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Abstract

We show that the NP-hard quadratic unconstrained binarynggtion (QUBO) problem on a graph
G can be solved using an adiabatic quantum computer that imgults an Ising spin-1/2 Hamiltonian, by
reduction througtminor-embeddin@f G in the quantum hardware graph There are two components to
this reductionembeddin@ndparameter settingThe embedding problem is to find a minor-embeddihgy,
of agraphGz in U, which is a subgraph df such thatz can be obtained fro¥.,, by contracting edges. The
parameter setting problem is to determine the correspgrminameters, qubit biases and coupler strengths,
of the embedded Ising Hamiltonian. In this paper, we focutherparameter setting problem. As an example,
we demonstrate the embedded Ising Hamiltonian for solViegriaximum independent set (MIS) problem via
adiabatic quantum computation (AQC) using an Ising spthsystem. We close by discussing several related
algorithmic problems that need to be investigated in ordéatilitate the design of adiabatic algorithms and
AQC architectures.

1 Introduction

Adiabatic Quantum Computation (AQC) was proposed by Faral.fL5,[14] in 2000. The AQC model is based
on theadiabatic theorengsee, e.g.[[22]). Informally, the theorem says that if weetalquantum system whose
Hamiltonian “slowly” changes fronH;,;; (initial Hamiltonian) toHs,, (final Hamiltonian), then if we start
with the system in thgroundstate(eigenvector corresponding to the lowest eigenvalue} @, then at the
end of the evolution the system will be “predominantly” iretround state oHs.,. The theorem is used to
constructadiabatic algorithmsfor optimization problems in the following way: The initidlamiltonianH;,;;

is designed such that the system can be readily initialintmliis known groundstate, while the groundstate of
the final Hamiltoniarf,, encodes the answer to the desired optimization problem.cdimplete (orsystem
Hamiltonian at a time is then given by

t t
H(t) = <1 - S(T)>Hinit + S(f)Hfinal
for t € [0,7] wheres increases monotonically frog(0) = 0to s(1) = 1 andT is the total running time of the
algorithm. If T is large enough, which is determined by the minimum spegggl (the difference between the
two lowest energy levels) of the system Hamiltonian, thelaalic theorem guarantees the state at tinvél be
the groundstate df{(¢), leading to the solution, the ground state*6f7") = Hinal-
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It is believed that AQC is advantageous over standard (tie mgadel) quantum computation in that it is
more robust against environmental noisel [11, 13, 4]. In 2@M4&Vave Systems Inc. undertook the endeavor
to build an adiabatic quantum computer for solving NP-hambjems. Kaminsky and Lloyd [17] proposed a
scalable architecture for AQC of NP-hard problems. Noté¢ AGC is polynomially equivalent to the standard
quantum computation, and therefore AQC is universal. Fetldl. in their original paper [15] showed that
AQC can be efficiently simulated by standard quantum commputa 2004, Aharonov et al[1] proved the more
difficult converse statement that standard quantum cortipaotaan be efficiently simulated by AQC. In this
paper, however, we will focus on a subclass of Hamiltoni&nswn aslsing models in a transverse figlthat
are NP-hard but not universal for quantum computation. $hlsclass of Hamiltonians has been implemented
by D-Wave Systems Inc.

D-Wave’s quantum hardware architecture can be viewed asdinegted graptV with weighted vertices
and weighted edges. See Figlle 1 for an example. Denote e get ofU by V(U) and the edge set éf by

Figure 1. An example hardware graphi & 4 extended grid. Each qubit is coupled with its nearest andt nex
nearest neighbors.

E(U). Each vertex € V(U) corresponds to a qubit, and each edge E(U) corresponds to a coupler between
qubits and qubitj. In the following, we will use qubit and vertex, and coupledadge interchangeably when
there is no confusion. There are two weiglits(called the qubibias) andA; (called thetunneling amplitudg
associated with each qubitThere is a weight/;; (called the couplestrengtl) associated with each couplat.
In general, these weights are functions of time, i.e., ttey wver the time, e.gh;(t).

The Hamiltonian of the Ising model in a transverse field tmglemented is:

Z hi(t)o? + Z Jij(t)of + Z Aq(
1eV(G ij€E(G) ieV(G

witheo =I®I®..00°®...®1 (theo— is in theith position), S|m|IarIy forof andofo?, wherel is the
2 x 2 identity matrix, whilec® andos® are the Pauli matrices given by

. 1o and ot |01
T =l —1|’ ~ 11 o|"

In general, the transverse field (|EZ€V A;o07) encodes the initial HamiltoniaH,;;, while the other two
terms encode the final Hamiltonian:

Hinal = Z hg + Z JZJUZ o3 (1)

ieV(G) ij€E(G)



One can show (see Appendix) that the eigenvalues and thespomding eigenstates Hf;,,; are encoded in the
following energy function of Ising Model:

5(81,...,Sn): Z his; + Z Jijsisj (2)

