf,ω as well as nω independently of ω, then
this definition coincides with the error in the standard quantum setting.

This definition of the error leads to the randomized query complexity defined by

compque−ran(ε, S) = min
{
n : ∃An,k such that equa−ran(An,k) ≤ ε

}
,

and to the randomized qubit complexity defined by

compqub−ran(ε, S) = min
{
k : ∃An,k such that equa−ran(An,k) ≤ ε

}
.
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As in the standard quantum setting, we may have a tradeoff between the minimal number
of queries and qubits. Therefore it would be also reasonable to study the minimization of the
product or a weighted sum of queries and qubits in the quantum setting with randomized
queries, however, we do not pursue the issue in this paper.

It is natural to ask what kind of results can be now achieved and how much we can
improve the results from the standard quantum setting. We will study these questions in
the next sections.

4.1 Lower Bounds on Randomized Qubit Complexity

For the standard quantum setting, we proved lower bounds on qubit complexity in terms
of the worst case setting on a classical computer. We now show that lower bounds on the
randomized qubit complexity can be analogously derived in terms of the randomized setting
on a classical computer.

Theorem 4.1.
compqub−ran(ε, S) ≥ log compinf−ran(ε, S).

Proof.
We note that any quantum algorithm An,k can be regarded as a randomized algorithm whose
cardinality is at most 2k. Indeed, for f ∈ F , let ρ̄f be a probability measure defined on B×J ,
where B is a measurable subset of Ω and J is an arbitrary subset of {0, 1, . . . , 2k − 1} given
by

ρ̄f (B × J) =

∫

Ω

1B(ω)
∑

j∈J

pf,j,ω ρ(dω)

with the characteristic function 1B(ω) = 1 for ω ∈ B and 1B(ω) = 0 otherwise. Then

equa−ran(An,k)
2 = sup

f∈F

∫

Ω

2k−1∑

j=0

pf,j,ω‖S(f)−An,k(f, ω, j)‖2ρ(dω)

= sup
f∈F

∫

Ω×{0,1,...,2k−1}

‖S(f)− An,k(f, ω, j)‖2ρ̄f (d(ω, j)) = eran(An,k)
2.

Hence, An,k can be regarded as a randomized algorithm in the randomized classical setting
whose cardinality is at most 2k. Since the sample points tj,ω are independent of f and
dependent only on ω, the algorithm An,k uses non-adaptive information, and An,k applied to
f uses randomization with the measure ρ̄f . If equa−ran(An,k) ≤ ε then eran(An,k) ≤ ε which
may happen only if the cardinality of An,k is at least compinf−ran(ε, S). This means that
2k ≥ compinf−ran(ε, S), as claimed.

Note that the lower bounds in Theorem 4.1 are not larger than the lower bounds in
Theorem 3.1 since compinf−ran(ε, S) ≤ compinf−wor(ε, S). Furthermore for some problems
the non-adaptive information complexity in the worst case setting may be infinite whereas
its randomized counterpart is relatively small.
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We already mentioned that the integration problem for the class F = Fd,0 is unsolvable
in the standard quantum setting and solvable in the randomized classical setting. We now
provide a proof and find the randomized qubit complexity. The randomized query complexity
for Fd,0 as well as the integration problem for Fd,r for an arbitrary integer r ≥ 0 will be studied
later.

Example : Multivariate Integration for r = 0 (continued)
We show that the randomized qubit complexity for F = Fd,0 is

compqub−ran(ε, INTd,0) = Θ
(
log ε−1

)
.

and is achieved by a quantum algorithm which uses of order ε−1 queries.
We know that compinf−ran(ε, INTd,0) = Θ(ε−2). From Theorem 4.1 we conclude that the

randomized qubit complexity must be at least of order log ε−1.
We now provide an upper bound on the randomized qubit complexity. Take the Monte

Carlo algorithm with m = ⌈4ε−2⌉,

MCm(f, ω) =
1

m

m∑

j=1

f(ωj)

with ω = [ω1, ω2, . . . , ωm] and independent uniformly distributed ωj from [0, 1]d. Then
eran(MCm) ≤ ε/2.

We now apply the Boolean summation algorithm A∗
n,k of [5] with seven repetitions for

real functions for which |f(x)| ≤ 1, see also Section 5. The algorithm A∗
n,k approximates

MCm(f). It is known, see [11], that the randomized error of this algorithm is bounded by
C/n, where C is a number independent on f, n and m. Furthermore, the algorithm uses
k = Θ(log m) qubits. We set n = ⌈2C/ε⌉ and obtain

2k−1∑

j=0

pf,j,ω
[
MCm(f, ω)−A∗

n,k(f, ω, j)
]2 ≤ ε2

4
∀ f ∈ F.

