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Abstract

We analyze quantum two prover one round interactive proof systems,
in which noninteracting provers can share unlimited entanglement. The
maximum acceptance probability is characterized as a superoperator norm.
We get some partial results and in particular we analyze the ”rank one”
case.

1 Introduction

Classical interactive proof systems allow an interaction between an efficient ver-
ifier and an all powerful prover. Classical interactive proof systems are quite
powerful: one prover can prove theorems in PSPACE to an efficient verifier
[14, 15] while two or more powerful provers that cannot interact between them-
selves can prove the whole of NEXP [2].

Kitaev and Watrous [12] studied the power of interaction between an efficient
quantum verifier and a single prover. They prove that such a proof system is
at least as powerful as a classical one prover proof system but probably not as
powerful as classical two provers (PSPACE ⊆ QIP ⊆ EXP). Moreover they
show that in the quantum case 3 communication messages are enough (QIP =
QIP(3)). They also show how to achieve perfect completeness and parallel
amplification for the model.

The quantum multiprover case is more complicated. As in the classical
case the provers cannot interact between themselves. There are three models
concerning the initial state of the provers private qubits. In one model they
are not allowed to share any prior entanglement at all, in the second they are
allowed to share limited entanglement and in the third they can share unlimited
entanglement. Kobayashi and Matsumoto [13] prove that without entanglement
quantum multiprover proofs are as powerful as classical. They also prove that
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if we limit prior entanglement to be polynomial in the input size the power of
the proof can only decrease.

In this paper we concentrate on the case of two prover quantum interactive
proofs with unlimited prior entanglement and one round of communication. Let
QMIP∗(2, 1) denote the class of languages having such a protocol (for a formal
definition see Section 2.2). The power of QMIP∗(2, 1) is little understood. On
the one hand more entanglement potentially gives the provers power to prove
more languages to the verifier, so it might be the case that QMIP∗(2, 1) is much
stronger than MIP = NEXP. In fact, we are not aware of any known upper
bound on the power of the class QMIP∗(2, 1), and as far as we know the class
might contain undecidable languages. On the other hand, entanglement also
gives the provers more power to cheat, so it is also possible that QMIP∗(2, 1) is
strictly weaker than MIP.

In QMIP∗(2, 1) given a language L we have freedom to choose a good quan-
tum interactive protocol for it. The related question of nonlocal games addresses
the case of a specific given protocol. In a non-local game Alice and Bob play as
provers against a fixed verifier. The provers’ goal is to make the verifier accept.
The value of the game is the probability the verifier accepts when Alice and
Bob play optimally. Alice and Bob cannot interact during the game but in the
quantum model they may share prior entanglement. In other word, local games
are like interactive proofs except that we study a fixed protocol.

For non-local games, [6] and [1] showed several games in which quantum
provers outperform the classical provers and violate Bell inequalities for classi-
cal correlation between noninteracting parties. In some cases (e.g., the Magic
Square game of [1]) there is even a perfect quantum strategy that achieves game
value 1. This demonstrates that for certain protocols entanglement can weaken
the soundness and make a good classical protocol completely useless.

Another demonstration of this phenomenon was given for the class
⊕

MIP∗

of languages having a one round, two prover protocol with classical commu-
nication, provers who share unlimited entanglement, and with the additional
requirement that each prover gives a binary answer and the value of the pro-
tocol is the XOR of the two answer bits. [6] prove (based on previous work on
PCP) that without entanglement this class equals the class NEXP. Yet, in the
same paper it is proved that with unlimited entanglement

⊕
MIP∗ is contained

in NEXP, and this was first improved by the same authors [7] to EXP using
semi-definite programming, and then by [18] to QIP(2) ⊆ EXP (QIP(2) is the
class of languages having a quantum interactive proof with a single prover and
two messages).

