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Perturbation theory in quantum mechanics studies how quantum systems inter-
act with their environmental perturbations. Harmonic perturbation is a rare spe-
cial case of time-dependent perturbations in which exact analysis exists. Some
important technology advances, such as masers, lasers, nuclear magnetic reso-
nance, etc., originated from it. Here we add quantum computation to this list with
a theoretical demonstration. Based on harmonic perturbation, a quantum mechan-
ical algorithm is devised to search the ground state of a given Hamiltonian. The
intrinsic complexity of the algorithm is continuous and parametric in both time
T and energy E . More precisely, the probability of locating a search target of a
Hamiltonian in N -dimensional vector space is shown to be 1/(1 + cN E−2T −2)
for some constant c. This result is optimal. As harmonic perturbation provides
a different computation mechanism, the algorithm may suggest new directions in
realizing quantum computers.

KEY WORDS: quantum computation; complexity; Grover database search;
harmonic perturbation.

PACS: 03.67.Lx.

1. INTRODUCTION

Quantum physics can in principle speed up solving the unsorted-database
search problem with a quadratic improvement over classical algorithms, as
was first demonstrated by Grover(1). This problem was originally formu-
lated as to identify a target item in the fewest queries to a black-box data-
base. An important reformulation by Farhi et al.(2,3) phrased the prob-
lem as to search the target state with some special eigenvalue of a given
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Hamiltonian H, which represents the database. In particular, constant
and adiabatic perturbations were proposed in(2) and(3), respectively, for
quantum search. These methods yield the same quadratic speed-up as
Grover’s construct.(4,5) Moreover, the adiabatic computation is equiva-
lent to standard quantum computation (in terms of unitary transforma-
tions).(6) Although some physical implementations have been demonstrated
in realizing quantum search algorithms, e.g.(7–9), they may not be scal-
able to solve large problem instances without some fundamental break-
throughs.(10) Searching alternative computation models may suggest new
ways of building quantum computers.

Despite the success of the constant and adiabatic perturbations in
quantum search, the applicability of perturbations based on fast time-
varying Hamiltonians remains an open problem. This paper exploits har-
monic perturbation for quantum computation. A new computation model
is proposed, inspired by the well-studied harmonic perturbation of two-
state systems in quantum mechanics. By preparing a system in one or
the other of its two states initially, such perturbation induces an absorp-
tion-emission cycle (the phenomenon of periodic oscillation of the prob-
ability for the system being found at one of its two states) at the reso-
nance condition. More specifically, consider a two-state physical system of
Hamiltonian H= E1|1〉〈1|+ E2|2〉〈2|, with E2> E1, in a sinusoidal poten-
tial V(t)= γ eiωt |1〉〈2| + γ e−iωt |2〉〈1|. The state evolution of the system is
governed by the Schrödinger equation

i
∂ψ(t)

∂t
= ˜H(t)ψ(t) (1)

with ψ(t)=c1(t)|1〉+c2(t)|2〉 and ˜H(t)=H+V(t). For the initial condition
c1(0)=0 and c2(0)=1, the respective probabilities of finding the system in
states |1〉 and |2〉 are of exact solutions (Rabi’s formula; see, e.g.,(11))

|c1(t)|2 = γ 2

γ 2 + (ω−ω21)
2/4

sin2(Ωt) (2)

|c2(t)|2 = 1−|c1(t)|2 (3)

where ω21 ≡ (E2 − E1) and Ω≡
√

γ 2 + (ω−ω21)
2

4 . At resonance, ω=ω21, the
probability of finding the system in the ground state |1〉 oscillates with
period π/γ , and reaches 1 at time (2k + 1)π/(2γ ), k = 0,1,2, . . . . This
phenomenon reveals the potential usefulness of harmonic perturbation in
searching the ground state of a given Hamiltonian even with arbitrarily
multiple states.
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Intuitively harmonic perturbation to a general multiple-state system
may be used as a mechanism searching the ground state of the corre-
sponding Hamiltonian. Knowing the energy gap between the initial state
and ground state, one can apply a perturbation at the resonance fre-
quency to induce a probability oscillation such that the system swings
between these two states. If a measurement is performed at the right time,
the system situates definitely in its ground state. Based on this intuition,
we devise a quantum search algorithm. An analysis shows that, given a
Hamiltonian in N -dimensional vector space with energy gap E between
its ground state and the other N − 1 excited states, our algorithm finds
the ground state in time T with probability Pr = 1/(1 + cN E−2T −2) for
some constant c. Therefore, to search the right target with a constant
high probability independent of N , the time-energy product complexity
matches prior known Θ(

√
N ) result(12) of other quantum search algo-

rithms.(1–3) Note that, due to the time-energy duality, it is not mean-
ingful to speak about only time or energy complexity, regardless of the
other.

