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Abstract

We show that the problem of designing a quantum information error correcting pro-
cedure can be cast as a bi-convex optimization problem, iterating between encoding and
recovery, each being a semidefinite program. For a given encoding operator the problem
is convex in the recovery operator. For a given method of recovery, the problem is con-
vex in the encoding scheme. This allows us to derive new codesthat are locally optimal.
We present examples of such codes that can handle errors which are too strong for codes
derived by analogy to classical error correction techniques.

1 Introduction

Quantum error correction is essential for the scale-up of quantum information devices. A the-
ory of quantum error correcting codes has been developed, inanalogy to classical coding for
noisy channels,e.g., [S95, S96, G96, KL97]. Recently [RW05] and [YHT05] did thisby posing
error correction design as an optimization problem with thedesign variables being the process
matrices associated with the encoding and/or recovery channels. Using fidelity measures leads
naturally to a convex optimization problem, specifically a semidefinite program (SDP) [BV04].
The advantage of this approach is that noisy channels which do not satisfy the standard assump-
tions for perfect correction can be optimized for the best possible encoding and/or recovery.

In [RW05] the power-iteration method was used to find optimalcodes for various noisy
channels, by alternately optimizing the encoding and recovery channels. In contrast, here we
apply convex optimization via SDP, and similarly iterate between encoding and recovery. For a
given encoding operator the problem is convex in the recovery. For a given method of recovery,
the problem is convex in the encoding. We further make use of Lagrange Duality to alleviate
some of the computational burden associated with solving the SDP for the process matrices.
The SDP formalism also allows for a robust design by enumerating constraints associated with
different error models. We illustrate the approach with an example where the error system does
not assume independent channels.
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An intriguing prospect is to integrate the results found here within a complete “black-box”
error correction scheme, that takes quantum state (or process) tomography as input and iterates
until it finds an optimal error correcting encoding and recovery.

2 Quantum Error Correction

2.1 Standard model

A standard model[NC00, §10.3] of an error correction system as shown in the block diagram
of Figure 1 is composed of threequantum operations: encodingC, errorE , and recoveryR.

PSfrag replacements

C E R
ρC σC

|0RA〉

ρS ρR

ρSAB

Figure 1: Standard encoding-error-recovery model of an error correction system.

The input,ρS, is thenS×nS dimensional density matrix which contains the quantum infor-
mation of interest and which is to be processed. We will referto ρS as thesystem stateor the
unencoded state. The output of the encoding operation isρC , thenC×nC dimensionalencoded
state. The error operator, which is also the source of decoherence, corrupts the encoded state
and returnsσC , thenC × nC “noisy” encoded state. Finally,ρR is thenR × nR dimensional
recovered state. The objective considered here is to design(C,R) so that the mapρS → ρR is
as close as possible to a desirednS × nS unitaryLS . Hence,ρR has the same dimension asρS,
that is,nR = nS. For emphasis we will replaceρR with ρ̂S.

Although it is possible forE to be non-trace preserving, in the model considered here, all
three quantum operations are each characterized by a trace-preserving operator-sum-representation
(OSR):

ρC = C(ρS) =
∑

c

CcρSC
†
c ,

∑

c

C†
cCc = InS

, Cc ∈ C
nC×nS

σC = E(ρC) =
∑

e

EeρCE
†
e ,

∑

e

E†
eEe = InC

, Ee ∈ C
nC×nC

ρ̂S = R(σC) =
∑

r

RrσCR
†
r,

∑

r

R†
rRr = InC

, Rr ∈ C
nS×nC

(1)

These engender a single trace-preserving quantum operation,S, mappingρS to ρ̂S,

ρ̂S = S(ρS) =
∑

r,e,c

Srec ρSS
†
rec

Srec = RrEeCc ∈ C
nS×nS ⇒

∑

r,e,c

S†
recSrec = InS

(2)

Before we describe our design approach we make a few remarks about the error source and
implementation of the encoding and recovery operations.
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2.2 Implementation

Any OSR can be equivalently expressed, and consequently physically implemented, as a uni-
tary with ancilla states [NC00,§8.23]. An equivalent system-ancilla-bath representationof the
standard error correction model of Figure 1 is shown in the block diagram of Figure 2.

bath

PSfrag replacements

C
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R

ρC σC

|0RA〉

ρS

ρR

ρSAB
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ρB

σR
ρ̂S
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Figure 2: System-ancilla-bath representation of standardencoding-error-recovery model of er-
ror correction system.

