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Quest for Fast Partial Search Algorithm
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A quantum algorithm can find a target item in a database faster than a classical algorithm. One
can trade accuracy for speed and find a part of the database (a block) containing the target item
even faster, this is partial search. We consider different partial search algorithms and suggest the
optimal one. Efficiency of an algorithm is measured by number of queries to the oracle.

I. INTRODUCTION

Database search has many applications and is used widely. Grover discovered a quantum algorithm that searches
faster than a classical algorithm [1]. It consists of repetition of the Grover iteration Ĝ1, which operates on the
computational quantum states. The number of repetitions is:

jfull =
π

4

√
N (1)

for a database with large number of entries N . After jfull the algorithm finds the target item. For more details, see

also [2–4]. Below we shall call Ĝ1 a global iteration.
Sometimes it is sufficient to find an approximate location of the target item. A partial search considers the following

problem: a database is separated into K blocks, of a size b = N/K. We want to find a block with the target item, not
the target item itself. Such partial search was first introduced by Mark Heiligman in [5], as a part of algorithm for list
matching. We can think of partial search in following terms: an exact address of the target item is given by a sequence
of n bites , but we want to find only first k bites (k < n). Fast quantum algorithm for a partial search was found by
Grover and Radhakrishnan in [6]. They showed that classical partial search takes ∼ (N − b) queries, but quantum

algorithm takes only ∼ (
√
N − coeff

√
b) queries. It uses several global iterations Ĝj1

1 and then several local iteration

Ĝj2
2 , see (8). Local searches are Grover iterations [searches] in each individual block made in each block separately in

parallel. Grover-Radhakrishnan algorithm was improved and simplified in [7]. The number of queries to the oracle
in this algorithm was minimized by in [8], the coeff was maximized. Below we shall explain minimized version of
Grover-Radhakrishnan algorithm. We shall call it GRK algorithm. In this paper we consider three other versions of
partial search algorithm. They use different sequences of global and local searches: local-global, global-local-global
and local-global-local. We prove that GRK version still uses minimal number of queries to the oracle. We conjecture
thatGRK algorithm is optimal among all partial search algorithms, which consist of arbitrary sequence of local and

global searches.
The plan of the paper is as follows. In the next section we remind the Grover algorithm. After this we formulate

minimized version of Grover-Radhakrishnan algorithm [GRK algorithm]. In the rest of the paper we consider other
partial search algorithms. We arrive at the conclusion that GRK uses minimal number of queries comparing to other
algorithms.

II. PARTIAL SEARCH

A. Global Iterations

First let us remind the full Grover search. We shall consider a database with one target item. The aim of the
Grover algorithm is to identify a target state |t〉 among an unordered set of N states. This is achieved by repeating
global iteration which is defined in terms of two operators. The first changes the sign of the target state |t〉 only:

Ît = Î − 2|t〉〈t|, 〈t|t〉 = 1, (2)

where Î is the identity operator. The second operator,

Îs1 = Î − 2|s1〉〈s1|, (3)
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changes the sign of the uniform superposition of all basis states |s1〉,

|s1〉 =
1√
N

N−1
∑

x=0

|x〉, 〈s1|s1〉 = 1. (4)

The global iteration is defined as a unitary operator

Ĝ1 = −Îs1 Ît. (5)

We shall use eigenvectors of Ĝ1:

Ĝ1|ψ±
1 〉 = λ±1 |ψ±

1 〉, λ±1 = exp[±2iθ1], |ψ±
1 〉 =

1√
2
|t〉 ± i√

2











N−1
∑

x=0
x 6= t

|x〉
√

(N − 1)











. (6)

They were found in [4], where the angle θ1 is defined by

sin2 θ1 =
1

N
. (7)

B. GRK Algorithm for Partial Search

The first version of partial search was found in [6]. The algorithm uses j1 global iteration and j2 local iterations.
LOCAL ITERATIONS are Grover iterations for each block:

Ĝ2 = −Îs2 Ît. (8)