2. QUANTUM SEARCH ALGORITHMS USING HARMONIC
PERTURBATION

We formulate the database search problem as follows. Given a
Hamiltonian H =ΣN

j=1 E j | j〉〈 j |, we are asked to find state |g〉 such that
Eg is the minimum among E j ’s, i.e., |g〉 is the ground state. In the
sequel, we assume any state | j〉 is a configuration of n binary digits;
thus, N =2n . Moreover, we assume that the state of the underlying phys-
ical system is measurable such that its n-bit configuration (e.g., spin ori-
entations of spin-1/2 particles measured along some axis) is completely
determined, and that its corresponding energy under H can be observed
thereafter. Unless otherwise stated, we shall focus on the energy distribu-
tion of Grover’s search problem, and assume one out of the N states is
the ground state of energy 0 and the other N − 1 states are excited states
of energy E>0. In our algorithm, we consider E is adjustable in analyzing
energy complexity.

Below we show the new application of harmonic perturbation in
quantum database search. In principle, if the perturbation potential is
designed properly, knowing the initial (excited) state and energy gap of a
given N -state system, one can apply the resonance frequency to induce
an oscillatory transition almost solely between the initial state and the
ground state, similar to the two-state case. Measuring the system at the
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Fig. 1. The procedure of a naı̈ve quantum search.

right time achieves the highest probability of locating the ground state.
How this peak probability is related to N is our main concern. To gain an
insight on the optimality limit of quantum search using harmonic pertur-
bation, we begin with a simple trial (in Fig. 1) and then proceed with an
optimized procedure (in Fig. 4).

2.1. A Trial Algorithm

Figure 1 sketches a (non-optimal) quantum search procedure. The
algorithm starts with a measurement in the state basis to enforce the
underlying physical system collapsing to some state, say |g1〉. If the cor-
responding eigenenergy of the input Hamiltonian H in state |g1〉 equals 0,
the algorithm has found the target and returns |g1〉 immediately at Step 2.
Otherwise, harmonic perturbation is applied using the sinusoidal potential
V[ j,γ,ω](t) with

〈p|V[ j,γ,ω](t)|q〉=
⎧

⎨

⎩

γ eiωt if q = j and q �= p
γ e−iωt if p = j and p �=q
0 otherwise

for indices p,q =1, . . . , N . By replacing index j with g1 and letting ω= E ,
the perturbation V[g1,γ,E](t) at Step 3 induces an oscillatory probability for
the system swinging mainly between state |g1〉 and the unknown ground
state. The algorithm measures, at Step 4, the state of the system at time
π/(2γ ), when the system situates in the ground state with the highest
probability.

We analyze the condition under which this peak probability is inde-
pendent of the effect of N and is close to 1. For N = 2, the returned
state |g2〉 of the algorithm is the ground state with certain. However, it is
not the case for N >2. To see why, we solve the Schrödinger equation of
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the N -state system with Hamiltonian ˜H(t)= H + V[g1,γ,E](t). To simplify
the discussion, assume without loss of generality that |1〉 is the ground
state and |g1〉 = |2〉 is the initial state. Let ck(t) denote the probability
amplitude of state |k〉 at time t . Then the original N first-order differ-
ential equations from equation (1) can be reduced to three due to the
equivalence of c3(t), c4(t), . . . , cN (t). Hence, at resonance ω= E ≡ωR , the
reduced equations in terms of bk(t)≡ ei Ek t ck(t) are

i ḃ1(t) = γ b2(t) (4)

i ḃ2(t) = γ b1(t)+ (N −2)γ e−iωRt b3(t) (5)

i ḃ3(t) = γ eiωRt b2(t) (6)

To solve |b1(t)|2 and thus |c1(t)|2, apply Laplace transform L on these
equations and solve for B1(s)≡ L{b1(t)} with initial conditions b2(0)= 1
and bk(0)=0 for k �=2. We derive

B1(s)= −iγ

(s2 +γ 2)