For the encoding operator,C, theencoding ancilla state, |0CA〉, has dimensionnCA, and
hence, the resulting encoded space has dimensionnC = nS nCA. The encoding operation is
determined byUC , thenC × nC unitary encoding operator which produces the encoded state
σC = UC(ρS ⊗ |0CA〉〈0CA|)U

†
C .

For the error system,E , the ancilla states are engendered by interaction with theenviron-
ment, or the term used here, thebath. Here we will ignore complications associated with an
infinite dimensional bath. The error system is thus equivalent to thenE × nE unitary error op-
eratorUE with uncoupled inputs,ρC the encoded state, andρB, thenB × nB bath state. Thus,
nE = nSnCAnB. The noisy encoded stateσC , is thenC × nC reduced state obtained by tracing
out the bath from the output ofUE , that is,σC = TrB UE(ρC ⊗ ρB)U

†
E .

The recovery systemR has additional ancilla|0RA〉 of dimensionnRA. UR is thenR × nR
unitary recovery operator withnR = nSnCAnRA and withσR thenR × nR full output state
σR = UR(σC ⊗ |0RA〉〈0RA|)U

†
R . ThenS × nS reduced output state,̂ρS , is given by the partial

trace overall the ancillas, the bath having been traced out in the previousstep. Specifically,
ρ̂S = TrA σR

Caveat emptor The “real” error correction system is unlikely to be accurately represented
by the system shown in Figure 2, but rather by a fullsystem-ancilla-bathinteraction [ALZ05].
As shown in the block diagram in Figure 3,UQAB is thenQAB × nQAB unitary system-ancilla-
bath operator,|0CA0RA〉 is the total ancilla state of dimensionnCAnRA and ρB is the bath
state. The reduced system output state,ρ̂S, is obtained from the full output stateρQAB by
tracing simultaneously over all the ancilla and the bath,ρ̂S = TrAB ρQAB. At this level of
representation, there is no distinction between thenCA ancilla states used for encoding and the
nRA ancilla states used for recovery. The internal design, however, may be constructed with
such a distinction.
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Figure 3: System-ancilla-bath representation of error correction system.

2.3 Optimal error correction: maximizing fidelity

As stated, the goal is to make the operationρS → ρ̂S be as close as possible to a desired unitary
operationLS . Measures to compare two quantum channels are typically based on fidelity or
distance,e.g., [GLN05], [KGBR06]. LetS denote a trace-preserving quantum channel mapping
n-dimensional states ton-dimensional states,

S(ρ) =
∑

k

SkρS
†
k,

∑

k

S†
kSk = In (3)

The following fidelity inequalities hold:

fmixed ≤ fpure ≤ favg (4)

where
fmixed = minρ

∑

k |Tr Skρ|2

fpure = min|ψ〉
∑

k |〈ψ|Sk|ψ〉|2

favg = 1
n2

∑

k |TrSk|2

(5)

All are in [0,1] and equal to one if and only ifS(ρ) = ρ. From (2),S = L†
SREC with OSR

elementsSk = Srec = L†
SRrEeCc ∈ C

nS×nS . Thusfavg = 1 ⇔ S = IS ⇔ S = REC = LS.
GivenS, not all these fidelity measures are easy to calculate. Specifically, fmixed is a convex

optimization over all densities, that is, over allρ ∈ C
n×n, ρ ≥ 0, Tr ρ = 1, and hence, can

be numerically obtained. Calculation offavg is direct. Calculatingfpure is, unfortunately, not a
convex optimization over all pure states|ψ〉. If, however, the density associated withfmixed is
nearly rank one, thenfmixed ≈ fpure.