Yet, the power of general quantum two prover interactive proofs is still a
mystery. The only result about QMIP∗(2, 1) we are aware of is that of [10]
showing that NEXP is contained in QMIP∗(3, 1) (i.e., three provers, one round)
with a small gap between completeness and soundness, namely, the protocol has
perfect completeness and 1−2−poly(n) soundness. They also show that PSPACE
has a two prover system with prefect completeness and 1−1/poly(n) soundness.

The problem we are facing touches the basic question of what entanglement
can achieve, and how to quantify it. There are many demonstrations of the
power of entanglement (e.g., teleportation [4], superdense coding [5] and the
above non-local games). There is also a natural measure for measuring the
amount of entanglement in pure states [3]. Yet, there is no single good measure
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for the amount of entanglement in mixed states. It is fair to say that entan-
glement is far from being understood. In particular, we don’t even understand
whether infinite entanglement gives additional power over limited entanglement,
and this is the core of the problem we try to deal with in this work.

Our approach is to generalize the direction Watrous and Kitaev [12] took
with the quantum single prover case. They gave an algebraic characterization for
the maximum acceptance probability of a fixed verifier in terms of the diamond
superoperator norm. Then they used a nice algebraic property of the diamond
norm, proved previously by Kitaev [11], to get strong results about quantum
single prover proofs.

We manage to get an algebraic characterization of one-round, two-prover
games. We define a ”product superoperator norm” and use it to characterize the
maximum acceptance probability of a fixed verifier in the quantum two prover,
one round case. However, we are unable to analyze it algebraically. We get some
partial results and in particular we analyze the ”rank one” case. Even this case
is nontrivial. We also present some hypotheses about our characterization and
give their implications on the power of the proof system.

2 Preliminaries and Background

2.1 Basic Notation

For a Hilbert space H with dimension dim(H) we denote by L(H) the set of all
linear operators over H and by U(H) the set of all unitary operators over H.
IH denotes the identity operator over H. A superoperator T : L(H1) → L(H2)
is a linear mapping from L(H1) to L(H2).

Definition 1. The trace out operator is a superoperator from L(H1 ⊗ H2) to
L(H1) defined by

TrH2(A⊗B) = Tr(B) ·A
for A ∈ L(H1) and B ∈ L(H2) and extended linearly to all of L(H1 ⊗H2).

It can be checked that for X ∈ L(H1 ⊗H2), TrH2(X) is independent of the
representation X =

∑
i Ai ⊗Bi. Also it is easy to check that

Tr(TrH2(X)) = Tr(X) (1)

and that
TrH2((C ⊗ I)X) = C TrH2(X) (2)

for any C ∈ L(H1).

2.2 Quantum Interactive Proof Systems

In quantum interactive proof systems the verifier and the provers are quantum
players. The protocol lives in V ⊗M1 ⊗ · · · ⊗Mk ⊗ P1 ⊗ · · · ⊗ Pk where V is
the verifier private register, Mi is the message register between the verifier and
the i’th prover and Pi is the i’th prover private register. V and Mi are of size
polynomial in the input length. In every round of the proof the verifier applies
a unitary transformation on V ⊗M1 ⊗ · · · ⊗Mk after which the Mi register
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is sent to the i’th prover who applies a unitary transformation on Mi ⊗ Pi

and sends Mi back to the verifier. Because of the safe storage and the locality
principle it is convenient to assume without loss of generality that there is only
one measurement done by the verifier at the end, based on which he accepts or
rejects.

A proof system for a language L has soundness s and completeness c, if for
every input x in the language L, there exists a strategy for the provers such
that the verifier accepts with probability at least c, while for every input x not
in the language, for every strategy the provers use, the verifier accepts with
probability at most s.

QIP(m) (Quantum IP) is the class of languages that can be proved to a
quantum verifier with completeness c = 2

3 and soundness s = 1
3 by a single

quantum prover with at most m messages passed between the prover and the
verifier. Note that in the quantum model we usually count the actual number of
passed messages in each direction and not the number of rounds, as is customary
in the classical model.

We now turn to two prover proof systems. An important parameter of the
system is the maximal amount of entangled qubits the provers are allowed to
share (if at all) in the initial state of P1 ⊗ P2. We say that the provers have
q(|x|)-prior-entanglement if all the provers hold at most q(|x|) entangled qubits
in the initial state.