Ît is given by (2), but Îs2 is different. In one block it acts as:

Îs2
∣

∣

block
= Î

∣

∣

block
− 2|s2〉〈s2|, |s2〉 =

1√
b

∑

one block

|x〉 (9)

In the whole database Îs2 is the direct sum of (9) with respect to all blocks. Both relevant eigenvectors of Ĝ2 were
found by in [4]:

Ĝ2|ψ±
2 〉 = λ±2 |ψ±

2 〉, λ±2 = exp[±2iθ2], |ψ±
2 〉 =

1√
2
|t〉 ± i√

2
|ntt〉 (10)

Here the |ntt〉 is a normalized sum of all non-target items in the target block:

|ntt〉 = 1√
b− 1

∑

x 6=t

target block

|x〉, 〈ntt|ntt〉 = 1. (11)

We shall need an angle θ2 given by

sin2 θ2 =
K

N
=

1

b
. (12)

The partial search algorithm of [6] creates a vector

|d〉 = Ĝ1Ĝ
j1
2 Ĝ

j0
1 |s1〉. (13)

see 1. In the state |d〉 the amplitudes of all items in non-target blocks are zero. Notice that this algorithm uses
global-local sequence of searches. We consider large blocks b = N/K → ∞. The number of blocks K is an important
parameter. We shall replace it with

1We use a modification of [6], suggested in [8]
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sin γ =
1√
K
, 0 ≤ γ ≤ π

4
(14)

The optimal version of this algorithm was find in [8]. It can be described by the following equations:

cos(2j1θ2) =
sin γ cos 2γ

cos γ sin 2γ
, tan(2j0θ1) =

cos 2γ

(sin γ)
√

3− 4(sin γ)2
(15)

Partial search is faster then full search (1) by ∼
√
b, the coefficient in front of

√
b is explicitly calculated in [8] and

studied as a function of number of blocks.

C. Notation and Setup for General Partial Search Algorithm

Let us introduce a unite vector:

|u〉 = 1
√

b(K − 1)

∑

all items in all
non-target blocks

|x〉, 〈u|u〉 = 1. (16)

We shall use a three dimensional space. The orthonormal basis is formed by the target item |t〉, sum of all non-target
items in the target block |ntt〉, defined in (11) and |u〉. All the state vectors involved in present quantum search
problem can be written in this basis as

|V >= (a, b, c)T (17)

meaning

|V >= a|t > +b|ntt > +c|u > (18)

For example, the global uniform state which is used as initial state of searching is given by

|s1〉 = (sin γ sin θ2, sin γ cos θ2, cos γ)
T (19)

and the local uniform state is

|s2〉 = (sin θ2, cos θ2, 0)
T (20)

The algorithms which we consider in this paper can be represented as matrices in this linear space. For example j2
repetitions of the local iteration (8) is:

Ĝj2
2 =





cos(2j2θ2) sin(2j2θ2) 0
− sin(2j2θ2) cos(2j2θ2) 0

0 0 1



 (21)

The ordering of eigenvectors is |t〉, |ntt〉 and |u〉. The matrix has three eigenvectors:

Ĝj2
2 |v±2 〉 = exp(±2iθ2j2)|v±2 〉, Ĝj2

2 |v02〉 = |v02〉 (22)

The eigenvectors can be represented as:

|v±2 〉 =
1√
2





1
±i
0



 , |v02〉 =





0
0
1



 . (23)

Now let us turn our attention to global iterations (5), j1 repetitions of the global iterations can be represented as

Ĝj1
1 =





cos(2j1θ1), sin(2j1θ1) sin γ, sin(2j1θ1) cos γ
− sin(2j1θ1) sin γ, (−1)j1 cos2 γ + cos(2j1θ1) sin

2 γ, sin γ cos γ
(

(−1)j1+1 + cos(2j1θ1)
)

− sin(2j1θ1) cos γ, sin γ cos γ
(

(−1)j1+1 + cos(2j1θ1)
)