Therefore for any f ∈ F we have

2k−1∑

j=0

pf,j,ω

[
INTd,0(f)−A∗

n,k(f, ω, j)

]2
=

2k−1∑

j=0

pf,j,ω

[
INTd,0(f)−MCm(f, ω) + MCm(f, ω)−A∗

n,k(f, ω, j)

]2
≤

2
2k−1∑

j=0

pf,j,ω

[
(INTd,0(f)−MCm(f, ω))

2 +
(
MCm(f, ω)− A∗

n,k(f, ω, j)
)2
]
≤

2

[
INTd,0(f)−MCm(f, ω)

]2
+
ε2

2
.
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Taking the integral over Ω we conclude that

eran(A∗
n,k) ≤

√
2
ε2

4
+
ε2

2
= ε.

Hence, we can solve the integration problem for r = 0 using of order log ε−1 qubits and ε−1

randomized queries, as claimed.

Theorem 4.1 states that the number of qubits in the quantum setting with randomized
queries depends on the non-adaptive information complexity compinf−ran(ε, S). Typically,
compinf−ran(ε, S) goes to infinity with ε tending to zero, so the number of qubits has to go
to infinity as well although much slower due to the presence of the logarithm in the bound
of Theorem 4.1. However, if compinf−ran(ε, S) = ∞ then the randomized qubit complexity is
infinity and the problem cannot be solved. We summarize this fact in the following corollary.

Corollary 4.1. If the non-adaptive information complexity of S in the randomized setting
is infinity then S cannot be solved in the quantum setting with randomized queries.

We illustrate Corollary 4.1 by a problem with infinite non-adaptive information complex-
ity in the quantum setting with randomized queries.

Example : Multivariate Approximation
Consider the same class F = Fd,r, r ≥ 0, as for the multivariate integration problem. Let
G = C([0, 1]d) and S = APPd,r : C

r([0, 1]d) → G be defined by

APPd,r(f) = f.

It is known, see [32] p. 425, that randomization does not help for this problem and that for
small ε we have

compinf−ran(ε,APPd,0) = compinf−wor(ε,APPd,0) = ∞,

and for r ≥ 1,

compinf−ran(ε,APPd,r) = Θ
(
compinf−wor(ε,APPd,r)

)
= Θ

(
ε−d/r

)
.

Hence, for r = 0 we conclude that the approximation problem cannot be solved in the
quantum setting with randomized queries.

5 Boolean and Real Summation

Solution of the real summation problem is a basic module used in the solution of many
continuous problems. The real summation problem is very much related to the Boolean
summation problem which has been thoroughly studied in the standard quantum setting,
see [5, 7, 11, 16, 18]. In this section we study the Boolean and real summation problems in
the quantum setting with randomized queries.
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5.1 Boolean Summation

For N a (large) power of two, consider the class of Boolean functions

F = FN = {f | f : {0, 1, . . . , N − 1} → {0, 1} },

and take G = R. The Boolean summation problem is defined as S = BN : FN → G given by

BN (f) =
1

n

N−1∑

j=0

f(j).

We want to approximate BN to within ε. Without loss of generality we may assume that
ε ≥ 1/(2N). Indeed, if we know An,k(f) such that |BN(f)−An,k(f)| ≤ ε < 1/(2N) then we
can recover BN (f) exactly since

BN (f) =
⌈N An,k(f) +

1
2
⌉ − 1

N
.

This follows from the fact that we know a priori that BN (f) = k/N for some integer k ∈ [0, N ]
with k being the total number of the true assignments of the Boolean function f . Then
NAn,k(f) +

1
2
= k + x with

x = 1
2
+N (An,k(f)− BN) ∈

[
1
2
−Nε, 1

2
+Nε

]
⊂ (0, 1).

Hence, ⌈k + x⌉ = k + 1, as claimed.
We first consider the Boolean summation problem in the standard quantum setting.

The Boolean summation algorithm A∗
n,k of [5] with seven repetitions solves the Boolean

summation such that
equa−std(An,k) ≤ ε,

using n = Θ(ε−1) bit queries and k = Θ(log N) qubits. The query bound is order-optimal,
see [11, 18]. The qubit bound is also order-optimal since it is known, see e.g., [24], that in
the worst case setting

compinf−wor(ε, S) = ⌈N(1 − 2ε)⌉ ∀ ε ∈
[
0, 1

2

]

which is essentially N for small ε. From Theorem 3.1 we conclude that the qubit complexity
is roughly at least log N for small ε. We summarize these results in the following theorem.

