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No-Cloning and No-Deleting theorems through the existence of Incomparable states

under LOCC
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No-Cloning and No-Deleting theorems are verified with the constraint on local state transforma-
tions via the existence of incomparable states. Assuming the existence of exact cloning or deleting
operation defined on a minimum number of two arbitrary states, an incomparable pair of states
of the joint system between two parties can be made to compare under deterministic LOCC. We
have restricted our proof with the assumption that the machine states of the cloning or deleting
operations do not keep any information about the input states. We use the same setting to establish
the no-cloning and no-deleting theorems via incomparability that supports the reciprocity of the
two operations in their operational senses. The work associates the impossibility of operations with
the evolution of an entangled system by LOCC.
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One of the most important task in quantum informa-
tion processing is to detect the allowable set of opera-
tions performed on quantum systems. If someone wants
to copy an arbitrary quantum information encoded in a
quantum state then no-cloning theorem [1] restricts one
to copy arbitrary quantum information exactly. Quite
reverse to it, if we want to delete arbitrary quantum in-
formation then we have a similar kind of restriction [2, 3].
According to the no-deletion theorem [2, 3], it is not pos-
sible to delete arbitrary quantum information encoded
in a quantum state to a standard one. On the other
hand, manipulation of pure state entanglement provides
us some other kind of restrictions on the evolution of
quantum systems. Sometimes a specific state may be re-
quired to perform a specific information theoretic task.
Then Nielsen’s criterion [4] determines the possibility of
inter-conversion of one pure entangled state shared be-
tween two spatially separated parties to another by deter-
ministic LOCC. This result provides us a necessary and
sufficient condition for converting a bipartite pure entan-
gled state to another by LOCC with certainty. Now one
may ask whether the no-go theorems and other impossi-
bilities only restrict the specific tasks or may be useful
for other kind of tasks that seems to be impossible oth-
erwise? To search for a common origin of these impos-
sibilities one have to find the possibility of interconnec-
tion between themselves within or outside the quantum
formalism. Here we provide a connection between no-
cloning and no-deleting theorems with the incomparabil-
ity of pure entangled states. The work shows, existence
of either of the exact cloning or deletion machine that act
perfectly on any set of non-orthogonal states, will imply
local inter-conversion of a pair of incomparable states
with certainty.

We begin with some necessary background to our work.
In quantum information theory the no-go theorems are
used to define intrinsic properties of quantum systems
beyond their usual status of imposing restrictions over
the systems. They allow quantum systems to perform
some computational tasks which are rather impossible

by using classical algorithms. In quantum cryptography
[5], the possibility of detecting an eavesdropper having
an access on the communication channel emerges out of
the well known no-cloning [1] theorem. In terms of infor-
mation processing, cloning can be viewed as the copying
of information encoded in some systems to other sys-
tems [6]. If |ψ〉 be the input state then we describe exact
cloning operation as |ψ〉 ⊗ |b〉 ⇒ |ψ〉 ⊗ |ψ〉, where |b〉 is
some suitably chosen blank state. Now quantum systems
will not provide complete accuracy of performing those
operations on arbitrary input states. Linearity of quan-
tum operations establishes precisely the impossibility of
existence of an Universal Exact Cloning Machine [1, 7].
Unitarity of any quantum evolution also shows that Uni-
versal Exact Cloning operation is not physical in nature
[8]. Linearity of allowable quantum operations further
provides us another constraint which we termed as No-
Deletion theorem [2, 3]. Deletion is quite a reverse pro-
cess than that of cloning. It is performed on two copies
of an arbitrary input state and is not possible to delete
exactly the information of one copy, keeping intact the
information of the other copy. In other words, the oper-
ation |ψ〉 ⊗ |ψ〉 ⇒ |ψ〉 ⊗ |b〉 is not possible exactly for an
arbitrary input state |ψ〉 with certainty.

There are some other no-go theorems defined on single
qubit systems, such as the no-flipping theorem [9]. From
linearity of quantum operations we find further the re-
striction of no-partial-cloning, and other no-go theorems
obtained from the concepts of various quantum gates [10].
Efforts are made to search the inter-relations between
different no-go theorems and relate them with other the-
ories. For example, no-signaling principle restricts any
physical operation to evolve in such a way that can not
be used to send a signal faster than the speed of light. No-
signaling condition preserves all the impossibilities cited
above [11, 12, 13, 14]. Again, the constraint of non-
increase of entanglement under LOCC, described in a
quite similar way as that of the second law of thermody-
namics. Applying any local operations on the subsystems
of a quantum system together with classical communica-
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tions between distant parties, it is impossible to increase
the entanglement of the joint system. The no-cloning
[15], no-deleting [16], no-flipping [14] and many other
impossibilities [16] are connected with this constraint of
information theory. Also the interrelation between the
cloning and flipping operations is revealed by the conser-
vation laws of simple classical theory [17]. Now a very
new kind of information theoretic restriction on allow-
able quantum operations observed through the existence
of incomparable states [18]. This restriction retrieve the
no-flipping theorem [19] and also detects impossibility of
some general classes of local quantum operations [20].
Here we want to reveal a relation between this constraint
with the very famous no-cloning and no-deleting theo-
rems. The work proceeds to verify the reciprocity of the
two no-principles by dealing them in a single setting with-
out verifying them separately. The connection between
all those no-go theorems of quantum systems with the
impossibility of inter-conversion of incomparable states
would support the existence of incomparable states be-
yond their mathematical status from Nielsen’s criterion.
It provides also the nature of allowable physical opera-
tions.
To present our work we need to define first the con-