Definition 2.1. Fix functions m(|x|), q(|x|) ≥ 0. QMIP(2, m, q) is the class of
languages L for which there is an interactive proof system with

• two quantum provers.

• m communication rounds.

• The initial state |ψ〉, between the provers is q(|x|)-prior-entangled.

such that

1. If x ∈ L then there exist quantum provers P1, P2 and |ψ〉 for which Vx

accepts with probability at least 2
3 .

2. If x 6∈ L then for all quantum provers P1, P2 and |ψ〉, Vx accepts with
probability at most 1

3 .

Note that we define m as the number of communication rounds, and not as
the number of communication messages. Since we study only the case of one
round two messages, the classical convention is more appropriate in this case.

Denote

QMIP(2,m) = QMIP(2,m, 0)
QMIPpoly(2,m) = QMIP(2,m, poly)

QMIP∗(2,m) = QMIP(2,m,∞)

Kobayashi and Matsumoto prove in [13] that

QMIP(2, poly) = MIP(2, poly) = NEXP
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Also, they proved that if the provers have poly(|x|)-prior-entanglement then we
can assume that dim(Pi) = 2poly(|x|) and therefore QMIPpoly(2, poly) ⊆ NEXP.
It is possible that the containment is strict.

Thus the main difference between the quantum and the classical models is
that the provers can use prior-entanglement to their advantage, and otherwise
QMIP = MIP.

2.3 The Diamond Norm

In this section we survey Kitaev and Watrous [12] characterization of QIP(3)
using the diamond norm.

Definition 2. The Trace Norm of an operator A ∈ L(H) is

‖A ‖tr = max
U∈U(H)

|Tr(UA)|

If A is a normal matrix with eigenvalues {λi} then ‖A ‖tr =
∑

i |λi|. For a
general A it can be checked that ‖A ‖tr = Tr(|A|) = Tr(

√
AA†). Also ‖A ‖tr =∑

i si(A) where s1(A) ≥ · · · ≥ sn(A) are the singular values of A. The natural
generalization of the ‖ ‖tr to superoperators is

Definition 3. Let T : L(H1) → L(H2) be a superoperator. The l1 norm ‖T ‖1
is

‖T ‖1 = max
A:‖A ‖tr=1

‖T (A) ‖tr

Definition 4. A superoperator norm ‖ ‖. is f(n)-stable iff for any
T : L(H1) → L(H2) having dim(H1) = n and every N ≥ 0 it holds that

‖T ⊗ IN ‖. ≤
∥∥ T ⊗ If(n)

∥∥
.

where Im is the identity super-operator over L(Hm), and Hm is a dimension m
Hilbert space.

If f(n) = 0 we say that ‖ ‖. is stable. The l1 norm is not stable. For example
consider the superoperator on L(C2)

T (|i〉〈j|) = |j〉〈i| , (i, j = 0, 1)

On the one hand ‖T ‖1 = 1. On the other hand for A =
∑

i,j |i, i〉〈j, j|, ‖A ‖tr =
2 but ‖T ⊗ I1(A) ‖tr = 4, and so ‖T ⊗ I1 ‖1 ≥ 2.

Fortunately Kitaev [11] proved that ‖ ‖1 is n-stable. For any N ≥ 0 and
n = dim (H1) it holds that ‖T ⊗ IN ‖1 ≤ ‖T ⊗ In ‖1. Watrous [17] gave a
simpler proof of that. This allows one to define the diamond norm.