Theorem 5.1. The complexities of the Boolean summation problem in the standard quantum
setting satisfy

compque−std(BN ) = Θ
(
ε−1
)

compqub−std(BN) = Θ (log N) .

Furthermore, these bounds are both attained by the Boolean summation algorithm with seven
repetitions.

We now consider the Boolean summation problem in the quantum setting with random-
ized queries. We prove the following theorem.
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Theorem 5.2. The complexities of the Boolean summation problem in the quantum setting
with randomized queries satisfy

compque−ran(BN ) = Θ
(
ε−1
)

compqub−ran(BN) = Θ
(
log ε−1

)
.

Furthermore, these bounds are both attained by the Boolean summation algorithm with seven
repetitions applied to

1

m

m∑

j=1

f(ωj)

with m = Θ(ε−2) and with independent uniformly distributed ωj from {0, 1, . . . , N − 1}.

Proof.
We first consider lower bounds and start with the randomized query complexity. We use the
known proof technique of using the average case error as a lower estimate of the randomized
error. More precisely, take an arbitrary quantum algorithm An,k that uses n randomized bit
queries and k qubits, and consider its randomized error

equa−ran(An,k)
2 = sup

f∈FN

∫

Ω

2k−1∑

j=0

pf,j,ω|BN(f)− An,k(f, ω, j)|2ρ(dω).

We now replace the supremum over f by an average over f . That is, we assume that a
Boolean function f from FN occurs with probability pf with non-negative pf such that∑

f∈FN
pf = 1. Observe that this is a well defined measure since FN consists of finitely many

Boolean functions, in fact, we have 2N functions in FN . Then

equa−ran(An,k)
2 ≥

∑

f∈FN

pf

∫

Ω

2k−1∑

j=0

pf,j,ω|BN(f)− An,k(f, ω, j)|2ρ(dω)

=

∫

Ω



∑

f∈FN

pf

2k−1∑

j=0

pf,j,ω|BN(f)− An,k(f, ω, j)|2

 ρ(dω). (14)

The following result proved by Papageorgiou in [25] will be needed for our consideration.
Take the uniform distribution for BN (f), i.e., pf =

(
N
j

)
/2N for all f with BN (f) = j/N . Then

there are two positive numbers c1 and c2 with the following properties. For any algorithm
An,k in the standard quantum setting with n bit queries, such that n ≤ c1N , and k qubits,
let pf,j denote the probability of obtaining the index j through measurement. Let

µf(J) =
∑

j∈J

pf,j

denote the probability of a subset J of {0, 1, . . . , 2k − 1}. Then it is proved in [25] that

∑

f∈FN

pf µf ({j : |BN (f)− An,k(f, j)| ≥ c2/n }) ≥ 0.25.
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From Chebyshev’s inequality we conclude that

∑

f∈FN

pf

2k−1∑

j=0

|BN(f)−An,k(f, j)|2 ≥ 1

4

(c2
n

)2
.

We apply the last inequality for an arbitrary algorithm An,k from the quantum setting with
randomized queries and with a fixed ω. Here, we use the fact that the algorithm An,k(·, ω, ·)
can be regarded as an algorithm from the standard quantum setting. We thus have

∑

f∈FN

pf

2k−1∑

j=0

pf,j,ω|BN(f)−An,k(f, ω, j)|2 ≥
1

4

(c2
n

)2
.

Since the right-hand side is independent of ω, from (14) we obtain

equa−ran(An,k) ≥ c2
2n
.

Hence, equa−ran(An,k) ≤ ε implies that n = Ω(ε−1) and

compque−ran(BN) = Ω
(
ε−1
)
.

To prove a lower bound on the randomized qubit complexity, we use Theorem 4.1. In
the randomized setting on a classical computer it is known that the randomized complexity
is of order ε−2, see [24]. Then Theorem 4.1 yields

compqub−ran(BN) = Ω
(
ε−1
)
.

We turn to upper bounds. The idea is the same as for multivariate integration for r = 0
which was studied before. That is, we apply the Boolean summation algorithm with seven
repetitions to the Monte Carlo algorithm m−1

∑m
j=1 f(ωj) with independently and uniformly

distributed ωj over {0, 1, . . . , N − 1}. We stress that this algorithm uses randomized queries
Qf,ω and the rest of unitary matrices are deterministic, i.e., Uj,ω = Uj in (13).