1

(1+ γ 2

(s2+γ 2)
Λ1)

(7)

where Λ1 ≡ (N − 2)s/(s + iωR). From the inverse Laplace transform of
B1(s), the exact solution of c1(t) can be derived. For N = 2 and thus
Λ1 =0, c1(t) reduces to equation (2). For general N > 2, we omit listing
the sophisticated expression of c1(t) as the trial procedure is not our final
destination. Nevertheless, the numerical simulations as shown in Figs. 2
and 3 reveal the performance of Algorithm 1 with respect to N . An anal-
ysis suggests that, for a fixed constant γ (among other possibilities), to
maintain a constant peak probability, Pr = maxt |c1(t)|2, we need ωR ∝ N .
Thus, the algorithm has time complexity O(1) due to the fixed perturba-
tion amplitude γ , and has energy complexity O(‖H‖2 + ‖V‖2)= O(ωR +
γ
√

N )= O(N ) for ωR ∈ O(N ). This constant complexity in time and lin-
ear complexity in energy can be explained in the s-domain by observing
that N and ωR in Λ1 of equation (7) are of a first-order relation. That is,
by maintaining N/ωR = ε for some small constant ε, the effect of Λ1 is
negligible and |c1(t)|2 ≈ sin2(γ t). Hence, the algorithm achieves the same
linear resource complexity as the classical algorithm for database search.

As a digression, we noticed that the recent work(13) presented an algo-
rithm on quantum search with resonance, where the perturbation is very
similar to V[ j,γ,ω](t) of Algorithm 1 and thus the algorithm is unlikely
to be superior to the classical counterpart. The misconceived quantum
improvement may be due to the ignorance of the time-energy product
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Fig. 2. For γ = 0.01,ωR = 10, the figure plots |b1(t)|2 of Algo-
rithm 1 under various N and t . It shows that maxt |b1(t)|2
decreases and |b1(t)|2 oscillates faster as N gets larger.
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Fig. 3. For γ =0.01, the figure plots maxt |b1(t)|2 of Algorithm
1 under various N and ωR . It shows that letting ωR ∝ N main-
tains maxt |b1(t)|2 at some constant value.
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Fig. 4. The procedure of an optimized quantum search.

complexity as well as due to over-simplified analysis.5 Moreover, the
formulation assumed that the eigenenergy of the search target is unique
and known a priori. However, under this assumption, the energy eigen-
states could be pre-computed; the target eigenstate can be known once the
eigenenergy is specified without even resort to quantum search. (In con-
trast, we assume that the excited energy eigenstates are degenerate and
there is another observable commute with the Hamiltonian that further
determines the states.)

2.2. A Refined Algorithm

Based on the insight from the s-domain analysis, we obtain an opti-
mized algorithm. Fig. 4 sketches a refined quantum search algorithm sim-
ilar to that of Fig. 1. It differs from the procedure of Fig. 1 mainly in
an additional iteration, and in the applied perturbations Vo

[ j,γ,ω](t) and
Ve

[ j,γ,ω](t), where

5The underlying Hamiltonians for numerical simulations in(13) were taken from the quantum
harmonic oscillator and the two-dimensional quantum rotor, which have eigenenergies Em =
E0(m +1/2) and Em = E0m2, respectively. Since these two Hamiltonians are non-degenerate,
the highest (or average) eigenenergies in consideration must be no less than Ω(N ) and
Ω(N 2), respectively, which corresponds to our notion of energy complexity. On the other
hand, the Schrödinger equations to be solved were oversimplified and resulted in a problem-
atic conclusion about the complexity improvements. In particular, since energy gaps (Ei −
E j )
1/

√
N for any i �= j , the probability amplitude ck (t) of any state other than the initial

and target states was assumed to be 0. However, this assumption can be invalid because the
effect of N −2 such small amplitudes may not be ignored.
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〈p|Vo[ j,γ,ω](t)|q〉=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

γ eiωt if (p = j �=q and q even) or
(q = j �= p and p odd)

γ e−iωt if (q = j �= p and p even) or
(p = j �=q and q odd)

0 otherwise

for indices p,q = 1, . . . , N and Ve
[ j,γ,ω](t)=Vo

[ j,γ,−ω](t) (i.e., Vo
[ j,γ,ω](t) and

Ve
[ j,γ,ω](t) are conjugate to each other). For instance, Vo

[2,γ,ω](t) in a 4×4
matrix reads

⎛

⎜

⎜

⎝

0 γ eiωt 0 0
γ e−iωt 0 γ e−iωt γ eiωt

0 γ eiωt 0 0
0 γ e−iωt 0 0

⎞

⎟

⎟

⎠

.