, (−1)j1 sin2 γ + cos(2j1θ1) cos
2 γ



 (24)
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This is a simplified asymptotic expression valid in the limit of large blocks b → ∞. We used (14). The matrix has
three eigenvectors:

Ĝj1
1 |v±1 〉 = exp(±2iθ1j1)|v±1 〉, Ĝj1

1 |v01〉 = (−1)j1 |v01〉 (25)

The eigenvectors can be represented as:

|v±1 〉 = 1√
2





1
±i sin γ
±i cosγ



 , |v01〉 =





0
cos γ
− sin γ



 . (26)

D. General Problem of Partial Search

The ultimate goal of partial search is to start with the uniform state |s1 > and locate the target block, and obviously
GRK is not the only means to achieve the goal. Based on the two types of queries, global and local iterations, we
naturally generalize GRK into a wide set of partial search algorithms by alternate use of the two iterations:

Ĝ(jk, jk−1, · · ·, j2, j1, j0) = Ĝ1

jk
Ĝ2

jk−1

Ĝ1

jk−2

Ĝ2

jk−3 · · · Ĝ1

j2
Ĝ2

j1
Ĝ1

j0
(27)

which fulfills the following condition

< u| Ĝ(jk, jk−1, · · ·, j2, j1, j0) |s1 >= 0 (28)

This means that amplitude of each item in non-target block is zero. Here all ji are non-negative integers. The total
number of queries for these algorithms is given by S =

∑

k

i=0
ji, and we should try to minimize S to find the optimal

one.
Now let’s consider various sequences. A few discussions can be made here:

1) The last queries in the sequence should be the global iterations. Note that local iteration (21) doesn’t do anything
on |u > but only rotates state component inside the target block, so if an algorithm makes computational state in the
target block after the last local queries, it can simply waive the last local queries since the state must already rest in the

target block before those unnecessary last local iterations. That is, if < u| Ĝ2

jk+1

Ĝ1

jk
Ĝ2

jk−1 · · ·Ĝ1

j2
Ĝ2

j1
Ĝ1

j0 |s1 >= 0

then we must also have < u| Ĝ1

jk
Ĝ2

jk−1 · · · Ĝ1

j2
Ĝ2

j1
Ĝ1

j0 |s1 >= 0.
2) The first queries could be either local or global iterations. Sequences starting with the global (j0 > 0) include:

Ĝ1

j0
(Global), Ĝ1

j2
Ĝ2

j1
Ĝ1

j0
(Global-Local-Global), and so on. The simplest one, with only global queries involved,

gives nothing but the original Grover’s full search (1), which saves no steps but precisely locates the target item. The
next simplest one, Global-Local-Global, will be studied in later section. Note that the up-to-now established optimal
partial search GRK algorithm also falls into this category, with j2 = 1 and j0, j1 specified by (15).

3) For those starting with local queries (j0 = 0 and j1 > 0), we have: Ĝ1

j2 ˆ
Gj1

2 (Local-Global), Ĝ1

j4 ˆ
Gj3

2 Ĝ1

j2 ˆ
Gj1

2

(Local-Global-Local-Global), and so on. We will later fully consider the Local-Global algorithm and also discuss one
particular case of Local-Global-Local-Global which has j4 to be one, namely with only one global query applied after
the last local iterations (we call this as Local-Global-Local sequence).
4) The argument based on the optimality of Grover’s full search puts lower limit of the partial search steps S ≥
π
4

√
N − π

4

√
b. It was shown in [6] that S = π

4

√
N − R

√
b. Here R is a constant independent of b. The optimal

scheme we are seeking should maximize R. Also according to this thought, we expect the total number of global
queries should scale asymptotically as π

4

√
N − η

√
b, since in partial search we should be faster than full search π

4

but save steps only of order
√
b. As for total number of local queries it should scale like α

√
b, since π

√
b times local

iteration will have rotated the state vector a whole lap on the target block |t > − − |ntt > plane. It follows from
these consideration that R = η− α. Though the numbers of local and global iterations ji are integer numbers and in
principle not continuous variables, in the large block limit we can reasonably treat them as quasi-continuous and use
them as function arguments.
5) R is a function of block number K or instead the parameter γ = arcsin( 1√