The same analysis done for r = 0 yields that the randomized error is ε. Since this
algorithm uses of order ε−1 randomized queries and log ε−1 qubits, we obtain upper bounds
which match the lower bounds. This completes the proof. .

It is interesting to compare the complexities of the Boolean summation problem in the
quantum settings with deterministic and randomized queries. As we see, the query com-
plexities are roughly the same in both settings. The qubit complexities, however, are quite
different. For deterministic queries, the number of qubits depends on the common domain of
Boolean functions, and we need roughly log N qubits which can be arbitrary large for large
N . For randomized queries, the number of qubits does not depend on the common domain
of Boolean functions. It depends on the error parameter through log ε−1. As we shall see
in the following sections, there is sometimes an exponential difference between log N and
log ε−1.
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5.2 Real Summation

We finish this section by a brief note on the real summation problem. We now consider
f : {0, 1 . . . , N − 1} → [0, 1] and want to approximate

SUMN(f) =
1

N

N−1∑

j=0

f(j). (15)

A known idea is to replace the real number f(j) from [0, 1] by its binary expansion,

f(j) =
∞∑

i=1

2−i f(i, j) with f(i, j) ∈ {0, 1},

We define K = ⌈log ε−2⌉ and truncate f(j) to K bits. Let

SK(f) =
1

N

N−1∑

j=0

K∑

i=1

2−i f(i, j).

Clearly, |SUMN(f)−SK(f)| ≤ 2−K ≤ ε2. To obtain a Boolean function we finally define the
set

D =
{
(i, j, p) : i = 1, 2, . . . , K, j = 0, 1, . . . , N − 1, p = 1, 2, . . . , 2K−i

}

of cardinality N(2K − 1) and a Boolean function bf : D → {0, 1} by

b(i, j, k) = δf(i,j),1,

where δi,j is the Kronecker delta. Then

K∑

i=1

2−if(i, j) = 2−K

K∑

i=1

2K−if(i, j) = 2−K

K∑

i=1

2K−i∑

p=1

b(i, j, p).

Thus

SK(f) = BN2K (bf ) =
1

N2K

N−1∑

j=0

K∑

i=1

2K−i∑

p=1

b(i, j, p)

is a Boolean summation problem. We compute BN2K (bf ) with error ε − ε2 by the Boolean
summation algorithm with seven repetitions as explained in Theorem 5.2 and obtain An,k(bf )
which uses of order ε−1 randomized queries and log ε−1 qubits. It is easy to check that
An,k(bf ) approximates S(f) with the randomized error at most ε. We summarize this in the
corollary.

Corollary 5.1. The complexities of the real summation problem ( 15) in the quantum setting
with randomized queries satisfy

compque−ran(SUMN ) = Θ
(
ε−1
)

compqub−ran(SUMN ) = Θ
(
log ε−1

)
.

Furthermore, these bounds are both attained by the Boolean summation algorithm with seven
repetitions applied to

1

m

m∑

ℓ=1

f(iℓ, jℓ, pℓ)

with m = Θ(ε−2) and with independent uniformly distributed (iℓ, jℓ, pℓ) over D.
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6 Multivariate Integration

In this section, we consider the multivariate integration problem INTd,r for the class Fd,r

which we used throughout as an illustrative example. The purpose of this section is to study
this problem in the quantum settings with deterministic and randomized queries.

We begin with deterministic queries. For r = 0 the problem is unsolvable. For r ≥ 1,
sharp bounds on the bit query follow from [24],

compque−std (ε, INTd,r) = Θ
(
ε−1/(1+r/d)

)
.

This bound is achieved by the Boolean summation algorithm with seven repetitions and uses
of order log ε−1 qubits, as shown in the previous section.

Observe that the lower bound on the qubit complexity is of order log ε−1 due to Theo-
rem 4.1 and the fact that the worst case information complexity is of order ε−d/r. Hence, we
have

compqub−ran(ε, INTd,r) = Θ
(
log ε−1

)
.

We now turn to randomized queries. The case r = 0 has already been covered and we
know that we can solve the problem using of order ε−1 randomized bit queries and log ε−1

qubits.
For r ≥ 1, we use the same quantum algorithm as in [24]. Since the Boolean summation

algorithm uses the same order of bit queries for the randomized and probabilistic quantum
errors, we obtain the same upper bounds on the number of bit queries and qubits.

The lower bound on the number of randomized queries can be derived as in [24] and
using the results on the Boolean and real summation problems of the previous section. This
yields that the randomized bit query complexity is of order ε−1/(1+r/d). The lower bound on
the number of qubits follows from Theorem 4.1 and the fact that the randomized complexity
is of order ε−2/(1+2r/d).