As a practical matter, when dealing with small channel errors, it does not matter which
fidelity measure is used. Therefore it is convenient to usefavg, as it is already in a form explicitly
dependent only on the OSR elements. In [RW05]favg was also used as the design measure, but
specific convex optimization algorithms were not proposed.In [YHT05] a similar optimization
was proposed using a distance measure to obtain the recoverygiven the encoding.

We now focus on the optimization problem,

maximize favg(R, C) = 1
n2

S

∑

r,e,c

∣

∣

∣
Tr L†

SRrEeCc

∣

∣

∣

2

subject to
∑

r R
†
rRr = InC

,
∑

r C
†
cCc = InS

(6)
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The optimization variables are the OSR elements{Cc} and{Rr}. As posed this is a difficult
optimization problem. The objective function is not a convex function of either of the design
variables. In addition, the equality constraints are quadratic, and hence, not convex sets. The
problem, however, can be approximated usingconvex relaxation, where each nonconvex con-
straint is replaced with a less restrictive convex constraint [BV04]. This finally results in a
bi-convex optimization problem in the encoding and recovery operator elements which can be
iterated to yield a local optimum. As we show next, iteratingbetween the two problems is guar-
anteed to increase fidelity of each of the relaxed problems. When the iterations converge, all
that can be said is that a local solution has been found.

3 Optimal error correction via bi-convex relaxation

3.1 Process matrix problem formulation

Following the procedure used in quantum process tomography[NC00, §8.4.2], [KWR04] we
expand each of the OSR elementsRr ∈ C

nS×nC andCc ∈ C
nC×nS in a set of basis matrices,

respectively, forCnS×nC andCnC×nS , that is,

Rr =
∑

i xri BRi

Cc =
∑

i xci BCi
(7)

where{BRi ∈ C
nS×nC , BCi ∈ C

nC×nS | i = 1, . . . , nSnC } and the{xri} and{xci} are com-
plex scalars. Problem (6) can then be equivalently expressed as,

maximize favg(R, C) ≡ favg(XR, XC) =
∑

ijkℓ (XR)ij (XC)kℓ Fijkℓ

subject to
∑

ij (XR)ij B
†
RiBRj = InC

∑

kℓ (XC)kℓ B
†
CkBCℓ = InS

(XR)ij =
∑

r xrix
∗
rj

(XC)kℓ =
∑

c xckx
∗
cℓ

Fijkℓ =
∑

e (Tr L
†
SBRiEeBCk)(Tr L

†
SBRjEeBCℓ)

∗/n2
S

(8)

The optimization variables are theprocess matricesXR, XC ∈ C
nSnC×nSnC and the scalars

{xri} and{xci}. The problem data which describes the desired unitary and error system is con-
tained in the{Fijkℓ}. The equality constraints(XR)ij =

∑

r xrix
∗
rj and(XC)kℓ =

∑

c xckx
∗
cℓ

are both quadratic, exposing again that this is not a convex optimization problem. We do not
explore the possible simplifications that can occur in theseexpressions if the basis matrices are
chosen prudently,e.g., Tr B†

iBj = δij .

3.2 Design ofR givenC and E
In this section and in the remainder of the paper we set the desired logical operation to identity,
i.e., LS = IS; just error correction not correction and computation. This is without loss of
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generality as a desired logical operation can be added everywhere.
Suppose the encodingC is given (andLS = IS). Then optimizing only overR in (8) can be

equivalently expressed as,

maximize favg(R, C) ≡ favg(XR, C) = Tr XRWR(E , C)

subject to
∑

i,j (XR)ij B
†
RiBRj = InC

(XR)ij =
∑

r xrix
∗
rj

(WR(E , C))ij =
∑

c,k,ℓ xckx
∗
cℓ Fijkℓ =

∑

e,c (Tr BRiEeCc)(Tr BRjEeCc)
∗/n2

S

(9)
The optimization variables are the matrixXR ∈ C

nSnC×nSnC and the scalars{xri}. The prob-
lem data is contained in the positive semidefinite matrixWR(E , C) ∈ C

nSnC×nSnC . The ob-
jective function is now linear inXR, which is of course a convex function. However, each of
the equality constraints,(XR)ij =