dition for a pair of states to be incomparable with
each other. The notion of incomparability of a pair
of bipartite pure entangled states is a consequence of
Nielsen’s [4] majorization criterion. Suppose we want
to convert the pure bipartite state |Ψ〉 to |Φ〉 shared be-
tween two parties, say, Alice and Bob by deterministic
LOCC. Consider the pair (|Ψ〉, |Φ〉) in their Schmidt
bases {|iA〉, |iB〉} with decreasing order of Schmidt coef-

ficients: |Ψ〉 = ∑d

i=1

√
αi|iAiB〉, |Φ〉 =

∑d

i=1

√
βi|iAiB〉,

where αi ≥ αi+1 ≥ 0 and βi ≥ βi+1 ≥ 0, for i =

1, 2, · · · , d−1, and
∑d

i=1 αi = 1 =
∑d

i=1 βi. The Schmidt
vectors corresponding to the states |Ψ〉 and |Φ〉 are
λΨ ≡ (α1, α2, · · · , αd) and λΦ ≡ (β1, β2, · · · , βd). Then
Nielsen’s criterion says |Ψ〉 → |Φ〉 is possible with cer-
tainty under LOCC if and only if λΨ is majorized by λΦ,
denoted by λΨ ≺ λΦ and described as,

∑k

i=1 αi ≤
∑k

i=1 βi ∀ k = 1, 2, · · · , d (1)

It is interesting to note that as a consequence of non-
increase of entanglement by LOCC, if |Ψ〉 → |Φ〉 is pos-
sible under LOCC with certainty, then E(|Ψ〉) ≥ E(|Φ〉)
[where E(·) denote the von-Neumann entropy of the re-
duced density operator of any subsystem and known
as the entropy of entanglement]. Now in case of fail-
ure of the above criterion (1), it is usually denoted by
|Ψ〉 6→ |Φ〉. But it may happen that |Φ〉 → |Ψ〉 un-
der LOCC. And if it happens that both |Ψ〉 6→ |Φ〉 and
|Φ〉 6→ |Ψ〉 then we denote it by |Ψ〉 6↔ |Φ〉 and describe
(|Ψ〉, |Φ〉), as a pair of incomparable states. One of the
peculiar feature of the existence of such incomparable
pairs is that we are really unable to say which state has
a greater amount of entanglement content than that of
the other. For 2× 2 systems there are no pair of incom-
parable pure entangled states as described above. For

our purpose, we want to mention explicitly the crite-
rion of incomparability for a pair of pure entangled states
|Ψ〉, |Φ〉 of m× n system where min{m,n} = 3. Suppose
the Schmidt vectors corresponding to the two states are
(a1, a2, a3) and (b1, b2, b3) respectively, where a1 > a2 >
a3 > 0 , b1 > b2 > b3 > 0 , a1+a2+a3 = 1 = b1+b2+b3.
Then it follows from Nielsen’s criterion that |Ψ〉, |Φ〉 are
incomparable [18] if and only if, either of the pair of re-
lations

a1 > b1 & a3 > b3
b1 > a1 & b3 > a3

(2)

will hold.
Our paper concerns with one-to-two copy exact cloning

operation on a minimum number of two arbitrary states
|0〉, |ψ〉 in the following form

|0〉|b〉 −→ |0〉|0〉
|ψ〉|b〉 −→ |ψ〉|ψ〉 (3)

where |b〉 is a suitably chosen blank state.
We concentrate entirely within the quantum formalism

and for that reason we assume the machine states do
not keep any information about the input states. So we
drop the machine states in the definition of the cloning
operation. No-cloning theorem then turns out to be the
impossibility of this operation for arbitrary state |ψ〉.
Now we consider that Alice and Bob, two spatially sep-

arated parties have a particular setting of a pure bipartite
state in the form given below

|Ωi〉AB = 1
√

Ni
{|1〉A|0ψ0ψ + ψ0ψ0〉B + |2〉A|0ψψ0

−ψ00ψ〉B + |3〉A|00ψψ − ψψ00〉B} ⊗ |b〉B
(4)

This is a six particle state where Alice has one qutrit
and Bob has four qubits entangled with Alice’s system
together with a separate qubit in the form of blank state
|b〉. So the joint system is of 3 × 32 dimension, where
N i = 2(3 − α4) be the normalizing constant and |ψ〉 =
α|0〉 + β|1〉 be an arbitrary qubit with |α|2 + |β|2 = 1.
As the arbitrary input state |ψ〉 can be written in the
form |ψ〉 = cos θ