We summarize these results in the following theorem.

Theorem 6.1. Consider the multivariate integration problem INTd,r for the class Fd,r.

• Let r = 0.

– In the quantum setting with deterministic queries, we have

compque−std(ε, INTd,0) = ∞,

compqub−std(ε, INTd,0) = ∞.

– In the quantum setting with randomized queries, we have

compque−ran(ε, INTd,0) = Θ
(
ε−1
)
,

compqub−ran(ε, INTd,0) = Θ
(
log ε−1

)
.

• Let r ≥ 1.
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– In the quantum setting with deterministic queries, we have

compque−std(ε, INTd,r) = Θ
(
ε−1/(1+r/d)

)
,

compqub−std(ε, INTd,r) = Θ
(
log ε−1

)
.

– In the quantum setting with randomized queries, we have

compque−ran(ε, INTd,r) = Θ
(
ε−1/(1+r/d)

)
,

compqub−ran(ε, INTd,r) = Θ
(
log ε−1

)
.

Hence, for r = 0 we see a big difference between the two settings for the multivariate
integration problem, whereas for r ≥ 1, the two settings lead to the same order of bit and
qubit complexities.

7 Path Integration

Path integration can be regarded as integration of functions of infinitely many variables
or, more formally, as integration over some class of functions; for more information and
references see [35]. Path integrals occur in quantum physics, chemistry and mathematical
finance. They are also the solutions of certain differential equations and mathematical finance
problems.

Here we consider a specific example of path integration studied in [35]. We take the space
X := C([0, 1]) of continuous functions defined on [0, 1] with the norm ‖x‖ = maxt∈[0,1] |x(t)|.
The space X is equipped with the classical Wiener measure w for which

∫

X

x(t)w(dt) = 0 ∀ t ∈ [0, 1] and

∫

X

x(t)x(u)w(dx) = min(t, u) ∀ t, u ∈ [0, 1].

We consider the class F of real valued w-integrable functions f : X → R which are bounded
and satisfy a Lipschitz condition. More precisely, let the norm of f be given by ‖f‖ =
supx∈X |f(x)|. Then the class F is defined as

F =
{
f : ‖f‖ ≤ 1, |f(x)− f(y)| ≤ ‖x− y‖L2([0,1]) ∀ x, y ∈ X

}
.

Let G = R. The path integration S := PATH is given by

PATH(f) =

∫

X

f(x)w(dx).

We first consider the standard quantum setting. It was shown in [35] that we can compute
an ε-approximation for path integrals from the class F with probability 3

4
using of order ε−1

bit queries and ε−2 log ε−1 qubits. The bound on the number of bit queries is sharp in the
sense that for any positive α it cannot be smaller that ε1−α as ε goes to zero. The sharpness
of the number of qubits was not discussed. These bounds are obtained by reducing the path
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integration problem to the summation problem which was solved by the Boolean summation
algorithm.

We consider the error defined by (9) in the standard quantum setting. Due to the fact
that the Boolean summation algorithm enjoys optimality properties also in this setting, we
conclude that the same bounds as above also hold for the error (9). Furthermore, the bound
on the number of qubits is sharp since the worst case information complexity is of order
ε−c ε−2

for some positive c as proved in [6]. Then Theorem 3.1 yields that the number of
qubits must be of order ε−2 log ε−1.

We now consider the quantum setting with randomized queries. It was proven in [37]
that the non-adaptive information complexity in the randomized classical setting is of the
form

compinf−ran(ε,PATH) = Θ
(
ε−2(1+o(1))

)
as ε → 0.

This and Theorem 4.1 yields that the number of qubits is at least of order log ε−1.
We now show that in the quantum setting with randomized queries, we can solve the path

integration problem by using of order ε−1 bit queries and log ε−1 qubits. The space X can
be embedded in the Hilbert space L2([0, 1]) for which the embedding Im : X → L2([0, 1]),
Im x = x for all x ∈ X , is a continuous linear operator. Let ν = w Im−1 be a zero mean
Gaussian measure on L2([0, 1]). Then the covariance operator Cν of the measure ν has
eigenpairs, Cνηi = λiηi, where

ηi(x) =
√
2 sin

(
2i− 1

2
π x

)
, λi =

4

π2(2i− 1)2
.

As in [35] we first approximate PATH(f) by

INTd(f) =

∫

Rd

fd(t)µd(dt),

where
fd(t) = f

(
Im−1(t1η1 + t2η2 + · · ·+ tdηd

)
)

and µd is the d dimensional Gaussian measure with the mean zero and variances λi. That
is, its density function is of the form

1

(2π)d/2
√
λ1λ2 · · ·λd

exp
(
−t21/(2λ1)− · · · − t2d/(2λd)

)
.