K
) with 0 < γ ≤ π/4. Another limit

we will consider is the large K limit, K >> 1 or equivalently γ → 0. In this limit the mathematical formulae will be
significantly simplified, which will be very helpful to analytical efforts as will be seen in later sections. The cases with
not so large K could be complemented by direct numerical verification.
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III. LOCAL-GLOBAL SEQUENCE OF SEARCHES

The Local-Global sequence of searches is the simplest partial search scheme. For such a sequence Ĝ(j2, j1) with
first j1 local iterations applied and then j2 global, we have the final computational state to be:

Ĝ1

j2
Ĝ2

j1 |s1 >= (A,B,C)T (29)

Here A,B,C are the coefficients of components |t >, |ntt >, |u > respectively (see (18)), which are given by

A = sin γ cos(2j2θ1) sin(2j1θ2) + sin2 γ sin(2j2θ1) cos(2j1θ2) + cos2 γ sin(2j2θ1)

B = − sin2 γ sin(2j2θ1) sin(2j1θ2) + (−)j2 cos2 γ sin γ cos(2j1θ2)

+ sin3 γ cos(2j2θ1) cos(2j1θ2) + sin γ cos2 γ(cos(2j2θ1 − (−)j2))

C = − sin γ cos γ sin(2j2θ1) sin(2j1θ2) + sin2 γ cos γ(cos(2j2θ1)− (−)j2) cos(2j1θ2)

+(−)j2 sin2 γ cos γ + cos3 cos(2j2θ1) (30)

Then to accomplish the partial search we should have the constraint equation

< u|Ĝ1

j2
Ĝ2

j1 |s1 >= C = 0 (31)

which means that the amplitude of every item in non-target block vanish (28). Since there are only one set of local
and one set of global iterations, we apply the scaling as discussed before and introduce

j1 = α
√
b , j2 =

π

4

√
N − η

√
b (32)

We have the limitation 0 ≤ α < π and η < π
4

√
K. Now we can rewritten the constraint equation as following:

cos γ ·
(

[sin2 γ cos(2α) + cos2 γ] sin(
2η√
K

)− sin γ sin(2α) cos(
2η√
K

) + (−)j2 sin2 γ[1− cos(2α)]

)

= 0 (33)

Note that K ≥ 2 so cos γ > 0, hence it drops out in the above equation and we have

F (α, η) = [sin2 γ cos(2α) + cos2 γ] sin(
2η√
K

)− sin γ sin(2α) cos(
2η√
K

) + (−)j2 sin2 γ[1− cos(2α)] = 0 (34)

Remember we are interested in the fastest algorithm (using the fewest queries), especially those using less steps

than Grover’s full search. Now we have the total number of queries to be S = π
4

√
N − (η−α)

√
b, thus to minimize S

we should maximize R = η−α under the constraint (34). The point here is that from the constraint we can consider

η as a function of α, thus R is also a function of α, to which it should be optimized. We then have dR
dα

= − dη
dα

+1 = 0,
which leads to

sin(2γ)[cos2 γ(1− cos(2α) cos(
2η√
K

)) + (−)j2 sin γ sin(2α)] = 0 (35)

Again since 0 < 2γ ≤ π/2, we have

sin(2γ) > 0 (36)

so we simplify the above equation as

H(α, η) = 2 sinα[cos2 γ sinα cos(
2η√
K

) + (−)j2 sin γ cosα] = 0 (37)

There is an apparent solution for (34) and (37), namely sinα = sin( 2η√
K
) = 0. This gives α = 0 and η = l ·π ·

√
K, l =

0,−1,−2, · · ·, but to maximize R = η − α we should have α = η = 0, which again recovers the Grover’s full search
solution and is a trivial one for partial search. In the following we only consider nontrivial solutions with sinα 6= 0.
Let’s first look at the large K or small γ limit. In leading order, the two equations (34) and (37) are reduced to be

F (α, η) = sin(
2η√
K

)− γ sin(2α) cos(
2η√
K

) + γ2(−1)j22 sin2 α = 0 (38)
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H(α, η) = sinα[sinα cos(
2η√
K

) + (−1)j2γ cosα] = 0 (39)

To satisfy (38), the first term sin( 2η√
k
) must be at least as small as ∼ γ, so in leading order we must have cos( 2η√

k
) ∼ 1.