Because Vo
[ j,γ,ω](t) and Ve

[ j,γ,ω](t) induce noticeable probability oscillation
only when the ground state, say |g〉, situates at an odd (i.e. g odd) and
even (i.e. g even) position, respectively, Algorithm 2 requires one more
perturbation-and-measurement iteration than Algorithm 1. If the ground
state, not returned in Step 2 of Fig. 4, situates at an odd (respectively
even) position, it will be returned at Step 5 (respectively Step 8) almost
for sure. The algorithm can be repeated to further enhance its correctness
probability. (Notice that, in preparing Vo and Ve, we need to specify the
initial state for parameter j . Accordingly the initialization measurements
at Steps 1 and 4 determine the parameters j of Vo

[ j,γ,ω](t) and Ve
[ j,γ,ω](t),

respectively. That is why the perturbation Ve of Step 6 depends on the
measurement result |g2〉 of Step 4. Alternatively one may discharge this
dependence by fixing j to some specific state.)

We analyze the condition under which the probability for Algorithm 2
finding the search target is independent of the effect of N and is close
to 1. To simplify our discussion, again we assume without loss of general-
ity that |1〉 is the ground state of H and the first measurement in Step 1 of
Fig. 4 yields |g1〉= |2〉. To compute the probability that the ground state
|1〉 is correctly returned in Step 5, we solve the Schrödinger equation of
an N -state system with Hamiltonian ˜H(t)=H+Vo

[2,γ,E](t). Let ck(t) be the
probability amplitude of state |k〉 at time t . Then the original N first-order
differential equations can be reduced to four due to the equivalence of
odd coefficients c3(t), . . . , cN−1(t) and the equivalence of even coefficients
c4(t), . . . , cN (t). Hence, at resonance ω= E ≡ωR , the reduced equations in
terms of bk(t)≡ ei Ek t ck(t) are
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i ḃ1(t) = γ b2(t) (8)

i ḃ2(t) = γ b1(t)+ (N −2)
2

γ (e−iωRt b3(t)+ eiωRt b4(t)) (9)

i ḃ3(t) = γ eiωRt b2(t) (10)

i ḃ4(t) = γ e−iωRt b2(t) (11)

To solve |b1(t)|2 and thus |c1(t)|2, we apply Laplace transform L on these
equations and solve for B1(s)≡ L{b1(t)} with initial conditions b2(0)= 1
and bk(0)=0, k �=2. We derive

B1(s)= −iγ

(s2 +γ 2)

1

(1+ γ 2

(s2+γ 2)
Λ2)

(12)

where Λ2 ≡ (N − 2)s2/(s2 + ωR
2). Taking inverse Laplace transform

L−1{B1(s)} and assuming N 
1, we get

b1(t)≈ −iωR
√

Nγ 2 +ωR
2

sin

(

γωR
√

Nγ 2 +ωR
2

t

)

(13)

By equation (13), the peak probability Pr of finding the search target
equals maxt |c1(t)|2 =1/(1+ Nγ 2ωR

−2); the period of the probability oscil-
lation of |c1(t)|2 is τ = π

√

1+ Nγ 2ωR
−2/γ . Since on average the search

target can be found by running the algorithm 1/Pr times each of which
takes time τ , the total time complexity is of τ/Pr∈ O((1+ Nγ 2ωR

−2)
3
2 /γ ).

On the other hand, the energy complexity is of O(‖H‖2 +‖V‖2)= O(ωR +
γ
√

N ). It can be verified that maintaining a constant Pr achieves the tight-
est upper bound of resource complexity. As a result, when Pr is main-
tained as a constant (as we shall assume in the sequel), γ is the only
parameter affecting time complexity T . Letting E denote the energy com-
plexity, we can write Pr = 1/(1 + cN E−2T −2) for some constant c. In
essence, the time-energy product complexity is of O(

√
N ).

The foregoing analysis assumes that the ground state is in an odd
position. Suppose that the ground state is rather in some even position.
Then Vo[g1,γ,E](t) of Step 3 does not induce a state oscillation (and thus
|g2〉 is the same as |g1〉 with high probability) while Ve

[g2,γ,E](t) of Step 6
does. In this case, a similar analysis holds to derive the probability that
the algorithm returns a correct answer at Step 8.