In [35], it is proved that for d = Θ(ε−2) we have |PATH(f)− INTd(f)| ≤ ε/3 for all f ∈ F .
The integral INTd(f) can be approximated by the Monte Carlo

1

n

n∑

j=1

fd(tj)

with iid points tj distributed according to the measure µd. Note that for f ∈ F , we have
|fd(tj)| ≤ 1 and clearly the variance of fd is bounded by 1. Therefore for n = ⌈9ε−2⌉, the
randomized error of approximating INTd(f) is at most ε/3, and the randomized error of
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approximating INT(f) is at most 2ε/3. Finally, it is enough to use the Boolean summation
algorithm to approximate the last sum with the randomized error ε/3 which can be done
with of order ε−1 bit queries and log n = Θ(log ε−1) qubits. The randomized error of
approximation INT(f) is at most ε, as claimed.

This and the previous lower bound on the number of queries yield that the randomized
qubit complexity of path integration is of order log ε−1. For the randomized query complexity
we have so far an upper bound of order ε−1. We can get a lower bound by applying the same
proof technique as in Theorem 3 of [35]. That is, the path integration problem is reduced
to the real summation problem for which we use a lower bound presented in Corollary 5.1.
This yields that

lim
ε→0

ε1−α compque−ran(ε,PATH) = ∞ ∀α ∈ (0, 1).

We summarize these results in the following theorem.

Theorem 7.1. Consider path integration equipped with the Wiener measure for the class F
of Lipschitz functions.

• In the quantum setting with deterministic queries, we have

compque−std(ε,PATH) = Θ
(
ε−1+o(1)

)
,

compqub−std(ε,PATH) = Θ
(
ε−2 log ε−1

)
.

• In the quantum setting with randomized queries, we have

compque−ran(ε,PATH) = Θ
(
ε−1+o(1)

)
,

compqub−ran(ε,PATH) = Θ
(
log ε−1

)
.

The essence of this theorem is that for path integration we have an exponential improve-
ment in the number of qubits in the quantum setting with randomized queries whereas the
number of queries remains roughly the same in both settings. We stress that the optimal
bounds for bit queries and qubits are both attained by the same quantum algorithm based
on the Boolean summation algorithm.

8 Appendix: Probabilistic Errors

We briefly indicate what kind of results are possible if one studies probabilistic errors in the
randomized classical setting and in the quantum settings with deterministic and randomized
queries.

We begin with the randomized classical setting. Instead of the randomized error (3) we
now consider the probabilistic error of the algorithm An which is defined by the worst case
performance with respect to f and the worst case performance with respect to ω modulo a
set of measure δ for some (usually small) δ ∈ (0, 1). That is,

eran(An, δ) = sup
f∈F

inf
B⊂Ω, ρ(B)≤δ

sup
ω∈Ω\B

‖S(f)− An(f, ω)‖. (16)
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From Chebyshev’s inequality we have

eran(An, δ) ≤ 1√
δ
eran(An). (17)

Better estimates with respect to δ are available under additional assumptions on S. In any
case, the dependence on δ is quite modest and everything depends on the randomized error
eran(An). This is probably why the probabilistic error (16) has not been as widely studied
as the randomized error (3) for continuous problems on a classical computer.

The probabilistic error yields the (non-adaptive) information complexity defined by

compinf−ran(ε, δ, S) = min
{
n : ∃Anad

n such that eran(Anad
n , δ) ≤ ε

}
.

Clearly, (17) implies that

compinf−ran(ε, δ, S) ≤ compinf−ran(ε
√
δ, S),

We now turn to the standard quantum setting. The usual way of defining the error in
this setting is analogous to the probabilistic error. That is, the probabilistic error of An,k is
defined as the smallest α for which

‖S(f)−An,k(f, j)‖ ≤ α

holds with probability at most 1− δ with respect to j for every f from F . Here, δ ∈ (0, 1).
This definition can be formalized as follows. For f ∈ F and an arbitrary subset J of
{0, 1, . . . , 2k − 1}, let µf(J) =

∑
j∈J pf,j be a measure of J . Then the probabilistic error of

An,k in the standard quantum setting is

equa−std(An,k, δ) = sup
f∈F

min
J :µf (J)≤δ

max
j∈{0,1,...,2k−1}\J

‖S(f)−An,k(f, j)‖.