2 |0〉+ e−iφ sin θ
2 |1〉, where θ, φ satisfy the

following equations 0 ≤ φ ≤ 2π, −π
2 ≤ θ ≤ π

2 , hence
without loss of generality, the parameter α is treated here
as a real constant.
Tracing out Bob’s local system we compute the initial

reduced density matrix ρiA on Alice’s side in the following
form

ρiA = trB [ |Ωi〉AB〈Ωi| ]
= 1

Ni {2(1 + |α|4)P [|1〉] + 2(1− |α|4)
(P [|2〉] + P [|3〉])}

(5)

where P [|j〉] = |j〉〈j|, for any j. The Schmidt vector of
the initial state can be written as λi = (λi1, λ

i
2, λ

i
2)

where λi1 = 1+α4

3−α4 and λi2 = 1−α4

3−α4 . Hence λimax =

max{λi1, λi2} = λi1 and λimin = min{λi1, λi2} = λi2. If
the cloning operation defined in equation(3) exists and is
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applied on Bob’s local system (say on his fourth qubit to-
gether with the blank state), the joint pure state shared
between Alice and Bob could be exactly transformed to
the pure state,

|Ωf 〉AB = 1
√

Nf
{|1〉A|0ψ0ψψ + ψ0ψ00〉B + |2〉A|0ψψ00

−ψ00ψψ〉B + |3〉A|00ψψψ − ψψ000〉B}
(6)

where Nf = 2(3−α5) be the normalizing constant. The
final reduced density matrix on Alice’s side would be

ρ
f
A = trB [ |Ωf 〉AB〈Ωf | ]

= 1
Nf {2(1 + α5)P [|1〉] + 2(1− α5)(P [|2〉] + P [|3〉])

− 2α2(1 − α)(|2〉〈3|+ |3〉〈2|)}
(7)

Hence the Schmidt coefficients of the final state ρfA are

{ 1+α5

3−α5 ,
(1+α2)(1−α3)

3−α5 ,
(1−α2)(1+α3)

3−α5 }. If we denote λ
f
1 =

1+α5

3−α5 , λ
f
2 = (1+α2)(1−α3)

3−α5 and λ
f
3 = (1−α2)(1+α3)

3−α5 ,

then λ
f
min = min{λf1 , λf2 , λf3} = λ

f
3 and thus λfmax =

max{λf1 , λf2}. Now using simple algebra we find, λf1 < λi1
and also λ

f
2 < λi1 (if, λf1 < λ

f
2 ), which implies that,

λfmax < λimax. Finally we get, λfmin = λ
f
3 < λi2 = λimin.

These inequalities clearly indicate the nature of incom-
parability of the pair of pure bipartite states |Ωi〉 and
|Ωf 〉. The incomparability of the states imply that the
final state |Ωf 〉 can not be achieved from the initial state
|Ωi〉 through LOCC with certainty. Thus we are com-
pelled to conclude that the cloning operation performed
on Bob’s local system to implement the transformation
|Ωi〉 → |Ωf 〉 locally, is not a physical operation. In other
words the exact cloning operation is not possible, for any
pair of arbitrary non-orthogonal input states. This en-
sures the successful establishment of no-cloning theorem.
Now if we further treat |Ωf 〉 as the initial pure bipar-

tite state, shared between Alice and Bob and assume the
existence of an exact deleting machine again defined on
only two arbitrary input qubit |0〉, |ψ〉 as

|0〉|0〉 −→ |0〉|b〉
|ψ〉|ψ〉 −→ |ψ〉|b〉 (8)

and apply this machine on Bob’s local system the joint
state |Ωf 〉 between them can be converted into the state
|Ωi〉. Under the previous arguments it could be eas-
ily proved that |Ωi〉 6↔ |Ωf 〉, i.e., the transformation
|Ωf 〉 → |Ωi〉 is impossible by LOCC with certainty. This
impossibility directly indicates that the deleting opera-
tion defined in equation(8) is not a valid physical oper-
ation for arbitrary input states. So this leads us to the
formal no-deleting theorem.

In conclusion this work connects the two famous
no-go theorems from a new viewpoint that restricts the
possible evolution of any quantum system through local
operations. It shows the physical reason behind the ex-
istence of “Incomparable Pair of Pure Bipartite States”.
This connection makes a bridge between two different
aspects of information processing theory. Moreover
the most interesting feature is that the no-cloning and
no-deleting theorems are treated in the same platform
and thus we see the reciprocity of the two theorems from
an operational point of view. Although for simplicity
we assume that the machine states for both the cloning
and deleting operations do not contain any information
about the input qubit state, one may not assume this
restriction. The result also holds if we consider the
general scenario. Another interesting part in our proof
is that the state we have considered, has a peculiar kind
of symmetry and we require 3 × 32 dimensional system
to prove our result. However one may search for a proof
in lower dimensional systems.
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