Since Algorithm 2 achieves the O(
√

N ) time-energy product complex-
ity, it is optimal according to the analysis of (2) Below we provide yet
another proof using s-domain analysis. It may provide an intuition why
Algorithm 2 outperforms Algorithm 1. Also we hope that the technique of
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s-domain analysis may become a powerful tool for the complexity analy-
sis of other quantum algorithms. As least in our cases, s-domain analysis
is more intuitive than time-domain analysis.

3. THE OPTIMALITY LIMIT

Comparing Algorithms 1 and 2, one might think that the performed
modification might seem suspiciously irrelevant as it only affects states
|3〉, . . . , |N 〉 in our example. However, this is not true because it in fact
affects |2〉 by equation (9) and thus |1〉 by equation (8). (Note that Algo-
rithm 2 on perturbation Vo, and also Ve, applies both eiωt and e−iωt

simultaneously, rather than sequentially. It differs from applying eiωt on
some states for one search and then applying e−iωt on other states for
another search. Otherwise, Algorithm 2 would be equivalent to perform-
ing Algorithm 1 for several times and has no improvements.) Although
the effect may seem obscure from the time-domain Schrödinger equa-
tions, it is apparent when solving them in the s-domain. The two dif-
ferent phases in Vo and Ve of Algorithm 2 may interfere and simplify
B1(s).

To understand the improvement of Algorithm 2 over Algorithm 1,
compare equations (7) and (12). We see that the undesirable effect of large
N in Λ2 is nullified by ωR

2 while that in Λ1 is nullified by ωR . As a
consequence, for constant γ , Algorithms 1 and 2 are of energy complexi-
ties O(N ) and O(

√
N ), respectively. Ideally, if we can construct a Λ such

that the effect of N is cancelled out by ωR
d for a larger exponent d, then

Pr can be maintained as a constant with a lower resource complexity.
Unfortunately, we will now show that d is at most 2, that is, no improve-
ment is possible by introducing more different phases and/or amplitudes
to the non-zero entries of Vo

[ j,γ,ω](t) and Ve
[ j,γ,ω](t). (Note that replac-

ing the zero entries of Vo
[ j,γ,ω](t) and Ve

[ j,γ,ω](t) with non-zero elements
introduces undesirable amplitude leakage to states other than the initial
and target ground states. Hence we only need to consider modifying the
non-zero entries.)

Consider a general perturbation potential (a Hermitian matrix) with
non-vanishing entries only in the row and column indexed by some initial
state | j〉 similar to V[ j,γ,ω](t). These entries can have arbitrary amplitudes
and frequencies. (However, one of the frequencies must equal ωR such that
resonance is possible.) Assuming without loss of generality |1〉 and |2〉 to
be the ground and initial state, respectively, we solve the corresponding
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Schrödinger equations and can write

B1(s)= −iγ

(s2 +γ 2)

1

(1+ γ 2

(s2+γ 2)
Λ)

with γ being the amplitudes for entries |1〉〈2| and |2〉〈1|, and

Λ ≡ s

(

α1

s + iω1
+ α2

s + iω2
+· · ·+ αm

s + iωm

)

(14)

where index m is polynomial in n (thus m � N =2n), α j ’s are positive real
numbers, ω j ’s are of the form a jωR

x j for real constants a j and x j , and
ω j �= ωk for j �= k. (Note that α j is obtained from the product of some
complex number and its complex conjugate, and thus is positive.)

Theorem 1 Let d equal the largest exponent in terms of ωR in the
denominator of equation (14) minus that in the nominator. Then, d ≤ 2 for
all possible assignments to the constant parameters α j , a j , and x j of Λ.

Since d =2 is achieved, the quantum search algorithm of Fig. 4 is optimal.