For some operators S, such as linear functionals, it is typical to take, say, δ = 1
4
, and

obtain a quantum algorithm working with probability 1 − δ by repeating several times the
quantum algorithm working with δ = 1

4
and by taking the median as the final result. If the

number of repetitions is large enough we can boost probability of success to 1 − δ. Details
can be found in [7].

The probabilistic query complexity in the standard quantum setting is defined as

compque−std(ε, δ, S) = min
{
n : ∃An,k such that equa−std(An,k, δ) ≤ ε

}
, (18)

and the probabilistic qubit complexity in the standard quantum setting is defined as

compqub−std(ε, δ, S) = min
{
k : ∃An,k such that equa−std(An,k, δ) ≤ ε

}
. (19)

Example : Multivariate Integration (continued)
Assume that r ≥ 1. For F = Fd,r, it has been proven by Novak, see [24], that for δ = 1

4
the

minimal error of quantum algorithmsAn,k is of order n
−1−r/d , and is achieved by an algorithm
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that uses of order log ε−1 qubits. The idea of the proof was to reduce the integration problem
to real and then Boolean summation and apply the the Boolean summation algorithm of
[5]. This algorithm for the summation of N terms with n queries, n ≪ N , has probabilistic
error of order n−1 which is optimal due to [18].

This implies that the query complexity compque−std(ε, 1
4
, INTd,r) is of order ε−1/(1+r/d).

For d much larger than r, we thus obtain roughly a quadratic speedup over the randomized
setting, and an exponential speedup over the worst case setting.

For arbitrary δ, we can use roughly log δ−1 repetitions of the algorithm used for δ = 1
4

and take the median of computed results as the final result, again see [7, 21]. This implies
that compque−std(ε, δ, INTd,r) is of order ε

−1/(1+r/d) log δ−1.
For r = 0, it is easy to see by the same argument which we used for the randomized errors,

that the integration problem cannot be solved for the probabilistic error in the standard
quantum setting.

As before, Chebyshev’s inequality yields

compque−std(ε, δ, S) ≤ δ−1/2 compque−std(ε, S)

compqub−std(ε, δ, S) ≤ δ−1/2 compqub−std(ε, S).

Again the dependence on δ can be improved for some S. Note, however, that even for
general S, the dependence on δ is quite weak.

We now show lower bounds on the probabilistic qubit complexity in terms of the non-
adaptive information complexities in the worst case and randomized settings as well as in
terms of the ε-entropy.

Theorem 8.1.

compqub−std(ε, δ, S) ≥ log compinf−wor(2ε, S) ∀ δ ∈ (0, 1
2
),

compqub−std(ε, δ, S) ≥ log compinf−ran(ε, δ, S),

compqub−std(ε, δ, S) ≥ Ent(ε, S(F )).

Proof.
(1) To prove the first inequality, we take a quantum algorithm An,k which uses the minimal
number of qubits k = compqub−std(ε, δ, S) with equa−std(An,k, δ) ≤ ε. We have

ε ≥ equa−std(An,k, δ) = sup
f∈F

min
J :µf (J)≤δ

max
j∈{0,1,...,2k−1}\J

‖S(f)− An,k(f, j)‖ (20)

= sup
f∈F

max
j∈{0,1,...,2k−1}\J(f)

‖S(f)−An,k(f, j)‖,

where J(f) is a subset of {0, 1, . . . , 2k − 1}, µf(J(f)) ≤ δ, for which the corresponding
minimum is attained. Such a set exists since we have finitely many such subsets, however,
J(f) is not necessarily unique. Let

M(f) = { 0, 1, . . . , 2k − 1 } \ J(f).

Clearly, µf(M(f)) ≥ 1− δ.
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For an arbitrary f ∈ F , we take two functions f1 and f2 such thatN(f1) = N(f2) = N(f).
Note that the measures µf1 and µf2 are the same. For δ < 1

2
, there exists an index j∗ which

belongs to M(f1) ∩M(f2). Indeed, otherwise the sets M(f1) and M(f2) would be disjoint
and

1 ≥ µf(M(f1) ∪M(f2)) = µf(M(f1)) + µf(M(f2))

= µf1(M(f1)) + µf2(M(f2)) ≥ 2(1− δ) > 1

is a contradiction. For this index j∗, we have a = An,k(f1, j
∗) = An,k(f2, j

∗). From (20) we
get

ε ≥ 1
2
(‖S(f1)− a‖+ ‖S(f2)− a‖) ≥ 1

2
‖S(f1)− S(f2)‖.