∑

r xrix
∗
rj is quadratic, and thus does not form a convex

set. This set of quadratic equality constraints can be relaxed to the matrix inequality constraint,
XR ≥ 0, that is,XR is positive semidefinite, a convex set in the elements ofXR. A convex
relaxation of (9) is then,

maximize Tr XRWR(E , C)

subject to XR ≥ 0,
∑

i,j (XR)ij B
†
RiBRj = InC

(10)

This class of convex optimization problems is referred to asan SDP, forsemidefinite program
[BV04].1 For a given encodingC, the optimal solution to the relaxed problem (10),Xrlx opt

R ,
provides an upper bound on the average fidelity objective in (6) or (8). From the fidelity in-
equalities (4), we can derive a lower bound. Specifically, the (unknown, possibly unknowable)
solution to the original problem (6), is bounded as follows:

fmixed(Rrlx opt, C) ≤ max
R

fpure(R, C) ≤ favg(Rrlx opt, C) = Tr Xrlx opt
R WRS(E , C) (11)

whereRrlx opt is the OSR with elements
{

Rrlx opt
r

}

obtained fromXrlx opt
R via the singular value

decomposition,

Xrlx opt
R = V SV † ⇒ Rrlx opt

r =
√
sr

nSnC
∑

i=1

VirBRi, r = 1, . . . , nSnC (12)

whereV ∈ C
nSnC×nSnC is unitary andS = diag(s1 · · · snSnC

) with singular values in decreas-
ing order,s1 ≥ s2 ≥ · · · ≥ snSnC

≥ 0.
1A standard SDP is to minimize a linear objective function subject to convex inequalities and linear equalities.

The objective function in (10) is the maximization of a linear function which is equivalent to the minimization of
its’ negative, and hence, is a linear objective function.
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3.3 Design ofC givenR and E
Repeating the previous steps, optimizing only overC in (8) can be equivalently expressed as,

maximize favg(R, C) ≡ favg(XC ,R) = Tr XCWC(E ,R)

subject to
∑

k,ℓ (XC)kℓ B
†
CkBCℓ = InS

(XC)kℓ =
∑

c xckx
∗
cℓ

(WC(E ,R))kℓ =
∑

r,i,j xrix
∗
rj Fijkℓ =

∑

e,r (Tr BCkRrEe)(Tr BCℓRrEe)
∗/n2

S

(13)
The optimization variables are the matrixXC ∈ C

nSnC×nSnC and the scalars{xci} with all the
problem data contained in the symmetric positive semidefinite matrixWC(E ,R) ∈ C

nSnC×nSnC .
In this case, however, the basis matrices,{BCi} arenC ×nS . Repeating the previous procedure
of relaxing the quadratic equality constrain toXC ≥ 0, we obtain the convex relaxation of (8)
as the SDP,

maximize Tr XCWC(E ,R)

subject to XC ≥ 0,
∑

i,j (XC)ij B
†
CiBCj = InS

(14)

Analogously to (12), for a given recoveryR, the (unknown, possibly unknowable) solution to
the original problem (6), is bounded as follows:

fmixed(R, Crlx opt) ≤ max
C

fpure(R, C) ≤ favg(R, Crlx opt) = Tr Xrlx opt
C WC(E ,R) (15)

whereCrlx opt is the OSR with elements
{

Crlx opt
c

}

obtained fromXrlx opt
C via the singular value

decomposition,

Xrlx opt
C = V SV † ⇒ Crlx opt

c =
√
sc

nSnC
∑

i=1

VicBCi, c = 1, . . . , nSnC (16)

whereV ∈ C
nSnC×nSnC is unitary andS = diag(s1 · · · snSnC

) with singular values in decreas-
ing order,s1 ≥ s2 ≥ · · · ≥ snSnC

≥ 0.