Definition 5. Let T : L(H1) → L(H2) be a superoperator and n = dim (H1)
then the diamond norm ‖T ‖¦ is

‖T ‖¦ = ‖T ⊗ In ‖1
This defines a norm [11]. The ‖ ‖¦ is indeed stable. Kitaev [11] also proved

that the diamond norm is multiplicative, i.e., ‖T ⊗R ‖¦ = ‖T ‖¦ ‖R ‖¦. He
also gave other equivalent mathematical formulations to it.
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2.4 QIP(3) Characterization by the diamond norm

Denote QIP(3, s, c) the class of languages with a QIP proof system with three
messages, soundness s and completeness c. Let L ∈ QIP(3, s, 1) proved to
a verifier V . The protocol is characterized by the unitary operators V1, V2 the
verifier applies in each round, the initial state projection Πinit and the accepting
projection Πacc. Denote B1 = V1Πinit, B2 = ΠaccV2. Let MAP(B1, B2) denote
the maximal acceptance probability of the verifier. Kitaev and Watrous proved
that

MAP(B1, B2) = ‖T ‖2¦
where T (X) = TrV(B1XB2) giving a neat algebraic characterization of the
game.

As a corollary of the above characterization and the fact that the diamond
norm is multiplicative Kitaev and Watrous showed that QIP(3, s, 1) has perfect
parallel amplification.

3 QMIP∗(2, 1) and the Product Norm

In this section we define a product operator norm and a product superoperator
norm and later prove that the maximum acceptance probability for a given
verifier in quantum one round two prover protocol can be described in terms of
it.

3.1 The Product Norm

Definition 6. For Hilbert spaces V1,V2 and a matrix A ∈ L(V1⊗V2) the product
norm of A is

‖A ‖V1⊗V2
= max

Ui∈U(Vi)
|Tr((U1 ⊗ U2)A)|

Claim 1. ‖ ‖V1⊗V2
is a norm.

Proof. The following things are simple.

1. ‖A ‖V1⊗V2
≥ 0.

2. ‖ cA ‖V1⊗V2
= c ‖A ‖V1⊗V2

.

3. Triangle inequality.

We are left with showing that if ‖A ‖V1⊗V2
= 0 then A = 0. Assume

‖A ‖V1⊗V2
= 0. Then ‖A ‖tr = Tr(UA) for some U ∈ U(V1 ⊗ V2). The

transformation U can be represented as

U =
∑

i

ai(Wi ⊗ Vi)

where Wi ∈ U(V1), Vi ∈ U(V2). This is true because there is a unitary basis for
any L(H). Pauli matrices are one example to such a basis whenH has dimension
that is a power of two, and generalized Pauli matrices (presented, e.g., in [16])
do the job for general dimensions. Thus Tr(UA) =

∑
i aiTr((Wi ⊗ Vi)A) = 0

and so ‖A ‖tr = 0 and A = 0.
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We notice that

‖TrV2(A) ‖tr ≤ ‖A ‖V1⊗V2
≤ ‖A ‖tr (3)

The left inequality follows from Equations (1) and (2) because
Tr((U1 ⊗ U2)A) = Tr(U1 TrV2((I ⊗ U2)A)). The right inequality follows from
the fact that maxUi∈U(Vi) |Tr((U1 ⊗ U2)A)| ≤ maxU∈U(V1⊗V2) |Tr(UA)|. Those
inequalities can be strict, for example for A of the form A = |u〉〈v|. For any
such A, ‖A ‖tr = 1 but we will show later that for A = |epr〉〈00| it holds that
‖A ‖C2⊗C2 = 1√

2
(where |epr〉 = 1√

2
(|00〉 + |11〉)). Another example is A =

|00〉〈11| with the partition V1 = V2 = C2. On the one hand ‖TrV2(A) ‖tr = 0,
but as we will show later ‖A ‖V1⊗V2

= 1.
The following claim was communicated to us by the anonymous referee. It

asserts that ‖A ‖V1⊗V2
is not only the maximum over all unitaries Ui ∈ U(Vi),

but in fact is also the maximum over all linear operators of norm at most 1 in
L(Vi). More precisely,

Claim 2. [8] For Hilbert spaces V1,V2 and a matrix A ∈ L(V1 ⊗ V2)

‖A ‖V1⊗V2
= max

Zi∈L(Vi) : ||Zi||≤1
|Tr((Z1 ⊗ Z2)A)| (4)

Proof. We look at the RHS of (4). Z1 can be expressed as Z1 = NU for some
unitary U and some normal matrix N of norm at most 1 (in fact, N can be
made positive semi-definite but we do not care about that). Expressing N as
N =

∑
λiviv

∗
i for some orthonormal basis {vi}, we see that the RHS (4) can only

be improved by changing each λi to λ′i = w∗i
|wi| where wi = Tr((viv

∗
i U ⊗ Z2)A).