This, combined with (39), requires also sinα must be at least as small as ∼ γ (we don’t consider sinα = 0 as mentioned
before), which means cosα ∼ 1. So finally we reduce (39) in leading order to be

sinα+ (−1)j2γ = 0 (40)

Remember we have 0 ≤ α < π thus sinα ≥ 0, so the above equation has solution ONLY for ODD values of j2. For
odd j2 the solution is sinα = γ, this yields two solutions α = γ and α = π − γ. By substituting sinα = γ back into
(38) we get in leading order sin 2η√

K
= 2γ2, which means 2η√

K
= 2γ2+2lπ or 2η√

K
= −2γ2+(2l−1)π, l = 0,−1,−2, · · ·.

But again remember our goal is to maximize R = η − α, so we adopt the optimal Local-Global solution α = γ and
η = γ in large K limit. This, however, seems giving no speedup compared with full search since R = η − α ∼ 0. To
clarify this, we need go to higher order of equations (38) and (39). By properly including corrections up to ∼ γ3 we
can find the solution to be

α = γ +
1

2
γ3 + o(γ4) , η = γ +

2

3
γ3 + o(γ4) (41)

Now we see in large K limit, the Local-Global sequences of search do achieve speedup

R =
1

6
γ3 + o(γ4) (42)

which is very small but still nonzero.
Let’s now turn back to finite values of K. From (37) we have

cos(
2η√
K

) =
(−)j2+1 sin γ cosα

cos2 γ sinα
(43)

Combine (43) and (34) together we get

cos(
2η√
K

) =
sin γ cosα

cos2 γ sinα
, sin(

2η√
K

) =
2 sin2 γ(cos2 γ sin2 α+ cos2 α)

cos2 γ[sin2 γ cos(2α) + cos2 γ]
(44)

By requiring cos2( 2η√
K
)+sin2( 2η√

K
) = 1 we obtain the equation determining the value of α and from α we can obtain η.

Generally it is hard to analyze the problem analytically, so we proceed to numerical solutions , see the figures Fig.1,2.
In these figures we plot R as a function of α with different K for both even and odd values of j2, at each point η is
determined from the constraint (34). For the odd j2 case there is always a positive maximum which is faster than full
search, and as K approaches very large values, the maximum of the ǫ v.s. α curve moves gradually toward the origin
which stands for the full search solution. But for even j2, R is always negative, hence slower than full search.

0 0.5 1 1.5 2 2.5 3

�

-3

-2.5

-2

-1.5

-1

-0.5

0

R

0 0.2 0.4 0.6 0.8 1

�

-0.6

-0.4

-0.2

0

R

FIG. 1. Dependence of R on α with odd j2 in Local-Global sequence, the curves from top to bottom are for
K = 5, 6, 7, 8, 9, 18, 36, 72, 144, 200 respectively. For each α the value of η is solved from (34). Right panel is the amplifi-
cation of the area near origin in Left panel.

6
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�

-3

-2.5

-2

-1.5

-1

-0.5

0

R

FIG. 2. Dependence of R on α with even j2 in Local-Global sequence, the curves from top to bottom are for
K = 5, 6, 7, 8, 9, 18, 36, 72, 144, 200 respectively. For each α the value of η is solved from (34).

