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Further results on the observability of quantum systems under
general measurement

Domenico D’Alessandro and Raffaele Romano 1

Abstract

In this paper, we present a collection of results on the observability of quantum mechan-
ical systems, in the case the output is the result of a discrete nonselective measurement.
By defining an effective observable, we extend previous results, on the Lie algebraic char-
acterization of observable systems, to general measurements. Further results include
the characterization of a ‘best probe’ (i.e. a minimally disturbing probe) in indirect
measurement and a study of the relation between disturbance and observability in this
case. We also discuss how the observability properties of a quantum system relate to
the problem of state reconstruction. Extensions of the formalism to the case of selective
measurements are also given.

1 Introduction

The structural properties of controllability and observability have been studied in depth for
deterministic control systems (see e.g. [20]) of the form

ẋ = f(t, x, u), (1)

with output

y = y(x). (2)

In (1) (2), x is the state of the system varying on a given manifold M , u is the control, f
a smooth vector field and y a smooth map M → RI which models how observations on the
system depend on the state. For quantum systems, the study of controllability has received
greater attention (see e.g. [2], [11], [13], [17]). A study of the observability for quantum
systems is complicated by the fact that, in general, the output has a probabilistic nature
and the associated probability distribution depends on the current state. Moreover, different
types of measurements can be considered according to the specific experimental situation
at hand. In the standard text-book selective Von Neumann-Luders measurement (see e.g.
[19]), the measured quantity is represented by a Hermitian operator S and the result of the
measurement is given by an eigenvalue of S with probability depending on the current state.
However several different scenarios and mathematical models of quantum measurements
can be considered in different situations (see e.g. [6]). Therefore different definitions of
observability may be appropriate and of physical interest in different cases. Nevertheless,
there are several reasons to study observability for quantum mechanical control systems.
From the viewpoint of the fundamental development of the theory, observability is one of the
main concepts to be extended to quantum systems. It is related to the notion of input-output
equivalence and therefore to the general question of modeling time varying Hamiltonians2.
The problem of determining the state from the observation of a quorum of observables is
an important one in quantum mechanics [16]. Techniques to find a set of observables which
would determine the state without ambiguity have been extensively studied in quantum
physics (see e.g. [4], [10]). Observability of quantum systems is also particularly important

1The authors are with the Department of Mathematics at Iowa State University, Ames IA-50011
daless@iastate.edu rromano@iastate.edu

2Two models are input output equivalent if they produce the same output function for any input. Two
input-output equivalent models cannot be distinguished by applying control inputs and observing the output
and therefore modeling via input-output experiments may only be made up to equivalence classes of input-
output equivalent models. This question is explored for networks of particles with spin in [1], [3]
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in view of the recent interest in implementing feedback at the quantum level (see e.g. [5],
[8], [18], [21], [22]). A feedback controller uses the knowledge on the current state to update
the value of the control, i.e. it is of the form u = u(t, x). The knowledge of the state is
obtained through the output and therefore an a priori knowledge of the extent to which
information on the state can be obtained from the output is essential in the design of state
feedback control scheme.

In a recent paper [7], a study was presented on the observability properties of quantum
systems subject to nonselective measurement i.e. a measurement where either the result
is not read or it is given by the expectation value of a given observable. The latter case
is of interest in several experimental scenarios such as nuclear magnetic resonance where
the output signal is averaged over a large number of quantum systems. In these cases, the
definition and treatment of observability is simplified by the fact that one does not have to
consider probabilities explicitly and natural definitions of observability can be given. In this
paper we expand upon the treatment of [7] for general measurements. A unified treatment
for the various types of measurements is presented using notions of generalized measurement
theory [6].

We shall be interested in the dynamics of finite dimensional quantum systems whose state
is described by a density matrix ρ. We shall consider measurements occurring at discrete
instants of time. In between two measurements, the evolution of ρ is governed by Liouville’s
equation (see e.g. [19])

iρ̇ = [H(u(t)), ρ], (3)

where the Hamiltonian H explicitly depends on a control u = u(t). In general, for nonselec-
tive measurement the result can be assumed to be a linear function of the current state ρ.
This is the case when one performs a Von Neumann-Luders measurement of the expectation
value of a given observable S in which case the output y associated to a system (3) is given
by

y = Tr(Sρ). (4)

Another example is the indirect measurement discussed in detail in Section 3. We shall treat
the nonselective case in greater detail and then present some extensions to the selective case
in Section 6.