1€V(G) 1ijEE(G)

wheres; € {—1,+1}, called aspin andh;, J;; € R. In particular, the smallest eigenvalue7dfi,, correspond-
ing to the minimum of€, andarg min £ corresponds to its eigenvector (callgebund statg of Hs,,. When
there is no confusion, we use the energy function of Isingehadd Ising Hamiltonian interchangeably. Here-
after, we refer the problem of finding the minimum energy & king Model or equivalently the groundstate of
Ising Hamiltonian as thésing problem It can be shown that the Ising problem is equivalent to tludlem of
Quadratic Unconstrained Boolean Optimization (QUBO)(®and references therein), which has been shown
to be a common model for a wide variety of discrete optimmaproblems. Maore specifically, finding the mini-
mum of& in (@) is equivalent to finding the maximum of the followingittion (which is also known as quadratic
pseudo-Boolean function][8]) of QUBO on the same graph:

V(@1,...,0n) = Z CiTi — Z JijTix; 3)
)

1€V(G) ij€E(G

wherez; € {0,1}, ¢;, J;; € R. The correspondence between the paraméisrandes will be shown in Sectionl 2.
Therefore, given an Ising/QUBO problem on graghone can thus solve the problem on an adiabatic quantum
computer (using an Ising spin-1/2 system}itan be embedded as a subgraph of the quantum hardwarelgraph
We refer this embedding problem sisbgraph-embeddingo be defined formally in Sectidn 3. In general, there
are physical constraints on the hardware gréphin particular, there is degree-constrainin that each qubit
can have at most a constant number of couplers dictated loyvhee design. Therefore, besides the possible
difficulty of the subgraph-embedding prob@mhe graphs that can be solved on a given hardware graph
through subgraph-embedding must also be degree-boundanhinkky et al.[[17, 18] observed and proposed
that one can embe@ in U through ferromagnetic coupling “dummy vertices” to solvex¥mum Independent
Set (MIS) problenﬁ of planar cubic graphs (regular graphs of degr&efm) an adiabatic quantum computer.
In particular, they proposed anx n square lattice as a scalable hardware architecture on \ahiel3-vertex
planar cubic graphs are embeddable. The notion of embeddiregfollows naturally from physicists’ intuition
that eacHogical qubit (corresponding to a vertex in the input graph) is mapped tab&rae ofphysical qubits
(corresponding to vertices in the hardware graph) that emermagnetically coupled such that each subtree of
physical qubits acts like a single logical qubit. For examph Figure 2, the logical qubit (in orange color)

of the graphG is mapped to a subtree of physical qubits (labellpdf the square lattice. Informally, a minor-
embeddingG.mp Of a graphG in the hardware graply is a subgraph ot/ such thatGen,, is an “expansion”

of G by replacing each vertex @ with a (connected) subtree 6f, or equivalently,G can be obtained from
Gemb by contracting edges (same color in Figllre 2). In graph the&®iis called a (graphininor of U (see for
example([12]). The minor-embedding will be formally define®ectior B. (Remark: The embeddinglin[17, 18]
is a special case of minor-embedding, knowniggmlogical-minorembedding.)

!Readers should be cautious not to confuse this embeddittepnavith the NP-complete subgraph isomorphism problemyHith
both graphs are unknown. However, in our case, the hardwapds known. For example, if the hardware graph is a coragletph,
then the embedding problem will be trivial.

2MIS is a special case of QUBO and will be addressed in Selion 5

3In their earlier paper [17], it was said for graphs with dega¢ most 3, but the Ising Hamiltonian they used there wasefgular
graphs of degree-3.
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Figure 2:Gemp(right) is a minor-embedding af(left) in the square lattic&/. Each vertex (called a logical qubit)
of G is mapped to a (connected) subtree of (same color/labdiresr(called physical qubits) éf. G is called
a (graph) minor olJ.

By reduction through minor-embeddingie mean that one can reduce the original Ising Hamiltonrathe
input graphG to the embedded Ising Hamiltonid@®™ on its minor-embeddingem, i.€., the solution to the
embedded Ising Hamiltonian gives rise to the solution toatginal Ising Hamiltonian. The intuition suggests
that the reduction will be correct provided that the ferrgmetic coupler strengths used are sufficiently strong
(i.e., large negative number). However, how strong is fefrenough™? In[[17, 18], they do not address this
question, i.e. what are the required strengths of theserfexgnetic couplers? In Sectibn4.1, we will show that
it is not difficult to give an upper bound for the ferromagnatoupler strengths and thus explain the intuition.
However, there are indications| [2] that too strong ferronsig coupler strengths might slow down the adiabatic
algorithm. Furthermore, an adiabatic quantum computen @relog computer and analog parameters can only
be set to a certain degree of precision (a condition much stoirggent than the setting of digital parameters).
Hence, the allowed values of coupler strengths are limilddkrefore, from the computational point of view, it
is important to derive as small (in terms of magnitude) asibbs sufficient condition for these ferromagnetic
coupler strengths. Furthermore, what should the bias fgsipal qubits be?