The matrix
∑

λ′iviv
∗
i is, however, unitary.

Thus, we have shown that for any fixed A and Z2 the maximum in the RHS
of (4) may be obtained by some unitary Z1. The same reasoning is then applied
to Z2 showing that the maximum may be obtained by some unitaries Z1, Z2

and therefore equals ‖A ‖V1⊗V2
.

3.2 The Superoperator Product Norm

Next, we define a superoperator product norm.

Definition 7. For Hilbert spaces V,V1,V2 and superoperator T : L(V) → L(V1⊗
V2) the superoperator product norm is

‖T ‖V1⊗V2,tr = max
‖A ‖tr=1

‖T (A) ‖V1⊗V2

It is easy to check that this is a norm and that ‖ I ‖V1⊗V2,tr = 1. Also, it
follows from Equation (3) that ‖T ‖V1⊗V2,tr ≤ ‖T ‖¦. A useful fact is:

Claim 3.
‖T ‖V1⊗V2,tr = max

|u〉,|v〉∈V
‖T (|u〉〈v|) ‖V1⊗V2

Proof. Any A satisfying ‖A ‖tr = 1 has a singular value decomposition A =∑
i si |ui〉〈vi| for si ≥ 0 and

∑
i si = 1. Thus
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‖T (A) ‖V1⊗V2
=

∥∥∥∥∥ T (
∑

i

si |ui〉〈vi|)
∥∥∥∥∥
V1⊗V2

≤
∑

i

si ‖T (|ui〉〈vi|) ‖V1⊗V2

≤ max
i
‖T (|ui〉〈vi|) ‖V1⊗V2

Thus the maximum is always achieved on some rank one matrix |u〉〈v|.
Claim 4. For any two superoperators T : L(H1) → L(V1⊗V2) and R : L(H2) →
L(W1 ⊗W2) it holds that

‖T ⊗R ‖(V1⊗W1)⊗(V2⊗W2),tr
≥ ‖T ‖V1⊗V2,tr · ‖R ‖W1⊗W2,tr

Proof.

‖T ⊗R ‖(V1⊗W1)⊗(V2⊗W2),tr
= max
‖X ‖tr=1

‖ (T ⊗R)(X) ‖(V1⊗W1)⊗(V2⊗W2)

Let us look at the special case where X ∈ L(H1⊗H2) is product, X = A⊗B
for some A ∈ L(H1) and B ∈ L(H2).

‖T ⊗R ‖(V1⊗W1)⊗(V2⊗W2),tr
≥ max

‖A ‖tr=‖B ‖tr=1
‖ (T ⊗R)(A⊗B) ‖(V1⊗W1)⊗(V2⊗W2)

= max
‖A ‖tr=‖B ‖tr=1

‖T (A)⊗R(B) ‖(V1⊗W1)⊗(V2⊗W2)

= max
‖A ‖tr=‖B ‖tr=1,U1,U2

Tr((U1 ⊗ U2)(T (A)⊗R(B)))

for unitaries U1 ∈ U(V1 ⊗ W1) and U2 ∈ U(V2 ⊗ W2). We again look at
the special case where U1 and U2 are also products of unitaries U1 = V1 ⊗W1

and U2 = V2⊗W2 for V1 ∈ U(V1),W1 ∈ U(W1), V2 ∈ U(V2),W2 ∈ U(W2). Then

‖T ⊗R ‖(V1⊗W1)⊗(V2⊗W2),tr

≥ max‖A ‖tr=‖B ‖tr=1,V1,V2,W1,W2 Tr((V1 ⊗W1 ⊗ V2 ⊗W2)(T (A)⊗R(B)))
= max‖A ‖tr=‖B ‖tr=1,V1,V2,W1,W2 Tr((V1 ⊗ V2)T (A)) · Tr((W1 ⊗W2)R(B))
= ‖T ‖V1⊗V2,tr · ‖R ‖W1⊗W2,tr