The effect of nonselective measurements on the state ρ of the system can be described
in general using the formalism of operations [6], [15]. In particular, if M is a measurable
set of possible outcomes, upon measurement the state ρ is modified as

ρ→ F(ρ) :=

∫

M

Φm(ρ) dm, (5)

or

ρ→ F(ρ) :=
∑

m∈M

Φm(ρ), (6)

according to whetherM is a continuous or discrete set respectively. The super-operators Φm

are called operations and, according to Kraus representation theorem [15], can be expressed
as

Φm(ρ) :=
∑

k

ΩmkρΩ
∗
mk, (7)

for a countable set of operators Ωmk.
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The plan of the paper is as follows. In Section 2 we give the basic definitions and results
concerning the observability of quantum systems, under general nonselective measurement.
The main concepts and results given in this section were already presented in [7], however
they are summarized here in a more compact form by introducing effective observables. In
Section 3 we present some results for the special but important case of indirect measurement.
These include an expression for the effective observable in this case and the derivation of
the optimal measurement in terms of minimal disturbance on the state. This raises the
question of whether there is a conflict between observability and minimal disturbance. In
Section 4, by a simple physical example we show this is not the case: in general we can have
observability with a low disturbance of the system. In Section 5 the design of quantum state
reconstruction is discussed and related to observability. Section 6 presents an extension of
the formalism to the case of selective measurement.

2 Observability under general nonselective measurement

If the output y of system (3) is a linear function of the current state, as we assume here, it
is always possible to express y as

y(t) = Tr
(

Seffρ(t)
)

, (8)

for some Hermitian matrix Seff , which represents an effective observable. Without loss of
generality, we can assume that Seff has zero trace since a trace different from zero would
only introduce a constant shift in the value of the output which does not play any role in
our treatment. Alternatively, we could quotient all the subspaces (the observability spaces
defined in (10) below) by span {i1}.

Denote by ρk(t, u, ρ̄) the solution of (3) with initial condition ρ̄, control u at time t after
k−1 measurements, where, at every measurement, the state is modified as in (5)-(7). Then,
two states ρ̄1 and ρ̄2 are called indistinguishable in k steps (or after k measurements) if, for
every control u and time t

T r
(

Seffρk(t, u, ρ̄1)
)

= Tr
(

Seffρk(t, u, ρ̄2)
)

. (9)

A system is called observable in k steps if indistinguishability in k steps of ρ̄1 and ρ̄2 implies
ρ̄1 = ρ̄2. A system is called observable if it is observable in k steps for some k.

As in the study of controllability (cf. [2], [17], [11]) the dynamical Lie algebra associated
to the quantum system (3) plays a prominent role. The dynamical Lie algebra L is defined
as the Lie algebra generated by spanu∈U{−iH(u)}, where U is the set of possible values for
the control u. In order to express the conditions for observability in an arbitrary number
of steps, under general nonselective measurement, we associate to the super-operator F a
dual super-operator F∗ acting on observables S and defined from the requirement that, for
every S and ρ, Tr(F∗(S)ρ) = Tr(SF(ρ)). Then, we define generalized observability spaces
Vk, k = 0, 1, ..., recursively as

V0 := span{iSeff}, V1 :=
⊕∞

j=0 ad
j
LV0,

Vk :=
⊕∞

j=0 ad
j
LF

∗(Vk−1),

(10)

where adjLV is defined as spanned by all the repeated Lie brackets [R1, [R2, . . . , [Rj , iA] . . .]],
and the Lie bracket is taken j times, R1, . . . , Rj ∈ L and iA ∈ V .
With these definitions, the main results of [7] can be summarized as follows.
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Theorem 1 System (3) with output y in (8) is observable in k steps if and only if

Vk = su(n). (11)

More in general, write ρ = ρ1 + ρ2 where ρ1 is the component of ρ in iVk
3 and ρ2 is the

component along iV⊥
k where V⊥

k is the orthogonal complement of Vk in u(n). Then, we have
the following decomposition of the dynamics

ρ̇1 = −i[H(u), ρ1],

ρ̇2 = −i[H(u), ρ2],
(12)

and we have
y(t) := Tr

(

Seffρ(t)
)

= Tr
(

Seffρ1(t)
)

. (13)

Initial states are indistinguishable in k steps if and only if they differ by an element in iV⊥
k .

In several interesting scenarios, the measurement scheme has a ‘repetition property’ which
can be defined by imposing that the operators Ωmk in (7) satisfy ΩmkΩrl = δmrδklΩmk,
∀m, r ∈ M and ∀k, l. In these cases Φm(Φm(ρ)) = Φm(ρ) ∀ρ, F2 = F , and F∗2 = F∗.
Physically this means that a second measurement does not modify the state more than the
first one. In these cases, it is easy to show that

Vk−1 ⊆ Vk (14)

so that states that are indistinguishable in k steps are also indistinguishable in k − 1 steps
4 Moreover, because of the assumption of finite dimensionality, there exists a k such that
Vk = Vk̄ for all k̄ > k. An example is the standard Von Neumann-Luders measurement of
the observable S. In this case Seff = S. Expressing S as

S =
∑

j

λjΠj , (17)

where the λj ’s are the eigenvalues of S and Πj are the orthogonal projections onto the
corresponding eigenspaces which play the role of Ωmk’s. F is given by

F(ρ) :=
∑

j

ΠjρΠj . (18)

In order to use the results of Theorem 1 we need to find an expression for F and Seff

which describe the particular measurement considered. In the following section we treat in
detail the case of indirect measurement.