There are two components to the reductiembeddingand parameter setting The embedding problem is
to find a minor-embedding+.,, Of a graphG in U. This problem is interdependent of the hardware graph
design problem, which will be discussed in Secfibn 6. Theupater setting problem is to set the corresponding
parameters, qubit bias and coupler strengths, of the eneldedahg Hamiltonian. In this paper, we assume that
the minor-embedding-..;, is given, and focus on the parameter setting problem (of tfa fiamiltonian). Note
that there are two aspects of efficiency of a reduction. Ohewsefficient one can reduce the original problem to
the reduced problem. For example, here we are concernedfficiergly we can compute the minor-embedding
and how efficiently we can compute the new parameters of theedded Ising Hamiltonian. The other aspect
concerns about the efficiency (in terms the running timehefadiabatic algorithm for the reduced problem. In
general, the latter depends on the former. For exampleutiv@rrg time of the adiabatic algorithm may depend



on a “good” embedding that is reduced to. According to thelzatic theorem (see, e.g. [22]), the running
time of the adiabatic algorithm depends on the minimum spkgap (the difference between the two lowest
energy levels) of the system Hamiltonian, which is definedbth initial Hamiltonian and final Hamiltonian.
That is, the running time (and thus the efficiency of the rédag will depend on both the initial Hamiltonian
and the final Hamiltonian. In this paper, our focus is only ba final Hamiltonian, and therefore we are not
able to address the running time of the adiabatic algorithunthermore, the estimation of the minimum spectral
gap of the (system) Hamiltonian is in general hard. Consatyenalytically analyzing the running time of an
adiabatic algorithm is in general an open question.

Finally, let us remark that there is another different applobased on perturbation theory by Oliveira &
Terhal [21] for performing the reduction. In particularethemployed perturbative gadgets to reduce a 2-local
(system) Hamiltonian to a 2-local Hamiltonian on a 2-D squattice, and were able to show (as in the pioneering
work [19]) that the minimum spectral gap (and thus the rugmime) of the system Hamiltonian is preserved (up
to a polynomial factor) after the reduction, for any giveitiah Hamiltonian. However, besides the ineffective
embedding, as pointed out in [10], the method is “unphysiaalit requires that each parameter grows with the
system size.

The rest of the paper is organized as follows. In Sedtion 2resall the equivalences between the QUBO
problem and the Ising problem. In Sect(dn 3, we introducentior-embedding definition and mention related
work in graph theory. In Section 4, we derive the new pararseteamely values for the qubit bias and the
sufficient condition for the ferromagnetic coupler strérsgtfor the embedded Ising Hamiltonian such that the
original Ising problem can be correctly solved through thbedded Ising problem. In Sectibh 5, we show the
embedded Ising Hamiltonian for solving the (weighted) Mt8lggem. Finally, we conclude with several related
algorithmic problems that need to be investigated in ordéadilitate the design of efficient adiabatic algorithms
and AQC architectures in Sectibh 6.

2 Equivalences Between QUBO and the Ising Problem

In this section, we recall the equivalences between thelgmobf QUBO (maximization o) in Eq. (3)) and the
Ising problem (minimization of in Eq. (2)). Notice thatr; = 312 , that is,z; = 1 corresponds te; = 1, and
x; = 0 corresponds te; = —1. Using a change of variables, we have

V(1,...,xn) = = Z c; — Z JZJ (Z (Z Jij — Z) s; + Z Jljsls])

z€V Z]GE 1€V(G) \jenbr(i) ijeE(G

wherenbr (i) & {7 : ij € E(G)}, the neighborhood of vertexfor i € V(G).

ThereforeMaxY(z1, . .., ,) in Eq. (3) is equivalent tMinE(s1, . . . , s,) IN EQ. (2) whereh; =3 enbr(i) Jij—
2¢i, 0r¢; = 1/2(3 jcnpr(sy Jij — ha) for i € V(G). See Figurél4 for the correspondences between parameters in
QUBO and the Ising model.

3 Minor-Embedding
Definition 3.1. LetU be a fixed hardware graph. Giver, theminor-embeddingf G is defined by
¢o:G—U

such that
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Figure 3: The correspondences between the parameters i©@d8 the Ising Model.

e each vertex iV (G) is mapped to a connected subtrBeof U,

e there exists amap : V(G) x V(G) — V(U) such that for eachij € E(G), there are corresponding
ir(i,j) S V(TZ) andjT(j,i) S V(Tj) with ir(i,j)jr(j,i) S E(U)

GivenG, if ¢ exists, we say thak is embeddablén U. In graph theoryG is called aminor of U. When¢ is
clear from the context, we denote the minor-embeddif@g) of G by Gemp.

Equivalently, one can think of a mind@r of U as a graph that can be obtained from a subgraptl by
contracting edges. See Figlie 2 for an example.
In particular, there are two special cases of minor-embeddi

e Subgraph-embeddingEachT; consists of a single vertex itf. That is, G is isomorphic toGemp (a
subgraph ot/).

¢ Topological-minor-embeddingzachT; is a chain (or path) of vertices .

Minors are well-studied in graph theory, see for exampld.[Glven afixedgraphG, there are algorithms
that find a minor-embedding @ in U in polynomial time of size ot/, from the pioneering)(|V(U)|?) time
algorithm by Robertson and Seymour[23] to recent nearbalirtime algorithm of B. Reed (not yet published).
However, it is worthwhile to reiterate that these algorighane forfixedG, and their running times aexponential
in the size ofG. Here the minor-embedding problem is to find a minor-embegldi G (for any givenG) while



fixing U. To the best of our knowledge, the only known work relatedupminor-embedding problem was by
Kleinberg and Rubinfeld [20], in which they showed that thiex a randomized polynomial algorithm, based on
a random walk, to find a minor-embedding in a given degreextded expander.