Hence,
sup
f∈F

sup
f1,f2∈F,N(f1)=N(f2)=N(f)

‖S(f1)− S(f2)‖ ≤ 2ε,

and the rest of the proof is the same as in the proof of Theorem 3.1.
(2) To prove the second inequality, we compare the qubit complexity to the randomized

non-adaptive information complexity. Observe that any quantum algorithm An,k may be
regarded as a randomized algorithm which uses non-adaptive deterministic information of
cardinality at most 2k with randomized elements ω ∈ {0, 1, . . . , 2k − 1} taking values j with
probability pf,j . Furthermore, the probabilistic error of An,k is exactly the same as the
error in the probabilistic randomized setting. Therefore, eran(An,k, δ) ≤ ε can hold only if
the cardinality of An,k is compinf−ran(ε, δ, S). This means that 2k ≥ compinf−ran(ε, δ, S), as
claimed.

(3) To prove the third inequality, observe that we now have for any f ∈ F ,

max
j∈M(f)

‖S(f)− φ(j)‖ ≤ ε,

where the subset M(f) of {0, 1, . . . , 2k − 1} is defined as above. Hence,

min
j=0,1,...,2k−1

‖S(f)− φ(j)‖ ≤ ε,

and the rest is as in the proof of Theorem 3.2.

We now turn to the quantum setting with randomized queries. Instead of (9), we consider
the probabilistic error of An,k which is defined as the smallest α for which

‖S(f)−An,k(f, ω, j)‖ ≤ α

holds with probability at least 1−δ with respect to j and ω for all f from F . More precisely,
as before, for J ∈ {0, 1, . . . , 2k − 1} we define the measure of J by µf,ω(J) =

∑
j∈J pf,j,ω.

Then the probabilistic error of An,k in the quantum setting with randomized queries is

equa−ran(An,k, δ) = sup
f∈F

inf
B∈Ω, ρ(B)≤δ

sup
ω∈Ω\B

min
J :µf,ω(J)≤δ

max
j∈{0,1,...,2k−1}\J

‖S(f)− An,k(f, ω, j)‖.
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Observe that if we choose An,k independently of ω then, modulo measurement, everything
will be deterministic and the last definition coincides with the probabilistic error in the
standard quantum setting.

The probabilistic query/qubit complexity in the quantum setting with randomized queries
are defined, analogously as in the standard quantum setting, by minimizing the number of
queries/qubits needed to find a quantum algorithm whose probabilistic error is at most ε.
That is, the probabilistic query complexity in the quantum setting with randomized queries is
defined by

compque−ran(ε, δ, S) = min
{
n : ∃An,k such that equa−ran(An,k, δ) ≤ ε

}
,

and the probabilistic qubit complexity in the quantum setting with randomized queries is
defined by

compqub−ran(ε, S, δ) = min
{
k : ∃An,k such that equa−ran(An,k, δ) ≤ ε

}
.

We now show that Chebyshev’s inequality implies

equa−ran(An,k, δ) ≤ δ−1 equa−ran(An,k). (21)

Indeed, let

E(f, ω) =
2k−1∑

j=0

pf,j,ω‖S(f)−An,k(f, ω, j)‖2.

Hence,

equa−ran(An,k)
2 = sup

f∈F

∫

Ω

E(f, ω) ρ(dω).

Define the sets B(f) and J(f, ω) by

Ω \B(f) =
{
ω : E(f, ω) ≤ δ−1equa−ran(An,k)

2
}
,

{
0, 1, . . . , 2kω − 1

}
\ J(f, ω) =

{
j : ‖S(f)− An,k‖2 ≤ δ−1E(f, ω)

}
.

Chebyshev’s inequality tells us that ρ(B(f)) ≤ δ and µf,ω(J(f, ω)) ≤ δ. Then

equa−ran(An,k, δ)
2 ≤ sup

f∈F
sup

ω∈Ω\B(f)

δ−1 E(f, ω) ≤ δ−2 equa−ran(An,k)
2,

as claimed.
The probabilistic and randomized query and qubit complexities are related. From (21)

we have

compque−ran(ε, δ, S) ≤ compque−ran(εδ, S),

compqub−ran(ε, δ, S) ≤ compqub−ran(εδ, S).

It is also easy to see to check that

compqub−ran(ε, S) ≥ log compinf−ran(ε, S),

compqub−ran(ε, δ, S) ≥ log compinf−ran(ε, δ, S).
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[23] E. Novak and H. Woźniakowski (2001) When are integration and discrepancy tractable?
Foundation of Computational Mathematics, Oxford, 1999, eds. R. A. DeVore, A. Iserles
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