3.4 Iterative bi-convex algorithm

Proceeding analogously as in [RW05], the two separate optimizations forC andR can be com-
bined into the following iteration.

initialize encodingĈ and stopping levelǫ

repeat

1. optimize recovery

7



(a) computeX⋆
R as solution to:

maximize Tr XRWR(E , Ĉ)

subject to XR ≥ 0,
∑

i,j (XR)ij B
†
RiBRj = InC

(b) use (12) to computeR⋆ fromX⋆
R

2. optimize encoding

(a) computeX⋆
C as solution to:

maximize Tr XCWC(E ,R⋆)

subject to XR ≥ 0,
∑

i,j (XC)ij B
†
CiBCj = InS

(b) use (16) to computeC⋆ fromX⋆
C

3. compute change in fidelity

∆favg = favg(R⋆, C⋆)− favg(R⋆, Ĉ)

4. reset
Ĉ = C⋆

until
∆favg < ǫ

The algorithm returns(R⋆, C⋆). The optimization in each of the steps is a convex optimization
and hence fidelity will increase in each step, thereby converging to a local solution of the joint
relaxed problem. This solution is not necessarily a local solution to the original problem (6) or
(8). However, the upper and lower bounds obtained will apply. The optimization steps can be
reversed by starting with an initial recovery and then starting the iteration by optimizing over
encoding.

3.5 Decoherence resistant encoding

If the sole purpose of encoding is to sustain the informationstateρS, then the desired operation
is the identity (LS = IS) and the recovery operation in Figure 1 is simply the partialtrace over
the encoding ancilla, that is,

ρ̂S = R(σC) = TrCA σC =







Tr (σC)[1,1] · · · Tr (σC)[1,nS ]
...

...
...

Tr (σC)[nS ,1] · · · Tr (σC)[nS ,nS ]






(17)

where the(σC)[i,j] are then2
S sub-block matrices ofσC , each beingnCA×nCA. Hence, the OSR

elements ofR are given by

(Rr)ij =

{

1 j = (i− 1)nCA + r
0 else

}

, r = 1, . . . , nCA, j = 1, . . . , nS (18)

8



For a given errorE , finding an optimal encoding by solving (14) is equivalent tofinding a
decoherence-resistant-subspace. If there is perfect recovery, then we have found adecoherence-
free-subspace[LCW98]. In [ZL04], this problem was considered usingfpure, the pure state
fidelity.

3.6 Robust error correction

The bi-convex optimization can be extended to the case wherethe error system is one of a
number of possible error systems, that is,

E ∈ { Eα |α = 1, . . . , ℓ } (19)

where eachEα has OSR elements{Eαe}. The worst-case fidelity design problem, by analogy
with (8), is then:

maximize minα favg(R, Eα, C) =
∑

ijkℓ (XR)ij (XC)kℓ Fαijkℓ

subject to XR, XC constrained as in (8)

Fαijkℓ =
∑

e (Tr L
†
SBRiEαeBCk)(Tr L

†
SBRjEαeBCℓ)

∗/n2
S

(20)

Iterating as before betweenR andC results again in separate convex optimization problems,
each of which is an SDP. Specifically, for a given encodingC, a robust recovery is obtained
from,

maximize minα Tr XRWR(Eα, C)

subject to XC ≥ 0,
∑

i,j (XC)ij B
†
CiBCj = InS

(21)

Similarly, for a given recoveryR, a robust encoding is obtained from,

maximize minα Tr XCWC(Eα,R)

subject to XR ≥ 0,
∑

i,j (XR)ij B
†
RiBRj = InC

(22)

4 Computing the solution: Lagrange Duality

The main difficulty with embedding the OSR elements into eitherXR or XC is scaling with
qubits. Specifically, the number of design parameters needed to determine eitherXC or XR

scales exponentially with the number of qubits. Although exponential scaling at the moment
seems unavoidable, we show in this section that solving the dual SDPs associated with either
(10) or (14) requires many fewer parameters, and thus engenders a reduced computational bur-
den.