An important comparison is to be made between this Local-Global algorithm and the established GRK one. Our
numeric results show that the odd j2 Local-Global searches can get R ≈ 0.3 with K = 2, 3 and get 0 < R < 0.09
for K ≥ 4. For GRK, however, it can achieve R > 0.32 for all K ≥ 2. So the GRK is much faster than the present
Local-Global searches.
To sum up with the Local-Global sequence of searches, we find it can be faster than full search with R

√
b speedup

for block number K up to several tens, but it is always slower than the GRK optimized partial search.

IV. GLOBAL-LOCAL-GLOBAL SEQUENCE OF SEARCHES

In this section we shall consider another algorithm for partial search, the Global-Local-Global sequence of searches,
which starts with (4), first applies j0 global iterations (5), then j1 local iterations (8) and finally j2 global iterations:

Ĝ1

j2
Ĝ2

j1
Ĝ1

j0 |s1〉. (45)

Again amplitudes of all items in non-target blocks should vanish at the end of algorithm:

〈u|Ĝ1

j2
Ĝ2

j1
Ĝ1

j0 |s1〉 = 0. (46)

Let us present this equation in an explicit form. After first set of global iterations the state of the database will be:

Ĝ1

j0 |s1〉 =
sin γ√
b





cos(2j0θ1)
− sin(2j0θ1) sin γ
− sin(2j0θ1) cos γ



+





sin(2j0θ1)
sin γ cos(2j0θ1)
cos γ cos(2j0θ1)



 . (47)

After local iterations the state of the database is:

Ĝ2

j1
Ĝ1

j0 |s1〉 =





sin(2j0θ1) cos(2j1θ2) + sin γ cos(2j0θ1) sin(2j1θ2)
− sin(2j0θ1) sin(2j1θ2) + sin γ cos(2j0θ1) cos(2j1θ2)

cos γ cos(2j0θ1)



 . (48)

Here we neglected ∼ 1/
√
b terms (namely taking large block limit). After next set of global searches we have to

calculate only third component(coefficient of |u〉) of the vector:

0 = 〈u|Ĝ1

j2
Ĝ2

j1
Ĝ1

j0 |s1〉 (49)

= cos(2j1θ2)
{

− cos γ sin(2j2θ1) sin(2j0θ1) + sin2 γ cos(2j0θ1) cos γ
[

(−1)j2+1 + cos(2j2θ1) ]}+
sin(2j1θ2) {− sin γ cos γ sin(2j2θ1) cos(2j0θ1)− sin γ cos γ sin(2j0θ1)[ (−1)j2+1 + cos(2j2θ1) ]}+
+cos γ cos(2j0θ1)[(−1)j2 sin2 γ + cos2 γ cos(2j2θ1)]

7



This constraint equation guarantees the amplitudes of all items in all non-target blocks vanish to successfully complete
the partial search.
First let us check the case j1 = 0, no local searches. In this case the constraint equation can be reduced to

cos[2θ1(j0 + j2)] = 0. This is just the full search: we use j0 + j2 = π
4

√
N global iterations to find the target item.

Now let us consider more general and complicated case. We expect the following scaling, namely the global iterations
j0 = π

4

√
N − η

√
b, j2 = β

√
b and total local iterations j1 = α

√
b with η ≤ π

4

√
K, 0 ≤ β < π

4

√
K and 0 ≤ α < π. It

should be remembered that our purpose is to minimize j0 + j1 + j2 = π
4

√
N − R

√
b, R = η − β − α, or equivalently

maximize R. Our strategy is similar to that used for analyzing Local-Global sequence: study the large K limit
analytically while deal with finite K case numerically.
In the large K or small γ limit, we can take the leading order of (49) and simplify our constraint to a much simpler

form :

η = β cos(2α) +
1− (−)j3

2
sin(2α) (50)

From this equation, there are two possibilities:
1) j2 is even, thus η = β cos(2α). In this case the problem simplifies into maximizing R = β(cos(2α) − 1) − α with

0 ≤ β < π
4

√
K and 0 ≤ α < π. Note that cos(2α)− 1 ≤ 0 so the maximum of R must occur at η = β = α = 0, which

is again the trivial full search solution (1).
2) j2 is odd, thus η = β cos(2α) + sin(2α). We then have to maximize R = β(cos(2α) − 1) + sin(2α) − α with