Our embedding problem might appear similar to the embedgliinblem from parallel architecture studies.
However, besides the different physical constraints ferdksign of architectures, the requirements are very
different. In particular, in our embedding problem, we dé a@étow for load > 1, which is the maximum number
of logical qubits mapped to a single physical qubit. Also, nequiredilation, which is the maximum number
of stretched edges (through other qubits), to be exactly dwever, all of the existing research on embedding
problems for parallel processofs [13], at least one of timelitions is violated (namely either load 1 or dilation
> 1). In this paper, our focus is on parameter setting such teatdduction is correct, and not on the minor-
embedding algorithm and/or the related (minor-universalidware grapli/ design. These problems will be
addressed in a subsequent paper.

4 Parameter Requirement for the Embedded Ising Hamiltonian

Let the QUBO problem, specified By andG, be given as in Ed.(3), and the correspondinig Eq.(2). Suppose
Gemb is a minor-embedding af, and let€e™° be the embedded energy function associated @ith,:

gemb(slw" 73N) = Z hésl + Z ‘]z/jszsj

ieV(Gemb) 2'jeE(Cyemb)

where|V(Gemb)| = N.

Our goal is to find out the requirement for new parameteisand.J’s, such that one can solve the original
Ising problem onGz by solving the embedded Ising problem on its embeddiag,, or equivalently, such that
there is an one-one correspondence between the minimdhtasfd thus the maximum @f) and the minimum
of gemb,

As we mentioned in the introduction, the idea that we canestite original Ising problem (i.e. finding the
groundstate of the Ising Hamiltonian) on the input grapby solving the new Ising problem on the embedded
graphGemp, in U is that one can use ferromagnetic couplers to connect theiqathygubits in eacl’; of Gemp
such that the subtreég will act as one logical qubit of G.

Notation. First, we recall tha¥ (Gemb) = U,ev(e) V(Ti) aNdE(Gemb) = Usev(ay E(T0)VU;jee(q) ir i) Jr (i)
We distinguish the edges withifis from the edges corresponding to the edges in the origiaphgDenote the
latter by OE(Gemp), that is,OE(Gemp) = UijeE(G) ir(ij)Jr(,i)- (The black edges iGremp Of Figure[2 corre-

spond toOE(Gemp).) For convenienceQnbr (i) &t nbr(ix) N OE(Gemb) andFnbr(iy) f nbr(ig) \ Onbr(ig),
ir € V(T;). Notej,(; ;) € Onbr(iy) < ij € E(G).

The above intuition suggests that we use the same coupdeigstrfor each original edge, i'd{;(i,j)jfu,n =
Jij fori-; )iz € OE(Gemb), and use ferromagnetic coupler strengtfi(< 0), for each edge < E(7;), and
redistribute the bias; of a logical qubit: to its physical qubits irf;. That is, we chooségk for physical qubit
i, € V(T;) such thad ", vz, hi, = hi

Therefore, we have

M (s1,...,8Ny) = Z ( Z hi, Si, + Z qusipsz’q)-i- Z JijSicipSivgy  (8)

1€V(GQ) \ireV(T;) ipiqg€E(T) ij€E(G)



4.1 An Easy Upper Bound for the Ferromagnetic Coupler Strenths

In this section, we derive an easy upper bound for the fergmmtic coupler strengths. The derivation is based
on thepenalty or multipliermethod, in which a constrained optimization is reduced taraonstrained one by
replacing the corresponding expression into the objeétimetion as a penalty term with a large multip[ﬁﬁor
example, this was used in the reduction from general (highder) unconstrained binary optimization to the
quadratic one (see|[8]).

Notice that by construction (i.eG is a minor ofGemp andh;, s are chosen such that, .7, h;, = hi),
minimization of€ in (2)) is equivalent to

min Eeonstrained (317 SR SN) = Z Z h;k Sip T Z Jijsi_r(iyj)sj_r(j’i) (5)
1€V(Q) i eV(T;) ij€E(G)
subject to
SiySiy = 1 for all ’ipiq € E(TZ’),’i S V(G)

where the conditiors;, s;, = 1 for all i,i, € E(T;) is equivalent to requiring the spins of physical qubits that
correspond to the same logical qubtb be of the same sign.
The corresponding unconstrained minimization is thus

min 5/(81, . ,SN) = Z Z h;ks,k + Z qu(sipsiq — 1) + Z Jijsif(i,j)sjr(j,i)(6)

i€V(G) ipeV(T;) ipiq €E(T;) ij€E(G)

which is equivalent to solving EQI(4) 8S,cy(q) >_i,i,ce(r) Fi - is @ constant. We are interested in how large

(in terms of magnitude}’s are sufficient to guarantee that the solution of[Eq.(6)sitre solution to EJ.{5),
and consequently to EQI(2). The result is stated in theviatig theorem.