The convex optimization problems (10) and (14) are both SDPsof the form,

maximize Tr XW

subject to X ≥ 0,
∑

ij XijB
†
iBj = Im

(23)
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with optimization variableX = X† ∈ C
n×n, n = rm for some integerr, and with each basis

matrixBi ∈ C
r×m. We will refer to this as theprimal problem. From [BV04,§11.8.3], for

the standard SDP: minimizecTx, subject toF0 +
∑

i xiFi ≥ 0 with x ∈ R
p andFi = F T

i ∈
R
q×q, the computational complexity using a primal-dual algorithm ismax {pq3, p2q2, p3} flops

(floating point operations) per iteration step where typically 10-100 steps are required in the
algorithm. Accounting for the linear (matrix) equality constraint and the Hermiticity ofX, the
number of real optimization variables in (23) isp = n2 − m2 = (r2 − 1)m. The dimension
of the linear matrix inequality isq = n = rm. This gives the computational complexity as
p2q2 = r2(r2 − 1)2m6 flops per iteration.

Solving (10) forXR, givesn = nSnC , r = nS, m = nC = nSnCA for n8
S(n

2
S − 1)2n6

CA

flops. Solving (14) forXC , givesn = nSnC , r = nC , m = nS for n8
S(n

2
Sn

2
CA − 1)2n2

CA flops.
Exponential growth in computation occurs becasue each of these dimensions are exponential in
the number of qubits,i.e., , nS = 2qS , nC = 2qS+qCA, and so on.

The computational burden can be somewhat alleviated by appealing to Lagrange Duality
Theory[BV04, Ch.5] which provides a means for establishing a lowerbound on the optimal
objective value, establishing conditions of optimality, and providing, in some cases, and this
case in particular, a more efficient means to numerically solve the original problem. In Ap-
pendix A we show that thedual problemassociated with theprimal problem(23) is,

minimize Tr Y

subject to K(Y )−W ≥ 0, Kij(Y ) = Tr B†
jBiY

(24)

with optimization variableY = Y † ∈ C
m×m. The number of (real) optimization variables for

the dual problem is then at mostm2. The dual problem is also an SDP and from the previous
formula therefore requiresr2m6 flops per iteration, a reduction in flops per iteration from the
primal by a factor of(r2 − 1)2. We show in Appendix A that if(Xopt, Y opt) solve the primal
and dual problems respectively, then:

Tr XoptW = Tr Y opt

(K(Y opt)−W )Xopt = 0
(25)

The second equation above together with the linear equalityconstraint in (23) can be used to
obtain the primal solutionXopt from the dual solutionY opt. That is, solve forXopt from the set
of linear equations,

(K(Y opt)−W )Xopt = 0
∑

ij X
opt
ij B

†
iBj = Im

(26)

Solving this type of linear set of equations is aneigenvalue problemand thus requires on the
order of no more thann2 flops [GL83]. Thus the dual takesr2m6 flops per iteration plus
r2m2 flops one time to convert from dual to primal. This is in comparison to the much larger
r2(r2−1)2m6 flops per iteration for the primal alone. Neglecting the dualto primal conversion,
the speed-up in flops per iteration to calculateXR is approximately(n2

S − 1)2, ns = 2qS and
for XC it is (n2

C − 1)2, nC = 2qS+qCA.

5 Example

In this illustrative example, the goal is to preserve a single information qubit using a single
ancilla qubit. Thus, the desired logical gate is the identity, that is,LS = I2, with nS = nCA = 2,
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and hence,nC = 4. We made two error systems,Ea andEb, by randomly selecting the unitary
bath representation as shown in Figure 2 as follows: Each error system has a single qubit bath
state,|0〉B, thusnB = 2. The Hamiltonian for each system,HE = H†

E ∈ C
nE×nE , nE =

nCnB = 8, was chosen randomly and then adjusted to have the magnitude(maximum singular
value)‖HE‖ = δE = 0.75. Then the unitary representing the error system was set toUE =
exp(−iHE) and from this the corresponding OSRE was computed. The OSR elements to three
decimal points for the two random systems are as follows.