3vector space of Hermitian matrices obtained by multiplying by i the skew-Hermitian matrices in Vk
4The proof uses an expression of Seff in terms of effects Fm defined in Section 6. When the output is

an expectation value, then

Seff =
∑

m∈M

mFm. (15)

Moreover using the expression for the effects

Fm =
∑

k

Ω∗
mkΩmk , (16)

and the repetition property, one has F∗(Seff ) = Seff and therefore V1 = F∗(V0). V0 ⊆ V1 and by induction
one obtains (14).
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3 Observability under indirect nonselective measurement

In indirect measurement, the system evolves as in (3) until it is in a state ρS and it is put
in contact with a probe system whose initial state we denote by ρP . The total system of
system and probe at the beginning of the measurement process is in the state

ρTOT := ρS ⊗ ρP . (19)

During the measurement process, of duration τ , the total system evolves according to an
Hamiltonian

HTOT := H(u)⊗ 1+ g(t)A⊗B + 1⊗HP . (20)

The term HP describes the dynamics of the probe system alone. The term g(t)A⊗B gives
the interaction between probe and system, where g(t) is nonzero only during the interval
[0, τ ]; 1 is the identity operator. It is usually assumed that, when the interaction is active,
it represents the dominant term in the Hamiltonian HTOT . Therefore we shall first assume

HTOT := g(t)A⊗B. (21)

At the end of the interval [0, τ ], an observable S is measured on the probe system, or
equivalently an observable 1⊗S is measured on the total system. In the following proposition
we calculate an expression for Seff with the Hamiltonian (21).

Proposition 3.1 With the above definitions and notations, for indirect measurement

Seff =

∞
∑

k=0

AkTr
(

(

adk−iBρP
)

S
)Gk

k!
, (22)

where

G :=

∫ τ

0

g(t)dt. (23)

Proof. The solution of (3) with initial condition ρTOT in (19) and Hamiltonian HTOT in
(21) can be written at time τ as

ρTOT (τ) = e−iGA⊗BρS ⊗ ρP e
iGA⊗B. (24)

Expanding, using the Campbell-Baker-Hausdorff formula, this can be written as

ρTOT (τ) =
∞
∑

k=0

adkA⊗−iB ρS ⊗ ρP
Gk

k!
. (25)

Now, it is easily seen by induction on k that every operator adkA⊗−iB ρS ⊗ρP can be written
in the form

adkA⊗−iB ρS ⊗ ρP =

2k
∑

j=1

Fj ⊗ Lj , (26)

where the Fj ’s are all operators of the form

Fj := Ak−lρSA
l, (27)

for some l, 0 ≤ l ≤ k, and
2k
∑

j=1

Lj = adk−iB ρP . (28)
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Using (25) and (26) in the expression of the output y, we obtain

y = Tr
(

1⊗ SρTOT (τ)
)

=

Tr
(

1⊗ S

∞
∑

k=0

adkA⊗−iB ρS ⊗ ρP
Gk

k!

)

= (29)

∞
∑

k=0

Gk

k!

2k
∑

j=1

Tr(Fj ⊗ SLj),

where Fj and Lj are defined in (26). Using (27), (28) and elementary properties of the trace
we obtain

y =

∞
∑

k=0

Gk

k!
Tr(AkρS)

2k
∑

j=1

TrP (SLj) = (30)

Tr
[(

∞
∑

k=0

AkTrP (ad
k
−iB ρP S)

Gk

k!

)

ρS

]

.

As this has to hold for every ρS , Seff , in y = Tr(SeffρS), is given by (22). ✷

We notice some features of the expression of Seff (22).

Remark 3.2 Assume we retain only the terms up to first order in G. This is reasonable if
the interaction is very quick and of small magnitude. Then we have

Seff ≈ TrP (ρPS)1+ TrP ([−iB, ρP ]S)GA, (31)

so that, if Tr([−iB, ρP ]S) 6= 0 there is a one to one correspondence, in first approximation,
between the values of the output and the value of the observable A, and therefore we can
say that we are measuring A indirectly.

Remark 3.3 In the special case where S and B are canonically conjugate observables on
the probe, i.e.