Theorem 4.1. LetEqpnstrained @NAE’ given as in EqE) and Eq(). Suppose that far € V(G),

FPr<— b+ > 14 for i,i, € E(T}) 7)
JjE€nbr(z)
then we have; s; = 1forall iyi, € E(T3), i € V(G), where(s] , ..., siy) = arg min £’. Consequently,
min Eeonstrained (515 - - -, Sn) = Min &’ (s1,..., 8N)-
Proof. Let (s],,...,s}) = arg min&’. Suppose on the contrary. That is, there exfstf, € E(T}), for some
1< f <nsuch thats’}ps}q = —1. Then we have
Estsi) == D0 W+ Y gl | = 2FP 4 Ee(sT, o 5h)
frev(Ty) jEnbr(f)

“This is closely related to the discrete Lagragian Multipligethod. However, the Lagragian multipliers are treatedrdsown or
iteratively solved with the Lagragian function.



where

gr/est('sl» s >SN) = Z Z (h;k iy, + Z F;pq(sipsiq B 1)) + Z Jijsir(i,j)sj‘r(j,i)‘

iEV(G) it f ik eV(T)) ipig€E(T) iGEE(G) i S

Thus, if F's satisfy EqQ.??), we have

Esiossi) > S0 Wl + S gl + (st 53)

feV(Ty) jEnbr(f)
which is at leasinin &’ (s1,...,sy) = £'(s7,...,sy), a contradiction. Consequently, we can conclude that
s; s; = 1foralliyiq € E(T:), i € V(G), where(s} , ..., sy) = arg min £, implying the claimed equality of
the minima. O

4.2 A Tighter Bound for the Ferromagnetic Coupler Strengths

As we mentioned Sectidd 1, it is desired to obtain tighterrioisufor the ferromagnetic coupler strengths. In
this section, we show that with a more careful analysis, wereduce the bound by setting the qubit bia§ (
appropriately.
Fori € V(G), let
def
Ci = Y il = |hal.
jéE€nbr(7)
Observe that ilC; < 0, thatis,>
h; < 0, where(sy,...,s})
C; > 0.

jenbr(iy |ij| < |hil. Then we haves; = —1 for 2; > 0, ands} = +1 for
= arg min£. Therefore, WLOG, for the rest of the paper, we will assura th

Theorem 4.2. LetE () resp.) andG be given as in E@2) (Eq.(3) resp.). Suppos€&.mp, is a minor-embedding
of G, and let€e™ be the energy of the embedded Ising Hamiltonian given ig@@Egrhen for alli € V(G), if

Zjﬂj,i)eonbr(zk) |Jij| — Ci/l; i is one of thd; leaves off;
Jij otherwise

h;k = sign(h;) {

Jr(5,3) €Onbr (i) |

and
hl;lCi for all e € E(T;),
whereC; > 0 (defined above) andign(h;) = +1(—1 resp.) ifh; > 0 (h; < 0 resp.), we have;?psjq =
Lforall iyi, € E(T3), i € V(G), where(s],,...,sy) = arg min £emb. Consequently, there is one-one corre-
spondence betweeing min £5™P andarg min £ (and thusarg max ))).

Furthermore, if we sef’ = —“l:lCZ- — gi/2, for somey; > 0, then the spectral gap (which is the difference
between the two lowest energy levels) of the embedded Isingltdnian will be the minimum ohin;cy () gi

and the spectral gap of the original Ising Hamiltonian.

Fe< -

See Figuré 4 for an example of the corresponding parametdteiembedded Ising Hamiltonian (for the
topological-minor-embedding case).

In the following, we first explain the main idea behind, felled by the formal proof. For the illustration
purpose, supposk; > 0, consider the simplest case in which all but one leafis Now, consider the energy

9



change if the leaf is flipping from-1 to —1. Our goal is to sef’'s as small (in terms of the magnitude) as
possible, such that the energy change is at least greatezd¢na. Note that the energy changy€;, = 2(h’ +

> jr(i.j)e0nbr(iy) Siri Jis — F7) whered; . depends on the sign of spm . We would like to bound&é‘
without knowing the signs of;(jﬂ_)s. Observe that iffs are all positive, then the worst case we hag, >

Q(h;k_ZjT(i’j)EOnbr(ik) JZ]_F) Andin generaﬂgik = Q(h;k_ZjT(i’j)EOnbr(ik) Jz'—;—i_ZjT(i’j)GOnbr(ik) ng F)
whereJ;; > 0andJ;; < 0. Consequently, setting' < h; — ij(ij)EOnbr(ik) |J;;| would imply A&;, > 0. One
can then extend this argument to a segment that needs to mmadf,lips illustrated in Figurgl 5.
Proof. Itis easy to check tha_; cy g, hi, = sign(hi)|hi| = h;.