In particular it follows from above that

‖T ‖V1⊗V2,tr ≤ ‖T ⊗ IW1⊗W2 ‖(V1⊗W1)⊗(V2⊗W2),tr

Next we expand the definition of stability to the superoperator product
norm. We do this by adding to each register of the original partition V1,V2 an
additional register CN and applying the superoperator T ⊗ IN ⊗ IN with the
identity operator over the new registers.

Definition 3.1. A ‖ ‖V1⊗V2,tr is f(n)-stable iff for any T : L(H) → L(V1⊗V2)
having dim(H) = n and every N ≥ 0 it holds that

‖T ⊗ IN2 ‖(V1⊗CN )⊗(V2⊗CN ),tr ≤
∥∥T ⊗ If(n)2

∥∥
(V1⊗Cf(n))⊗(V2⊗Cf(n)),tr
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The ‖ ‖V1⊗V2,tr norm is not 0 stable. Consider the superoperator
T : L(C4) → L(C2 ⊗ C2) that is defined by
T (|i, j〉〈k,m|) = |k, m〉〈i, j|. Then ‖T ‖C2⊗C2,tr ≤ ‖T ‖1 = 1. On the other
hand, ‖T ⊗ I4 ‖(C2⊗C2)⊗(C2⊗C2),tr = 4. To see that use A =

∑
i,j,k,m |i, j, i, j〉〈k, m, k, m|.

It is easy to check that ‖A ‖tr = 4, and that by U |i, k〉 = |k, i〉 we have
(U ⊗ U)(T ⊗ I4)(A) =

∑
i,j,k,m |i, k, j,m〉〈i, k, j,m| = I16 and so

‖T ⊗ I4 ‖(C2⊗C2)⊗(C2⊗C2),tr ≥ 4. Altogether
‖T ⊗ I4 ‖(C2⊗C2)⊗(C2⊗C2),tr ≤ ‖T ‖¦ = 4.

3.3 QMIP∗(2, 1)

In this section we focus on QMIP∗(2, 1). The protocol is applied on the registers
V ⊗M1⊗M2⊗P1⊗P2 where V is the verifier’s private register. M1, M2 are
the registers passed between V and P1, P2 respectively. P1, P2 are the private
registers of the provers. The initial quantum state is some |ψ〉 of an arbitrary
length chosen as part of the prover strategy.

The protocol proceeds as follows:

1. The verifier applies a measurement defined by Πinit = |0〉〈0| on
V ⊗M1 ⊗M2. If the outcome is not |0〉 he rejects. This step checks the
initial state.

2. The verifier applies a unitary transformation V1 on V ⊗M1 ⊗M2. This
prepares the questions to the two provers.

3. Prover i applies a unitary Ui on Mi ⊗Pi.

4. The verifier applies a unitary V2 on V ⊗M1 ⊗M2, followed by a mea-
surement defined by Πacc = |0〉 〈0| on the first qubit of V and accepts iff
the outcome is |0〉.

If the provers are successful in convincing the verifier the final (unnormal-
ized) state of the system is thus

((ΠaccV2)⊗ IP1⊗P2)(IV ⊗ U1 ⊗ U2)((V1Πinit)⊗ IP1⊗P2) |ψ〉

3.4 Acceptance Probability for a Given Verifier

Let V be a verifier. V ’s strategy is defined by B1 = V1Πinit and B2 = ΠaccV2.
Let MAP(B1, B2) denote the maximum acceptance probability of V , when V
plays with the optimal provers. I.e.,