0 ≤ β < π
4

√
K and 0 ≤ α < π. The solution is

η =

√
3

2
, β = 0 , α = π/6, (51)

which has achieved R
√
b ≈ 0.3424

√
b speedup with respect to full search. This nontrivial optimal solution is exactly

the GRK algorithm, with vanishingly small odd j2 namely j2 = 1.
Now let us discuss finite values of K. We calculated dependence of R on β by determining α from constraint

equations and optimizing η numerically at each value of β. We done this numerically for up to 200 blocks. The
dependence of R on β is monotonous. Corresponding figures took too much memory, so we withdraw them from the
paper. For even j2 searches we consider are slower than full Grover search, while odd j2 these searches are faster than
full search. The optimal searches always occur with odd and vanishing j2 (the GRK case), being about 0.34

√
b faster

than full search. The large K case also confirm our analysis above. Our results here also confirm that the optimum

partial search is GRK [8], it has the form Ĝ1Ĝ2

j1
Ĝ1

j0
.

To conclude, we have found that Global-Local-Global sequence of searches can be much faster than full search (1)
with odd times global iterations applied in the end, and the optimal search is determined to be the GRK algorithm
for all values of K.

V. LOCAL-GLOBAL-LOCAL SEQUENCE OF SEARCHES

In this section we shall discuss another algorithm of partial search. It belongs to the category of Local-Global-Local-
Global sequence but with only one global query applied in the end, which we call as Local-Global-Local sequence. We
start with (4) first apply j1 local iterations, then j2 global iterations (8) and then j3 local iterations, and eventually
a single global query:

Ĝ1Ĝ2

j3
Ĝ1

j2
Ĝ2

j1 |s1〉. (52)

One particular advantage of this type of sequence is that when j1 tends to zero our Local-Global-Local will degenerate
to the GRK type algorithm. Amplitudes of all items in non-target blocks should vanish at the end:

〈u|Ĝ1Ĝ2

j3
Ĝ1

j2
Ĝ2

j1 |s1〉 = 0. (53)

As before, we introduce the scaling of iteration numbers to be j1 = α
√
b, j3 = δ

√
b, and j2 = π

4

√
N − η

√
b. The total

number of queries will be S = π
4

√
N −R

√
b with R = η − α− δ which we want minimize under constraint (53). The

explicit form of the above constraint equation is as follows:
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0 = X · sin(2α) + Y ·
[

cos(2α)− 1
]

+ Z (54)

X = sin γ sin(2γ) sin(2δ) sin(
2η√
K

) + sin2 γ sin(2γ) cos(2δ) cos(
2η√
K

) + sin γ cos γ cos(2γ) cos(
2η√
K

)

Y = sin2 γ sin(2γ) sin(2δ) cos(
2η√
K

)− sin3 γ sin(2γ) cos(2δ) sin(
2η√
K

)− sin2 γ cos γ

[

cos(2γ) sin(
2η√
K

) + (−)j2
]

Z = sin(2γ) sin(2δ) cos(
2η√
K

)− sin γ sin(2γ) cos(2δ) sin(
2η√
K

)− cos γ cos(2γ) sin(
2η√
K

)

Though the above equation is complicated, it is very easy to solve numerically. Also taking large K limit can
significantly simplify it. So as we did before, we analytically study the large K limit, complemented by numerical
results from very small K to very large K.
By taking large K or small γ limit, we obtain from leading order of (54) the following:

sin(2α) + 2 sin(2δ)− 2η = 0 (55)

We then have η = 1

2
sin(2α) + sin(2δ) and hence the total number of queries to be

R =
1

2
sin(2α)− α+ sin(2δ)− δ (56)

By requiring ∂R
∂α

= ∂R
∂δ

= 0 we get the solution maximizing R

α = 0 , δ =
π

6
, η =

√
3

2
(57)