We will first prove the theorem whefi,;, is a topological-minor-embedding ¢f. That is, eacl; is a
chain(iq, 19, ..., i) connected by consecutive vertices. Thus, the correspgraditbedded energy function is
given by

ti t;i—1
k(k+1
gemb(sh . 7SN) = E ( E h;kszk + E Fz (k+ )SiksikJrl) + Jijsir(i,j)sjr(j,i) (8)
= k=1 ijEE(G)

ieV(G)

In this case, we havg = 2. We prove by contradiction. Suppose NOT. That is, theretexis V(G), and
1 <k <tjsuchthat} sj = —1. We distinguish two cases based on the valug;of

For h; > 0, letp be the smallest index such thﬁ;t =-1 ands* = +1, and letg be the smallest index
such thats* = +lands; = —1. Thatis, we have =5,  =-1,s) =...=s =+1. Note
we have at least e|th¢r> 1 or g < n. (Otherwise they are a#l) Then we clalm that by fllpplng the segment
(ip,...,1q) from +1s to —1s, the energy decreases, contradicting to the optimalNpti¢e that theF's within
the segment do not change.) The energy change equals to

Agemb = gemb( 1 =141, =) =M =, =1, =, =1, =1,
~——— ~———

q q
Z ne =3 ST gyl - FPTUP — D) (with convention tha#?! = F Y = o)
k:pjT(j i)EOnbr(ik)

v

> 2(=C;/2 — FF ) (wherek = pif p > 1, k = g otherwise)

The argument foh; < 0 is similar except that we will flip from+-1 to 41 instead, and

Agemb = gemb 1L = =1 ) = ESMP (L 4L, 4L+
N— — N— ——
q q
—1 +1
> Z_h;k_z Z ’Jij’_ﬂ(p )p_Fiq(q )
: k:p jT(jyi)EOnbr(ik)
> 2(—C;/2 — FF*)) (wherek = pif p > 1, k = g otherwise)

Therefore, in both cases,lt?”(pﬂ) < —C;/2,foralll < p < t;, we haveA£e™ > 0, contradicting to the

optimality. Hence alls;fp must be of the same sign.
For the general minor-embedding whéys are trees, we can similarly argue that for> 0, if all but one
lLi—1
;.
I, i

Similarly, one can argue for the case whign< 0.

10



Notice that if we sef; = —lilflC,- — gi/2, then the energy chang®&™ > ¢,. In this case, the spectral

gap of the embedded Ising Hamiltonian will be the minimunmofi;c\ () g; and the spectral gap of the original
Ising Hamiltonian. O

Remark. One can generally séf = Sign(hi)(Zjﬂj,i)eonbr(zk) |Jij| — Ci, ) whereC;, s are chosen such that
>ivev(ry) Ci = Ci(= 2 jenpr(i) 1951 — |Ril), and set thef’s accordingly. This flexibility is useful when the
precision for parameters is limited. (In the above theonemgive an upper bound for the ferromagnetic coupler
strengths. A natural question is how tight our bound is. Qaget an better bound without solving the original
problem?)

5 Weighted Maximum Independent Set (WMIS) Problem

First, we formulate WMIS problem as a special case of QUBOeati®n[5.1. Then, we apply Theorém14.2 to
set parameters for the embedded Ising Hamiltonian for thesponding MIS problem in Sectién b.2.

5.1 Formulate WMIS Problem As a Special Case of QUBO

Weighted MIS (WMIS). Given an undirected vertex-weighted gragh LetV(G) = {1,2,...,n}, let¢; €
R™ be the weight of vertex WMIS seeks to find amis(G) = S C V such thatS is independent and the total
weight of §' (= >, g ;) is maximized.

Theorem 5.1.If J;; > min{¢;, ¢;} for all ij € E(G), then the maximum value of

y(ml,...,xn): Z Cil; — Z Jijwiwj

ieV(G) ijEE(G)

is the total weighted of the WMIS. In particularJf; > min{c;, ¢;} for all ij € E(G), thenwmis(G) = {i €
V(G) : 7 = 1}, where(z7, ... 2}) = arg max(,, o yefo,13n V(@155 Tn).

Proof of Theorem[5.1. Let (27,...,z;,) = arg max(,, . yeqo13» Y(T1,-..,7y). DenoteS* = {i € V(G) :
xf = 1}. We'll prove that if J;; > min{¢;, ¢;} for all ij € E(G), thenS* is an independent set.

Suppose on the contrary, that is, there exists an edgm the subgraph induced byg*. WLOG, as-
sume thate, < c¢,. Consider removingy from S*. Let S’ = S*\ {y}. The weight change equals to
—cy + 2 jenbr(y)nss Jyi = —¢y + Jy= > 0, contradicting to the optimality of*. O

The above theorem is a generalization of the known fact feraighted case of MIS (sek![8] and references
therein). For the unweighted case of Mt5,= 1 for all i € V(G). Thus, it is sufficient to choosé;; = 1 + €
for all ij € E(G) for somee > 0. Accordingly, the corresponding energy function of thedsModel for MIS is

E(s1,---58n) = Djev(c) (degi(1+€) = 2) si = 3 e (1 + €)sis;.

Remark. If we chooseJ to be exactlyl instead (as in[[17, 18]), then we can only guarantee the $ifleeo
maximum independent set, but the returned set is not nedgsedependent. For instance, whéh= K,, any
(adjacent) two vertices also has the minimum energynef

Note that we thus can conclude that the Ising problem is NB-because WMIS is NP-hard. Indeed, Bara-
hona [7] showed the NP-hardness of a special Ising probleaudgih the reduction of MIS problem on cubic
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graph (which remains NP-hard). Notice that for WMIS on a plagraph, there is a PTAS algorithin [5]. Re-
cently, for the Ising problem on a planar graph, Bansal di6hlapplied the same technique to obtain a PTAS
algorithm in O(n236/5) where(1 — ) is the approximation ratio. As another side note, convgréel the fact
that WMIS is a special case of QUBO), Boros et al (see €.9. H&})shown that a problem of QUBO 6hcan
also be converted to a WMIS but on a different graph.