MAP(B1, B2) = max
Ui∈U(Mi⊗Pi),|ψ〉

‖ (B2 ⊗ IP1⊗P2)(IV ⊗ U1 ⊗ U2)(B1 ⊗ IP1⊗P2) |ψ〉 ‖2 (5)

We now relate MAP (B1, B2) to the superoperator product norm. We claim
that:

Theorem 3.2. MAP(B1, B2) = ‖T ⊗ IP1⊗P2 ‖2(M1⊗P1)⊗(M2⊗P2),tr

where T : L(V ⊗ M1 ⊗ M2) → L(M1 ⊗ M2) is defined by T (X) =
TrV(B1XB2).
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Proof. Denote P = P1 ⊗ P2. We start with Equation (4).
√

MAP(B1, B2) = max
U1,U2,ψ

‖ (B2 ⊗ IP)(IV ⊗ U1 ⊗ U2)(B1 ⊗ IP) |ψ〉 ‖

Since we maximize over the unit vector |ψ〉 we can replace the vector norm with
the operator norm

√
MAP(B1, B2) = max

U1,U2
‖ (B2 ⊗ IP)(IV ⊗ U1 ⊗ U2)(B1 ⊗ IP) ‖

The operator norm of the matrix is the largest singular value, and so
√

MAP(B1, B2) = max
U1,U2,v,u

|〈v| (B2 ⊗ IP)(IV ⊗ U1 ⊗ U2)(B1 ⊗ IP) |u〉|

Since this is a scalar number we can insert trace
√

MAP(B1, B2) = max
U1,U2,v,u

|Tr(〈v| (B2 ⊗ IP)(IV ⊗ U1 ⊗ U2)(B1 ⊗ IP) |u〉)|
= max

U1,U2,v,u
|Tr((IV ⊗ U1 ⊗ U2)(B1 ⊗ IP) |u〉〈v| (B2 ⊗ IP))|

By Equation (1)
√

MAP(B1, B2) = max
U1,U2,v,u

|Tr(TrV((IV ⊗ U1 ⊗ U2)(B1 ⊗ IP) |u〉〈v| (B2 ⊗ IP)))|

By Equation (2) we can carry the operators that do not affect V out, use
the definition of T and then use Claim 2.
√

MAP(B1, B2) = max
U1,U2,u,v

|Tr((U1 ⊗ U2)TrV((B1 ⊗ IP) |u〉〈v| (B2 ⊗ IP)))|
= max

U1,U2,u,v
|Tr((U1 ⊗ U2)(T ⊗ IP)(|u〉〈v|))|

= ‖T ⊗ IP ‖(M1⊗P1)⊗(M2⊗P2),tr

Let us notice that this proof is almost identical to the proof of QIP(3)
characterization by Kitaev and Watrous [12]. The main difference is that here
we have a product norm instead of the trace norm as a target. This is because
the initial state of the provers in QMIP∗(2, 1) can be viewed as the first message
and so we actually have three messages instead of two.

4 Product Norm of Rank 1 Matrices

We start with a useful bound on ‖BC ‖tr and use it to show what is the product
norm for rank 1 matrices.

Lemma 4.1. Fix arbitrary matrices B and C with s1(B) ≥ · · · ≥ sn(B) ≥ 0
the singular values of B, and s1(C) ≥ · · · ≥ sn(C) ≥ 0 the singular values of
C. Then

‖BC ‖tr ≤
∑

i

si(B)si(C)
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The above claim appears in [9] (page 182, Exercise 4). Notice also that this
is tight for normal commuting matrices B and C.