[B,S] = iγ1, (32)

with γ ∈ RI , the above correspondence between mean values of Seff and A is exact. This
is the case treated in [6]. In order to see this, consider the expression of Seff (22). From
the property

TrP
(

(adk−iB ρP )S
)

= (−1)kTr
(

(adk−iBS)ρP
)

(33)

and (32), we obtain that all the terms in the sum corresponding to k ≥ 2 are zero as adk−iBS
is zero in these cases. Therefore Seff reduces to

Seff = TrP (ρPS)1+ γGA, (34)

where γ is the one in (32) and we have used the fact that Tr(ρP ) = 1.

Remark 3.4 In some cases, it is not appropriate to neglect the term containing H(u) in
(20). In these cases, it is not possible, in general, to obtain a simple expression of Seff as
in (22). However Remark 3.2 above still holds true, assuming the g(t) is a simple square
function in [0, τ ] so that G = τ , and u is constant in [0, τ ]. Notice that we can write,
generalizing (25),

ρTOT (τ) =

∞
∑

k=0

adk−iH(u)⊗1+A⊗−iB ρS ⊗ ρP
τk

k!
. (35)
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and expanding ρTOT (τ) to first order in τ , we have

ρTOT ≈ ρS ⊗ ρP + ad−iH(u)⊗1+A⊗−iB ρS ⊗ ρP τ. (36)

Calculating Tr(1⊗SρTOT ), using the fact that [−iH(u)⊗1, ρS ⊗ ρP ] = [−iH(u), ρS]⊗ ρP ,
and that Tr([−iH(u), ρS]) = 0, we obtain the same expression for Seff as in (31), with G
replaced by τ .

Remark 3.5 The expression of Seff does not depend on the probe being finite dimensional.

The action on ρS (F in (5), (6)) after an indirect measurement is given by

ρS → F(ρS) := TrP (e
A⊗−iBGρS ⊗ ρP e

A⊗iBG), (37)

and it is independent of the observable S measured. This is easily seen by using the properties
of the partial trace TrP and the expression of S (17) in terms of projections. We refer to [6]
(Section 2.4.6) for a discussion of how this operation on the state can be rewritten according
to Kraus representation theorem as in (5)-(7).

In (22), there is a dependence of Seff on the initial state of the probe. As a consequence,
it could be possible to modify the observability property for the system by suitably choosing
ρP . However, the disturbance induced on the system depends on ρP as well, and it is inter-
esting to investigate whether there is a conflict between observability and low disturbance
of the system.

With this motivation in mind, we provide here an analysis of the disturbance on the state
while performing an indirect non selective measurement and show how to find the initial
state of the probe which gives the (worst case) minimal disturbance. Using this result, we
shall show in the next section, with an example, that there is in general no conflict between
observability and minimal disturbance.

We consider, as a measure of the disturbance on the state ρS , the trace norm

d := ‖F(ρS)− ρS(0)‖ =
[

Tr
(

F(ρS)− ρS
)2 ] 1

2 , (38)

expressing the distance between the initial state ρS and the final one, F(ρS). If we fix all
the parameters of the measurement process, the disturbance d will in general be a convex
function of ρS . Since ρS varies on a convex and compact set, the set of all the density
matrices, the maximum will in general be achieved on the boundary i.e. it will be a pure
state. We shall now show how it is possible to find this worst case pure state in the small
time approximation in the case where all the terms in (20) are possibly different from zero
(and u is constant). After that, we will derive the corresponding distance d, depending on
ρP . Then, it will be immediate to find the initial state of the probe which gives the minimum
for d. In the above situation, neglecting higher order terms in τ , d2 can be written as

d2 = −τ2 Tr
(

[H(u) + TrP (BρP )A, ρS(0)]
)2
. (39)

If we set
X := H(u) + TrP (BρP )A, (40)

we can write d2 as
d2 = 2τ2Tr(X2ρ2S −XρSXρS), (41)

where we write ρS for ρS(0) as there is no possibility of confusion. As an orthonormal basis
for the Hilbert space of the system, we choose the eigenvectors of the Hermitian operator
X , |φk〉, k = 1, . . . , n, so

X =

n
∑

k=1

xk|φk〉〈φk| (42)
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and xk are the real eigenvalues of X . Since the worst case ρS is a pure state, we can write
ρS = |ψ〉〈ψ| for some |ψ〉 =

∑

k rk|φk〉 where the n coefficients rk completely specify ρS .
They can be assumed real by suitably redefining the eigenvectors |φk〉. We have the further
constraint