5.2 Embedded Ising Hamiltonian for Solving MIS

Let G be the graph of MIS problem arté.,,,, be the topological-minor-embedding @fin U. For the unweighted
MIS, we haveC; = Zj@br(i) Jij—h; = 2. Therefore, according to TheorémM4.2, it suffices taiset —C;/2 =
—1. That is, the embedded Ising Hamiltonian for solving uniegg MIS is given as in Eq.(8), with

W di, J -1 k=14
i deJ 1<k<ti

whered;, = |Onbr(i;)|, andJ;; = J > 1, Ff(’”l) = F < —1. In particular, for degree-3 hardware gragh
by settingJ = 1 + ¢, andF = —(1 + ¢), for somee > 0, there are only 6 different parameter values, namely,
{=(1+¢€),0,e,1+¢,1+2¢,1+ 3¢} in Eq. (8).

6 Discussion

In this paper, we introduce minor-embedding in AQC. In paittir, we show that the NP-hard QUBO problem
can be solved using an adiabatic quantum computer thatingpits Ising spin-1/2 Hamiltonians, through minor-
embedding reduction. There are two components to this tietieembedding and parameter setting. Given a
minor-embedding, we show how to derive the values for theesponding parameters, in particular, a good
upper bound (in terms of magnitude) for the ferromagnetiptar strengths, of the embedded Ising Hamiltonian
such that there is one-one correspondence between thedgtatenof the original Ising Hamiltonian and the one
of the embedded Ising Hamiltonian.

There are many algorithmic problems related to minor-erdivedin AQC that remain to be addressed. In
particular, the problems relate to the efficiency of the otidn. These problems in turn relate to the running
time or complexity of quantum adiabatic algorithms. Rettadlt according to the adiabatic theorem, the running
time of an adiabatic algorithm depends on the minimum spkgap of the system Hamiltonian, which however
might be as hard as solving the original problem. Despitersd\serious investigations, the power of AQC
remains an open question [24] 25} 22,[16, 1]. How does the daiiripreduction effect the time complexity of an
adiabatic algorithm? In order to address this questionydihalso need to specify the initial Hamiltonian. In[2],
we show that for some special cases, how the embeddingsnetma, and initial Hamiltonians can effect the
minimum spectral gaps. The effect of the embedding and iisexquential initial Hamiltonian on the complexity
of adiabatic algorithms remains to be investigated. In thlewing we state several main problems that need to
investigate in order to facilitate the design of adiabakimeathms and AQC architectures. Partial results to these
problems will appear in our subsequent papers.

P1. Measurement for the minor-embedding. Define a measure for the minor-embedding such that a good
minor-embedding corresponds to a reduced problem thata@miefficient adiabatic algorithm.
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P2. Embedding-dependent initial Hamiltonian. Design an embedding-dependent initial Hamiltonian for a
given minor-embedding such that the adiabatic algorithntte reduced problem is at least as efficient as the
adiabatic algorithm (with the best possible initial Hanlian) for the original problem.

P3. Hardware graph design. Given a familyF of graphs (which consists of classically hard instancés, t
problem is to design a hardware graph (calleB-ainor-universalgraph) which is as small as possible (in terms
of total number of vertices and edges) such that

e all known physical constraints are satisfied,;
¢ all graphs inF are embeddabile;

e a good embedding of each graphZncan be efficiently computed.

Acknowledgment

I would like to thank my incredible colleagues: Mohammad AmAndrew Berkley, Richard Harris, Mark
Johnson, Jan Johannson, Andy Wan, Colin Truncik, Paul Bufglix Maibaum, Fabian Chudak, Bill Macready,
and Geordie Rose. Thanks also go to David Kirkpatrick fordiseussion, advice and encouragement. | would
also like to thank Bill Kaminsky for his detailed comments.

References

[1] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, &ndRegev. Adiabatic quantum computation
is equaivalent to standard quantum computatiroc. 45th FOCSpages 42-51, 2004.

[2] M. H. S. Amin and V. Choi. Work in progress. 2008.

[3] M.H.S. Amin, P.J. Love, and C. J. S. Truncik. Thermallgiated adiabatic quantum computati®nysical
Review Letters100:060503, 2008.

[4] M. H. S. Amin, C. J. S. Truncik, and D. V. Averin. The role sifgle qubit decoherence time in adiabatic
quantum computatiorarXiv.org:0803.1196

[5] B. S. Baker. Approximation algorithms for NP-complet®iplems on planar graphs. ACM 41(1):153—
180, 1994.

[6] N. Bansal, S. Bravyi, and B. M. Terhal. A classical appnoation scheme for the ground-state energy of
Ising spin hamiltonians on planar graplygiant-ph/0705.1115

[7] F. Barahona. On the computational complexity of Isinqhnggass modelsJ. Phys. A: Math. Genpages
15: 3241-3253, 1982.

[8] E. Boros and P. Hammer. Pseudo-boolean optimizafiiacrete Appl. Math.(123):155-225, 2002.