With that we prove:

Theorem 4.2. Let A be a rank 1 matrix over V1⊗V2. Thus A = |u〉〈v| for some
u, v ∈ V1⊗V2. Suppose the Schmidt decomposition of u is |u〉 =

∑
i αi |xi〉 ⊗ |yi〉,

and of v is |v〉 =
∑

i βi |wi〉 ⊗ |zi〉 with αi, βi ≥ 0 sorted in descending order.
Then

‖A ‖V1⊗V2
=

∑

i

αiβi

Proof. We can assume without loss of generality that |xi〉 = |yi〉 = |wi〉 =
|zi〉 = |i〉 because ‖A ‖V1⊗V1

= ‖ (U1 ⊗ U2)A(V1 ⊗ V2) ‖V1⊗V1
for any unitaries

U1, V1 ∈ U(V1) and U2, V2 ∈ U(V2). Thus

A = |u〉〈v| =
∑

i,j

αiβj |i, i〉〈j, j|

and

Tr ((U1 ⊗ U2)A) =
∑

i,j

αiβj 〈j|U1 |i〉 〈j|U2 |i〉

=
∑

i,j

αi(U1)j,i · βj(U2)j,i

We can look at this sum of products as a standard matrix inner product. Let us
denote the matrices C and B as follows, Cj,i = αi(U1)j,i and Bj,i = βj(U2)j,i.
Then

Tr ((U1 ⊗ U2)A) =
∑

i,j

Bi,jCi,j = Tr(BtC)

By Lemma 4.1, |Tr(BtC)| ≤ ‖BtC ‖tr ≤
∑

i αiβi, because C = U1diag(α1, . . . αn),
B = diag(β1, . . . βn)U2, and so si(C) = αi and si(B) = βi. Finally, this upper
bound can be achieved by U1 = U2 = I.

5 Directions for Further Research

We have not been able to prove that the product norm stabilizes. However we
would like to check what such a result would give.

Hypothesis 1. ‖ ‖V1⊗V2,tr is poly(n)-stable.

Claim 5. Under hypothesis 1 QMIP∗(2, 1) ⊆ NEXP = MIP.

Proof. Let L ∈ QMIP∗(2, 1). Consider a verifier V for L. By Theorem 5.1 the
maximum acceptance probability of V is

MAP(B1, B2) = ‖T ⊗ IP1⊗P2 ‖2(M1⊗P1)⊗(M2⊗P2),tr

for B1, B2 and T defined as before. It follows from Definitions 6,7 and Claim 2
that

MAP(B1, B2) = Tr((U1 ⊗ U2)(T ⊗ IP1⊗P2)(|u〉〈v|))
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for some U1 ∈ U(M1 ⊗P1), U2 ∈ U(M2 ⊗ P2) and |u〉 , |v〉 ∈ V ⊗M1 ⊗M2 ⊗
P1 ⊗ P2. Under the hypothesis we can fix such U1, U2 and |u〉 , |v〉 that live
in the world of poly(|x|) qubits. Consider the prover strategy U1 ⊗ U2 with
the initial state |u〉. This strategy uses only poly(|x|) entangled qubits in the
initial state and is optimal. Thus QMIP∗(2, 1) ⊆ QMIPpoly(2, 1) and we already
mentioned that Kobayashi and Matsumoto proved in [13] that QMIPpoly(2, 1) ⊆
NEXP.

Another hypothesis is the following. Kitaev and Watrous proved in [12]
that QIP ⊆ EXP by showing a reduction from distinguishing between the case
of MAP(B1, B2) = 1 and MAP(B1, B2) ≤ 1

2 to a semidefinite programming
problem of an exponential size (in the number of qubits).

Hypothesis 2. For T : L(H) → L(V1⊗V2) there exists a Turing machine that
approximates ‖T ‖V1⊗V2,tr in poly(dim(H) + dim(V1 ⊗ V2)) time.

Claim 6. If both hypotheses are true then QMIP∗(2, 1) ⊆ EXP.

Proof. Let L ∈ QMIP∗(2, 1). Hypothesis 1 implies that L has a protocol
〈V, P1, P2〉 with maximum acceptance probability

‖T ⊗ IP1⊗P2 ‖2(M1⊗P1)⊗(M2⊗P2),tr

for T defined as previously and dim(M1⊗P1⊗M2⊗P2) = 2poly(|x|). Hypoth-
esis 2 implies that there is a Turing machine that approximates the maximum
acceptance probability and decides if x ∈ L in poly(2poly(|x|)) time.
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