∑

k r
2
k = 1 since TrρS = 1. To determine the worst case ρS , we rewrite (41) as a

function of the rk coefficients

d2 = 2τ2
(

n
∑

k=1

x2kr
2
k −

n
∑

kl=1

xkxl(rkrl)
2
)

(43)

and, rearranging the terms,

d2 = 2τ2
(

∑

k>j

(xk − xj)
2(rkrj)

2
)

. (44)

We now maximize d2 with respect to the n parameters rk using the Lagrange method:







∂rl f̃(r1, . . . , rn) = 0 for l = 1, . . . , n

∂λf̃(r1, . . . , rn) = 0,

(45)

where

f̃(r1, . . . , rn) = d2 + λ
(

n
∑

k=1

rk − 1
)

(46)

and λ is the Lagrange multiplier. More explicitly,










rl

(

∑

j 6=l(xl − xj)
2r2j + λ

)

= 0 for l = 1, . . . , n

∑

k r
2
k = 1.

(47)

System (47) always admits a solution since the function d2 is continuous over the compact
set of pure density matrices. In the next section we will explicitly compute ρS in a particular
case. Without solving (47) in the general case, we summarize our discussion in the following
theorem.

Theorem 2 The worst case disturbance in a small time approximation is given by d2 in
(44), where (r1, . . . , rn) are the solution of system (47). Therefore given u, A and B in the
definition of X, the initial state of the probe which minimizes the worst case error has to be
chosen so as to minimize this d2.

4 Observability and minimal disturbance

As a concrete example of observability under an indirect measurement, we consider the
simple case of two-dimensional system and probe. The system is a qubit with external
control u affecting a two-components magnetic field, for example

H(u) = Ex(u)σx + Ey(u)σy. (48)

We assume a piecewise constant control u ∈ {u1, u2} that flips the magnetic field directions
x and y, that is Ex(u1) = E, Ey(u1) = 0 and Ex(u2) = 0, Ey(u2) = E. We use a second
qubit as probe and we let it interact with the system for a short time τ in which the free
evolution (48) can be neglected. To get information about the initial state ρS we measure
S = σz on the probe. Assuming a simple Ising model of interaction, A = σy and B = σx,

8



the effective observable Seff can be explicitly computed. Splitting the sum in (22) in even
and odd indices, using (33) and considering that

Ak =







1 for k even,

σy for k odd
(49)

and

adk−iBS =







(−1)k/2 2k σz for k even,

(−1)1+k/2 2k+1 σy for k odd
(50)

we find that
Seff = TrP (σzρP ) cos 2G1+ TrP (σyρP ) sin(2G)σy . (51)

Remark 4.1 The observability properties of our system strongly depend on the initial state
of the probe ρP . Suppose that Tr(σyρP ) = 0; in such a case Seff = 0 and the observability
spaces Vk contain only the null vector. Then, for any k the system is not observable and
the states are all indistinguishable. On the other hand, suppose Tr(σyρP ) 6= 0. In such a
case Seff = Tr(σyρP ) sin 2Gσy and Vk = su(2) for all k, and the system is observable in k
steps, for every k.

In some cases, it is not appropriate to neglect the free evolution of the system. However,
following Remark 3.2 we can explicitly evaluate the effective observable:

Seff = TrP (σzρP )1+ 2τT rP (σyρP )σy (52)

where τ is the time of interaction (assumed small) and g(t) is a square function. Remark
4.1 holds true in that case as well.

We now determine the minimal disturbing probe described in Theorem 2. We assumed
that during the time interval τ the control does not change, and its actual value is relevant
in order to find the minimal disturbing probe. In our example, (47) becomes







r1
(

(x2 − x1)
2r22 + λ

)

= 0
r2
(

(x2 − x1)
2r21 + λ

)

= 0
r21 + r22 = 1.

(53)

where x1, x2 are the eigenvectors of X and they depend on u. Solving (53) we find the worst
case ρS :

ρS =
1

2
(|φ1〉〈φ1|+ |φ2〉〈φ2| ± |φ1〉〈φ2| ± |φ2〉〈φ1|) (54)

leading to d2 = (x2 − x1)
2/4. For u = u1, x2 − x1 = 2[E2 + (TrP (σxρP ))

2], for u = u2,
x2 − x1 = 2(E + TrP (σxρP )). Then, the minimally disturbing probe must satisfy







TrP (σxρP ) = 0 for u = u1,

TrP (σxρP ) = max{−E,−1} for u = u2.
(55)

In both cases there is not a conflict between observability and minimal disturbance (see
Remark 4.1).
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5 Observability and state reconstruction

We present in this section a system theoretic treatment of the problem of state determination
for the system (3) with output (4). In systems and control theory, for a continuous time
system such as (3), under observability conditions, the (initial) state is determined from a
continuous reading of the output. From a physics point of view, a continuous monitoring of
the output will introduce a back action on the state of the quantum system and therefore it
will render invalid the model (3). However, this scheme is of interest for quantum systems
in situations like the following. Assume we want to determine the unknown (initial) state
and we have many copies of the same system. We perform a nonselective measurement on
each copy at slightly different times so as to simulate a continuous measurement. The data
so obtained can then be used by the observer to reconstruct the state of the system (without
measurement back-action).