[9] E. Boros, P. L. Hammer, and G. Tavares. Preprocessingiadiigtic unconstrained binary optimization.
Technical Report RRR 10-2006, RUTCOR Research Repoa6.

13



[10] S. Bravyi, D. P. DiVincenzo, D. Loss, and B. M. Terhal. nfilation of many-body hamiltonians using
perturbation theory with bounded-strength interacticarXiv.org:0803.2686

[11] A. Childs, E. Farhi, and J. Preskill. Robustness of bdi quantum computatiorRhysical Review 65,
2002.

[12] R. Diestel.Graph Theory Springer-Verlag, Heidelberg, 2005.
[13] L. F. Thomson.ntroduction to parallel algorithms and architectures:rays, trees, hypercube4992.

[14] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgaed D. Preda. A quantum adiabatic evolution
algorithm applied to random instances of an np-completblpm. Science292(5516):472—-476, 2001.

[15] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Qurardomputation by adiabatic evolutioguant-
ph/00011062000.

[16] L. M. loannou and M. Mosca. Limitations of some simpleiadmhtic quantum algorithms. quant-
ph/07022412007.

[17] W. M. Kaminsky and S. Lloyd. Scalable architecture fdiadatic quantum computing of NP-hard prob-
lems. In A. J. Leggett, B. Ruggiero, and P. Silvestrini, @ditQuantum Computing and Quantum Bits in
Mesoscopic Systemz004.

[18] W. M. Kaminsky, S. Lloyd, and T. P. Orlando. Scalableeagonducting architecture for adiabatic quantum
computation.arXiv.org:quant-ph/040309®004.

[19] J. Kempe, A. Kitaev, and O. Regev. The complexity of theal hamiltonian problemSIAM JOURNAL
OF COMPUTING 35:1070, 2006.

[20] J. M. Kleinberg and R. Rubinfeld. Short paths in expargtaphs. INEEE Symposium on Foundations of
Computer Sciencgpages 8695, 1996.

[21] R. Oliveira and B. M. Terhal. The complexity of quantupirssystems on a two-dimensional square lattice.
quant-ph/0504050

[22] B. W. Reichardt. The quantum adiabatic optimizatiogoaithm and local minima. I$TOC '04: Proceed-
ings of the thirty-sixth annual ACM symposium on Theory ofijmating pages 502-510, New York, NY,
USA, 2004. ACM.

[23] N. Robertson and P. D. Seymour. Graph minors. xiii: tlgotht paths problem.J. Comb. Theory Ser.,B
63(1):65-110, 1995.

[24] W. van Dam, M. Mosca, and U. Vazirani. How powerful isauitic quantum computation®roc. 42nd
FOCS pages 279-287, 2001.

[25] W. van Dam and U. Vazirani. Limits on quantum adiabaptimization. Unpublished 2001.

14



Appendix

A Energy Function of the Ising Hamiltonian

In this section, we show that the energy function of the Iditagniltonian in Eq.[(ll) is given in EqLX2). That
is, replace each? by the variables; € {—1,+1}. The equivalence follows from two basics: (1) Eigenvalues

and eigenvectors of*: ¢%[0) = (+1)]0), o*[1) = (—1)[1), where|0) % [1,0]f, |1} & [0,1]). (2) Tensor
product property(A @ B)(|u) @ |v)) = A|u) ® Blv). More precisely, fofz) = |z1) ® ... ® |z,), z; € {0,1},
i1=1,...,n
Heinallz) = Y ohoi+ Y Jyoici | |a) @ @ |z)
ieV(Q) ij€E(Q)
— Z hila)) @ .. @ (1% z) .. @ lzn) + D> Jigla) @ .. @ (=1 z) .. @ (—1)¥[z) ... @ |zn)
ieV(G 1ijEE(G)
= | X meDT X SDH DT | ) @ )
ieV(Q) ij€E(G)
Therefore, the energy function &ff . is
5(2’1,..., Z h '-l- Z Jij(—l)zi(—l)zj

ieV(G) 1jEE(G)

wherez; € {0,1}, fori = 1,...,n. Replacg—1)% by s; € {+1, —1}, we thus have Eq.]2).
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Ising Model

h=GJ; -20)

Jin
U= Jp) - Un+Jp) -G Jio
-J, -0 Js =0 Jis

(general J) >0

Figure 4: The corresponding parameters in the embeddeagl Msiel. Bottom right, forJ > 0; bottom left, for
general/: Jiy > 0, Jiz < 0,Ji3 <0, @ndc; = ¢; = 3 cnpe(s), i, <0 Ji-
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J* Jt J* Jt
h J h Jt h J- h J-
F F F F
a)h >0:AE > 2(h — JT — F) b)h >0:AE > 2(h — JT+J — F)

EEE E

1 ' j |
(c)h >0 (d)h <0
Figure 5:(a) For h > 0 and positive/s (denoted by *), the energy changA& > 2(h — J* — J* — F) when
flipping the leaf’s spin from+1to —1. (b) Forh > 0, AE > 2(h — J* + J~ — F) when flipping the leaf’s spin

from +1 to —1, whereJ* > 0, J~ < 0. (c) Forh > 0, flip a segment from+1to —1. (d) Forh < 0, flip a
segment from-1to +1.
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