4. DISCUSSIONS

We compare various quantum search algorithms, namely, those of (1–3)

and ours, in terms of the generalized problem that the search target
appears more than once in the database (i.e., there are multiple ground
states in our setup). For(1), the number of appearances needs to be known
a priori for accurate search (unless more complicated quantum count-
ing(14) is incorporated); for(2), the method may also seem no easy exten-
sion. In contrast, adiabatic computation(3) supports multiple appearances
of search target. However, it requires careful analysis to decide valid evolu-
tion speed; whether there is quantum speedup may depend on the instance
to be solved. On the other hand, our approach, when applied to the gener-
alized problem, may not always yield quantum speedup. An analysis shows
that a large number of ground odd-states (respectively even-states) for per-
turbation Vo (respectively Ve) makes the multiplicities of b3(t) and b4(t)
in equation (9) differ to some extent. Thus the advantage of Algorithm 2
with respect to Algorithm 1 disappears. It would be interesting to know
if our approach can be extended to handle this generalized problem with
definite quantum speedup. Also whether our method has unseen advanta-
ges over other methods remains further investigation.
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Even though our perturbation Hamiltonian looks more complicated
than that of (2) it does not directly imply our proposal is harder to imple-
ment. The implementation issue is beyond the scope of our focus and
poses a challenge to the experimentalists. Nevertheless, it at least suggests
a new way of performing quantum search.

5. CONCLUSIONS

Motivated by developing a quantum search algorithm, we formulated
a multi-state harmonic perturbation problem and gave an exact analysis.
This paper answered affirmatively and constructively the open question
whether fast time-varying Hamiltonians can be exploited in quantum
search. The presented algorithm is optimal and achieves a quadratic
speed-up over classical algorithms similar to prior methods.(1–3) Under this
new computation model, we hope it may suggest different approaches to
the realization of quantum computers.

APPENDIX

Theorem 1

Proof. Expanding Λ of equation (14), we have

Λ = 1
(s + iω1) · · · (s + iωm)

{

sm +· · ·

+
(

∑

j

α j

∑

k �= j

(

∏

l �= j,l �=k

ωl

))

s2 +
(

∑

j

α j

∏

k �= j

ωk

)

s

}

. (15)

We first show that, if d > 0, the largest exponent in terms of ωR in the
denominator of equation (15) must result from the product of all ω j ’s.
Let σ = x1 + · · ·+ xm ; then the product term ω1ω2 · · ·ωm equals aωR

σ for
some constant a �= 0. For contradiction, suppose that the product term
ω1ω2 · · ·ωm is not the only highest order term in ωR . Then there must exist
at least one ω j = a jωR

x j with x j ≤ 0. Let a′ωR
σ ′

for a′ �= 0 be the prod-
uct term of all ω j ’s with x j > 0. Because a′ωR

σ ′
must appear somewhere

in both the denominator and nominator of equation (15), d must equal 0.
Hence, to have d>0, all ω j ’s must have x j >0. That is, the product term
ω1ω2 · · ·ωm contributes to the largest exponent of ωR in the denominator.

To have d > 2, the exponent of ωR in the nominator of equation
(15) cannot be too large. Observe that, for the resonance condition to
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hold in harmonic perturbation, there must exist some xk = 1. More-
over, there are more than one such xk ’s. Otherwise, the product term
ω1 · · ·ωk−1ωk+1 · · ·ωm cannot be cancelled out. Its existence in the nomi-
nator of equation 15 results in d ≤1, which violates the desired condition.
Because of these constraints and x j >0 for j =1, . . . ,m, the coefficients of
s and s2 in the nominator of equation (15) must equal zero. That is,

∑

j

α j

∏

k �= j

ωk =0, and (16)

∑

j

α j

∑

k �= j

⎛

⎝

∏

l �= j,l �=k

ωl

⎞

⎠=0 (17)

must be satisfied. Multiplying (16) by ( 1
ω1

+· · ·+ 1
ωm
) yields

∑

j

α j

∏

k �= j ωk

ω j
+

∑

j

α j

∑

k �= j

⎛

⎝

∏

l �= j,l �=k

ωl

⎞

⎠=0. (18)

By recognizing that the second term of equation (18) equals 0 by equa-
tion (17), it is immediate that

∑

j

α j

∏

k �= j ωk

ω j
=0. (19)

Again, multiplying equation (19) by the product term ω1ω2 · · ·ωm yields
∑

j

α j

∏

k �= j

ωk
2 =0. (20)

Since α j ’s are positive real numbers, the left-hand side of equation (20)
must be greater than zero unless all ω j ’s equal zero, which violates the
condition that ω j �=ωk for j �= k. Thus, equation (20) does not hold, and
d �> 2. Moreover, since d = 2 is achieved by Algorithm 2, the theorem
follows.
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