With this motivation in mind, a method for reconstructing the initial state can be ob-
tained by adapting to our case techniques for time varying linear systems [14]. Observability
(in one step) is a necessary and sufficient condition for reconstructing the initial state from
a reading of the output. In fact, if the system is not observable, then it is not possible
to discern between two indistinguishable initial states. Viceversa, assume the system is
observable. Then, we have that [7]

{X∗iSX |X ∈ eL} = su(n). (56)

This means that we can choose a control u, so that, for the corresponding solution Xu of
Schrödinger operator equation

Ẋ = −iH(u)X, X(0) = I, (57)

the n2 − 1 elements of the matrix X∗
uSXu (namely the real functions composing the matrix

modulo the fact that this matrix is Hermitian) are linearly independent. eL is the Lie group
of all the matrices Xm for which there exists a control steering X in (57) from the identity
to Xm. We can select n2 − 1 matrices X1, ..., Xn2−1 so that X∗

1SX1,...,X
∗
n2−1SXn2−1 are

linearly independent and then concatenate the controls steering the matrix X in (57) to
X1, X2X

∗
1 , X3X

∗
2 ,...,Xn2−1X

∗
n2−2. Now assume that, in the control interval [0, T ], the

(significant) real entries of X∗
uSXu are linearly independent and define the linear operator

W which maps n×n Hermitian matrices with zero trace into n×n Hermitian matrices with
zero trace as follows

Wu(ρ̂0) :=

∫ T

0

X∗
u(t)SXu(t)Tr

(

X∗
u(t)SXu(t)ρ̂0

)

dt. (58)

The operator Wu has the following property.

Proposition 5.1 If the n2 − 1 real functions composing X∗
uSXu are linearly independent

then Wu has rank n2 − 1 and therefore it has an inverse W−1
u

Proof. This follow from the well known fact that (see e.g. [14] Section 9.2.1) m functions
lj = lj(t), j = 1, ...,m are linearly independent in an interval [0, T ] if and only if the matrix

gij :=

∫ T

0

li(t)lj(t)dt (59)

is nonsingular. In our case, if we order the n2 − 1 elements of ρ̂0 by row and then with real
and imaginary part i.e. as ρ̂01,1, Re(ρ̂01,2), Im(ρ̂01,2),...,Re(ρ̂0(n−1),n), Im(ρ̂0(n−1),n), ρ̂0n,n
and the entries ofX∗

uSXu in the same way, the matrix which represents the linear application
Wu has the form (59) where li are the elements of X∗

uSXu and therefore it is invertible. ✷
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Now, from formula (4), we obtain

y(t) = Tr
(

X∗
uSXu(ρ0 −

1

n
In×n)

)

, (60)

and therefore
∫ T

0

X∗
u(t)SXu(t)y(t)dt =

∫ T

0

X∗
u(t)SXu(t)Tr

(

X∗
uSXu(ρ0 −

1

n
In×n)

)

dt. (61)

Therefore, using the definition of Wu (58), we have the following formula for the reconstruc-
tion of the initial state ρ0,

ρ0 =
1

n
In×n +W−1

u

(

∫ T

0

X∗
u(t)SXu(t)dt

)

. (62)

Formula (62) represents a system theoretic alternative to methods for quantum state to-
mography. We summarize the discussion in the following theorem.

Theorem 3 Consider system (3) with output (4). If the system is observable (in one step),
then there exists a control such that formula (62) gives the initial state.

An alternative to the ’static’ state reconstruction formula (62) is the design of an asymp-
totic observer namely a dynamical system which uses only a reading of the output and whose
state asymptotically converges to the actual state of the system. We present in the rest of
this section proposal for such an asymptotic observer which is inspired the treatment for
linear time varying systems in [12]. We notice that for static state reconstruction we im-
posed a requirement on the control which impled that the operator defined in formula (58)
has full rank (cf. Proposition 5.1). For an asymptotic observer which estimates the state as
t→ ∞, we need to impose that this property is somehow uniform for every t as t→ ∞. To
make this more precise we define a time dependent, linear symmetric operator on Hermitian
matrices Pt as follows (we omit for notational simplicity the dependence on the control u).
Let U := U(t) be the solution of Schrödinger operator equation