This, with zero j1, again recovers the GRK optimized solution. So in largeK limit we see Local-Global-Local sequence
is no faster than GRK algorithm. Different from Local-Global and Global-Local-Global, here in Local-Global-Local
we notice that the odd j2 and even j2 converge to each other when approaching the optimal solution and the oscillation
terms in (54) with factor (−)j2 disappear.
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0.2

0.3

R

FIG. 3. Dependence of R on α with odd j2 in Local-Global-Local sequence, the curves from top to bottom are for
K = 5, 6, 7, 8, 9, 18, 36, 72, 144, 200 respectively. For each α the value of η is solved from (54) with δ optimized numerically.
Right panel is the amplification of the area near origin in Left panel.
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FIG. 4. Dependence of R on α with even j2 in Local-Global-Local sequence, the curves from top to bottom are for
K = 5, 6, 7, 8, 9, 18, 36, 72, 144, 200 respectively. For each α the value of η is solved from (54) with δ optimized numerically.

For general values of K, we conduct the numerical method and show the results in figures Fig.34, which plot R as
a function of α with η solved from (54) and δ optimized numerically. As can be seen, the optimal solutions always
occur with α = 0 which goes back to GRK case. Also we note that even and odd j2 give same results around optimal
point.
So in this section we have established that the Local-Global-Local sequence of searches can be much faster than

full search, but is no faster than GRK algorithm. In the appendix an alternative approach for Local-Global-Local
sequence based on a conjecture about cancellation of oscillation terms in (54) is briefly described, which though is not
directly relevant here but arrives at similar result and may shed light for future exploration of even more complicated
sequences.

VI. SUMMARY

We considered different partial search algorithms, which consists of a sequence of local and global searches. We
introduced a general framework for studying partial quantum search algorithms and classified various possible se-
quences. Particularly, we studied the Local-Global, Global-Local-Global as well as Local-Global-Local sequences of
searches by combining numerical study for wide range values of K and analytical results for large K limit. All these
algorithms achieve

√
b speedup compared to the Grover’s full quantum search. GRK algorithm [8] is the fastest among

partial search algorithms, which we considered.
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APPENDIX: APPENDIX: REMARKS ON LOCAL-GLOBAL-LOCAL SEQUENCE

Let us make two remarks:
1) Let’s start from the explicit form of constraint equation (54). We minimizing j1 + j2 + j3. It is interesting to

note that at the minimum the oscillation terms cancel. The coefficient at (−1)j2 vanishes because of GRK equation:

cos γ sin 2γ cos(2θ2j3) = sin γ cos 2γ (A1)

This is exactly the first equation of (15). We also can write it in the form:

cos(2j3θ2) =
1− tan2 γ

2
, sin(2j3θ2) =

√

3− 4 sin2 γ

2 cos2 γ
(A2)

10



2) Minimum number of iterations for Local-Global-Local sequences corresponds to j1 = 0 case and the algorithm
is reduced back to GRK version of partial search, see small j1 increase j2 + j1 very little since d(j2 + j1)/dj1 = 0 and
d2(j2 + j1)/dj

2
1 = 0 at j1 = 0.

[1] L.K. Grover, STOC, 212(1996).
[2] C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, SIAM J. Comput. 26, 1510(1997); e-print quant-ph/9701001.
[3] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Fortsch. Phys. 46, 493(1998); e-print quant-ph/9605034.
[4] G. Brassard, P. Hoyer, M.Mosca and A. Tapp: Quantum Amplitude Amplification and Estimation, Contemporary mathe-

matics, vol 305, p 53, 2002
[5] M. Heiligman, Finding Matches between Two Databases on a Quantum Computer, quant-ph/0006136
[6] L. K. Grover and J. Radhakrishnan, e-print quant-ph/0407122.
[7] V. E. Korepin and L. K. Grover, accepted to Quantum Information Processing, quant-ph/0504157.
[8] V. E. Korepin, Journal of Physics A: Math. Gen. vol 38, pages L731-L738, 2005 and e-print quant-ph/0503238.

11