Ea























































Ea1 =









0.9− 0.049i 0.193 + 0.194i −0.161 + 0.039i −0.135 + 0.156i

−0.159 + 0.148i 0.887 − 0.046i 0.148 − 0.025i −0.168− 0.081i

0.167 + 0.061i −0.07 + 0.004i 0.905 + 0.161i 0.16 + 0.125i

0.124 + 0.137i 0.167 − 0.155i −0.203 + 0.118i 0.844 − 0.26i









Ea2 =









0.053 − 0.063i −0.034 + 0.082i 0.148 − 0.085i 0.13 − 0.076i

−0.168 − 0.01i 0.141 + 0.073i 0.008 + 0.091i −0.074 − 0.024i

0.119 + 0.053i 0.207 − 0.02i 0.043 + 0.01i −0.063 − 0.21i

0.123 + 0.066i 0.027 + 0.008i 0.07 − 0.058i 0.098 − 0.11i









Eb























































Eb1 =









0.943 + 0.018i −0.14− 0.024i 0.076 − 0.081i 0.04 − 0.163i

0.107 + 0.062i 0.876 + 0.068i −0.06 − 0.021i −0.127 + 0.06i

−0.025− 0.042i 0.122 + 0.073i 0.889 − 0.035i 0.043 − 0.078i

−0.017− 0.094i 0.095 + 0.035i −0.032 − 0.089i 0.88 + 0.113i









Eb2 =









0.07i −0.2− 0.082i 0.028 − 0.083i 0.179 + 0.206i

−0.003− 0.147i 0.138 − 0.155i 0.202 + 0.306i 0.045 − 0.134i

0.049 + 0.084i −0.149 + 0.217i 0.143 − 0.04i 0.024 + 0.174i

−0.191 + 0.095i −0.081 − 0.097i 0.007 − 0.127i 0.035 − 0.167i









Neither of these error systems is of the standard type,e.g., there is no independent channel
structure. The choice ofδE = 0.75 is perhaps extreme, but is motivated here by our desire
to demonstrate that the optimization procedure can handle errors that are beyond the range of
classically-inspired quantum error correction. For this particular set of error systems, we do not
know if there exists an encoding/recovery pair limited to using a single encoding ancilla state
which can bring perfect correction. This also motivates thesearch for the still elusive black-box
error correction discussed in the introduction.

For each of the error systems we ran the bi-convex iteration 100 times starting with the
initial recovery operatorR0 given by the partial trace operation (18). Denote(Ra1, Ca1) and
(Ra100, Ca100) as the 1st and 100th iteration pairs optimized forEa, and similarly(Rb1, Cb1) and
(Rb100, Cb100) as the 1st and 100th iteration pairs optimized forEb. Table 1 shows the average
fidelitiesfavg(R, E , C) for some of the possible combinations.

As Table 1 clearly shows, fidelity tuned for a specific error, eitherEa or Eb in this example,
saturated to the levels shown (0.9997) in about 100 iterations. However, neither of the optimized
codes arerobust. Each does very poorly when the error is different then what was expected. By
raising the number of ancilla it is of course possible to makethe system robust. This, however,
introduces considerable complexity. What the table suggests is that an alternate route is to tune
for maximal fidelity, say, in a particular module. This of course can only be done on the actual
system.
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Type R, C Ea Eb

Optimal encoding, no recovery R0, Ca1 0.9686 0.7631

Optimal encoding & recovery: 1 iteration Ra1, Ca1 0.9719 0.7805

Optimal encoding & recovery: 100 iterationsRa100, Ca100 0.9997 0.6261

Optimal encoding, no recovery R0, Cb1 0.7445 0.9091

Optimal encoding & recovery: 1 iteration Rb1, Cb1 0.7843 0.9441

Optimal encoding & recovery: 100 iterationsRb100, Cb100 0.7412 0.9997

Table 1: Average fidelities

For each of the optimizations, the process matricesXC , XR ∈ C
8×8, associated respectively

with eachC andR were of reduced rank. For all the optimizedC, each process matrixXC was
found to have a single dominant singular value, and hence, there is a single dominant4×2 OSR
element which characterizesC. For the optimizedR, eachXR was found to have two dominant
singular values, and hence, there are two dominant2× 4 OSR elements which characterizeR.
For example, the recovery/encoding pair(Ra100, Ca100) has the OSR elements:

C1 =









−0.629 0.189 − 0.332i

0.455 + 0.378i 0.207 + 0.24i

0.42 + 0.063i −0.425 − 0.358i

0.13 + 0.233i 0.626 + 0.226i









R1 =

[

−0.707 0.532 − 0.342i 0.194 − 0.175i 0.103 − 0.138i

0.134 + 0.087i 0.009 − 0.166i −0.103 + 0.404i 0.833 − 0.276i

]

R2 =

[

−0.603 −0.528 + 0.461i −0.262 − 0.131i 0.172 − 0.163i

0.313 − 0.103i 0.259 + 0.104i −0.374 − 0.728i 0.174 − 0.333i

]

It is not obvious that these correspond to any of the standardcodes. However, by construction,
C†

1C1 = I2 and
∑2

i=1R
†
iRi = I4. Referring to Figure 2, we can construct the encoding and

recovery unitaries as,

UC = [C1 C2] , UR =

[

R1

R2

]

whereC2 ∈ C
2×2 is arbitrary as long asUC is unitary, or equivalently,C†

1C2 = 0 andC†
2C2 =

I2. Observe thatUR is already a4× 4 unitary.
Bar plots of the magnitude of the elements in the primal-dualpairs(XC , YC) and(XR, YR)

corresponding to(Ra100, Ca100) and (Rb100, Cb100) are shown in figures 4 and 5, respectively.
From many of such similar plots we have observed some common structure which may be used
to reduce the computational burden.
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Type R, C Ea Eb

Robust encoding, no recovery R0, Cab1 0.8840 0.8840

Robust encoding & recovery: 1 iteration Rab1, Cab1 0.9284 0.9284

Robust encoding & recovery: 100 iterationsRab100, Cab20 0.9576 0.9576

Table 2: Average robust fidelities

We also computed arobustencoding and recovery for the error set{Ea, Eb} by iterating
between (21) and (22). The resultant average fidelities are in Table 2.

Comparing Tables 1 and 2 clearly shows that a robust design ispossible although at a cost
of performance. Also in this case after 100 iterations the robust fidelity did not increase. In ad-
dition, the rank of the process matricesXC andXR remained as before at 1 and 2, respectively,
and the resulting OSR elements do not appear standard.

6 Conclusions

We have shown that the design of a quantum error correction system can be cast as a bi-convex
iteration between encoding and recovery, each being a semidefinite program (SDP). We have
also shown that the dual optimization, also an SDP, is of lower complexity and thus requires
less computational effort. The SDP formalism also allows for a robust design by enumerating
constraints associated with different error models. We illustrated the approach with an example
where the error system does not assume independent channels.

Note added While this work was finalized for submission we became aware of the closely
related [FSW06] and the subsequent commentary [RWA06].
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A Dual problem

We apply Lagrange Duality Theory [BV04, Ch.5]. Write the primal problem (23) as a mini-
mization,

minimize −Tr XW
subject to X ≥ 0,

∑

ij XijCij = Im
(27)

with optimization variableX = X† ∈ C
n×n. TheLagrangianfor (27) is,

L(X,Z, Y ) = −Tr XW = Tr XZ −Tr Y (Im −
∑

ij XijB
†
iBj)

=
∑

ij Xij(−Wji − Zji +Tr Y Cji)−Tr Y
(28)

whereZ = Z† ∈ C
n×n andY = Y † ∈ C

m×m are Lagrange multipliers associated with the
(Hermitian) inequality and equality constraints, respectively. The Lagrange dual functionis
then,

g(Z, Y ) = infX L(X,Z, Y )

=

{

−Tr Y Zji = Tr Y Cij −Wji

−∞ otherwise
(29)

For anyY andZ ≥ 0, g(Z, Y ) yields a lower bound on the optimal objective−Tr XoptW .
The largest lower bound from this dual function is thenmax { g(Z, Y ) |Z ≥ 0 }. Eliminating
Z, this can be written equivalently as,

minimize Tr Y
subject to K(Y )−W ≥ 0, Kij(Y ) = Tr Y Cij

(30)

with optimization variableY = Y † ∈ C
m×m. This is precisely the result in (24). Because the

problem is strictly convex, the dual optimal objective is equal to the primal optimal objective as
stated in the first line of (25). Thecomplementary slacknesscondition gives the second line in
(25).
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