U̇ = iH(u)U, U(0) = I, (63)

where H(u) is the same as in (3) and (57). We define

Pt(∆) := PM,σ
t (∆) :=

∫ t

t−σ

e−M(t−τ)U(t)U∗(τ)SU(τ)U∗(t)Tr
(

U(t)U∗(τ)SU(τ)U∗(t)∆
)

dτ,

(64)
with σ > 0 and M > 0. We assume that the control u is such that there exists a σ > 0,
such that, for every t ≥ σ

α1Tr(∆
2) ≤

∫ t

t−σ

(

Tr
(

U(t)U∗(τ)SU(τ)U∗(t)∆
))2

dτ ≤ α2Tr(∆
2), (65)

for some positive constants α1 and α2.
We choose the same σ in the definition (64) and our assumption implies that

α1e
−MσTr(∆2) ≤ Tr(∆Pt(∆)) ≤ α2Tr(∆

2), (66)

and that Pt is nonsingular, so that we can define the inverse operator P−1
t . Moreover from

the definition (64), we obtain (∆ constant)

d

dt
Pt(∆) = STr(S∆)−e−MσU(t)U∗(t−σ)SU(t−σ)U∗(t)Tr

(

U(t)U∗(t−σ)SU(t−σ)U∗(t)∆
)

(67)
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−MPt(∆) + [iH(u),Pt(∆)] + Pt([iH(u),∆]).

We consider the state observer for system (3)

d

dt
ρ̂ = [−iH(u), ρ̂]−

1

2
P−1
t (S)Tr

(

S(ρ− ρ̂)
)

= [−iH(u), ρ̂]−
1

2
P−1
t (S)(y − Tr(Sρ̂)). (68)

Here ρ̂ is the estimate of the actual state ρ and we are going to show that ∆(t) := ρ(t)− ρ̂(t)
tends to zero as t → ∞. By subtracting (68) from (3), we obtain the differential equation
for ∆,

∆̇ = [−iH(u),∆]−
1

2
Pt(S)Tr(S∆). (69)

Define the Lyapunov candidate function V := V (t,∆) = Tr(∆Pt(∆)), which according
to (66) satisfies

α′
1Tr(∆

2) ≤ V (t,∆) ≤ α′
2Tr(∆

2), (70)

for appropriate positive constants α′
1 and α′

2. Moreover we can calculate d
dtV (t,∆(t)). By

using (69) and (67) along with the property Tr(Pt(∆)P−1
t (S)) = Tr(∆S), we obtain

d

dt
V (t,∆) ≤ −MV (t,∆), (71)

and therefore it follows from Lyapunov second method [9] that system (69) is asymptotically
stable, and therefore ∆ tends to zero as t → ∞. Notice that our Lyapunov is only defined
for t sufficiently large (t ≥ σ) however this does not change the stability analysis as all
the quantities considered are guaranteed to be bounded over a finite interval of time. We
conclude with the following Theorem.

Theorem 4 Consider system (3) with output (4). Assume that the control u satisfies the
condition (65). Then system (68) is an asymptotic observer for (3).

6 Some extensions to selective measurement

In this section, we discuss how the theory described above for nonselective measurement
extends to selective measurement. There is no difficulty in doing this in the most general
case namely in the context of the generalized measurement theory of operations and effects
[6]. According to this theory, given a measurement scheme, to every result m is associated a
positive operator Fm, called an effect. If ρ is the current state of the system, the probability
of obtaining the result m (or of an event m to occur) is

P (m) = Tr(Fmρ). (72)

After a resultm (or, more generally an eventm) has occurred, the state is modified according
to

ρ→ P (m)−1Φm(ρ), (73)

where the positive super-operators Φm are the same operations as in (7) and Tr(Φm(ρ)) =
P (m) = Tr(Fmρ). Two initial states ρ̄1 and ρ̄2 are said to be indistinguishable in k steps,
in selective measurement, if they give every possible result with the same probability at the
k−th measurement, for every choice of the control u. In formulas (cf. (9))

Tr(Fmρk(t, u, ρ̄1)) = Tr
(

Fmρk(t, u, ρ̄2)
)

∀m ∈ M, (74)

where M is the set of possible results (events). Let Pk(m) be the probability of having
the result m at the k−th measurement and let P (m1, ...,mk) be the joint probability of
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having result m1 at the first step, m2 at the second step and so on. Also, indicate by
Pk(mk|m1, . . .mk−1) the conditional probability of having mk at the k−th measurement,
given m1,. . .mk as ordered results of the previous measurements. By use of the formula

Pk(m) =
∑

m1...mk−1

Pk(m|m1, ...,mk−1)P (m1, ...,mk−1), (75)

and repeated use of Bayes’ formula

P (m1, ...,mk−1) = (76)

Pk−1(mk−1|m1, ...,mk−2)P (m1, ...,mk−2),

we can write Pk(m) starting from an initial condition ρ0 as

Pk(m) =
∑

m1...mk−1

Tr
(

FmXk(Φmk−1
(Xk−1(Φmk−2

. . . (Φm1
(X1ρ0X

∗
1 )) . . .))X

∗
k−1))X

∗
k

)

(77)

where Xj , j = 1, . . . , k is the evolution solution of the Schrödinger operator equation (57)
in the interval between the (j − 1)-th measurement and the j−th measurement. Using (77)
and using the linearity of the operators Φm, we can rewrite Pk(m) as

Pk(m) = Tr
(

FmXkF(Xk−1...F(X1ρ0X
∗
1 )...X

∗
k−1)X

∗
k

)

(78)

where F is defined in (6). From this point on the theory goes as in [7] and the result is an
extension of Theorem 1. In particular, one defines the ‘selective’ observability spaces (cf.
(10))

Vsel
0 := spanm∈M{iFm}, Vsel

1 :=
⊕∞

j=0 ad
j
L(V

sel
0 ),

Vsel
k :=

⊕∞
j=0 ad

j
LF

∗(Vsel
k−1),

(79)

and Theorem 1 extends by replacing nonselective observability with selective observability
and the spaces V with the spaces Vsel 5.

The remarks following Theorem 1 on the implications of the repetition property also
extend with only minor formal modifications. In the particular case of the standard Von
Neumann-Luders measurement, the observable S is written in terms of the projectors Πλ

and the eigenvalues λ as

S =
∑

λ∈M

λΠλ, (80)

and the above theory holds with Πλ playing the role of the effects Fm.

Remark 6.1 The observability space Vsel
0 does, in general, include the observability space

V0 and therefore the same is true for the observability spaces Vsel
k and Vk. This implies that

nonselective observability implies selective observability, as it is intuitive but not viceversa.
Consider as a specific example a spin 1/2 particle for which the z component of the spin is
measured, with a Von Neumann-Lüders measurement. In this case V0 = span {iσz}, while
Vsel
0 = span {iσz, i1}, with σz the z-Pauli matrix. So up to the span of i1 the two subspaces

are the same and the observability properties in the selective and non selective case are the
same and depend on the dynamics. However consider a spin 1 on which we perform a Von

5Condition (16) of Theorem 1 needs to be slightly modified as the effects Fm do not necessarily have zero
trace, by replacing Vk with Vk/span{i1} or by making all the effects traceless.
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Neumann-Lüders measurement of the spin along the z direction. In this case, using the
representations of the spin angular momentum calculated for a spin 1 (see e.g. [19] Section
3.5), we have

V0 = span {





i 0 0
0 0 0
0 0 −i



}, (81)

and

Vsel
0 /span{i1} = span {





i 0 0
0 −i 0
0 0 0



 ,





0 0 0
0 i 0
0 0 −i



}. (82)

Therefore V0 and Vsel
0 /span{i1} do not coincide in this case. In particular, if we consider

the dynamics determined by a time-varying control electro-magnetic field in the x−y plane,
we have that V1 is spanned by the three dimensional Lie algebra representation of su(2),
while Vsel

0 /span{i1} is equal to su(3), as one can easily verify by repeated Lie brackets.
Therefore, in this case, we have selective observability but not non selective observability,
in one step. The situation is the same if we consider observability in k steps as V1 = Vk for
every k.

7 Conclusions

This paper has presented a collection of results on the observability of quantum systems
with emphasis on the case of nonselective measurement. In particular

1. Using the formalism of generalized measurement and of effects and operations we
have extended the basic definitions and criteria of observability to the case of general
measurement by introducing an effective observable.

2. We have derived a general expression for the effective observable in the case of Von
Neumann indirect measurement.

3. In the case of indirect measurement, we have derived an expression for the state of the
probe which would introduce the minimum disturbance in the state to be measured.
We have showed that the requirement of a minimal disturbing probe does not in
general compromise the observability properties of the resulting system and therefore
the amount of information obtained on the state by the measurement of the output.

4. We have presented two system theoretic methods to reconstruct the state by a measure-
ment of the expectation value of an appropriate observable. One of them is through an
integral formula and uses readings over a finite interval of time. The other is through
an asymptotic observer whose state converges to the state of the measured system.

5. We have extended the basic definitions and observability criteria to selective measure-
ments.

We believe that the system theoretic approach to quantum state determination is worth
being further investigated. Extensions of our definitions and results to continuous measure-
ments, optimization of the methods for state determination in specific settings, applications
of observer design in closed loop quantum systems are only few possible subjects for future
research.
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