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Abstract

We analyze continuous-time quantum and classical random walk on spi-

dernet lattices. In the framework of Stieltjes transform, we obtain density

of states, which is an efficiency measure for the performance of classical and

quantum mechanical transport processes on graphs, and calculate the space-

time transition probabilities between two vertices of the lattice. Then we

analytically show that there are two power law decays ∼ t
−3 and ∼ t

−1.5 at the

beginning of the transport for transition probability in the continuous-time

quantum and classical random walk respectively. This results illustrate the

decay of quantum mechanical transport processes is quicker than that of the
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classical one. Due to the result, the characteristic time tc, which is the time

when the first maximum of the probabilities occur on an infinite graph, for

the quantum walk is shorter than that of the classical walk. Therefore, we

can interpret that the quantum transport speed on spidernet is faster than

that of the classical one. In the end, we investigate the results by numerical

analysis for two examples.

Keywords: Continuous-time quantum walk, Spidernet graphs, Spectral

distribution.
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1 Introduction

Quantum walks were introduced in the early 1990s by Aharonovich, Davidovich and Zaggury

[1]. Since then the topic has attracted considerable interest. The continuing attraction can

be traced back to at least two reasons. First, the quantum walk is of sufficient interest in its

own right because there are fundamental differences compared to the classical random walk.

Next, quantum walks offer quite a number of possible applications. One of the best known is

the link between quantum walks and quantum search algorithms which are superior to their

classical counterparts[2, 3]. Similar to classical random walk there are two types of quantum

walks, discrete and continuous time [1, 4]. A study of quantum walks on a simple graph is well

known in physics (for more details see [5]). Recent studies of quantum walks on more general

graphs were described in [2, 6, 7, 8, 9, 10, 11, 12, 13]. Some of these works study the problem

in the important context of algorithmic problems on graphs and suggest that quantum walk

is a promising algorithmic technique for designing future quantum algorithms. One approach

for investigation of continuous-time quantum walk (CTQW) on graphs is using the spectral

distribution associated with the adjacency matrix of graphs [14, 15, 16, 17, 18, 19]. Authors

in Refs.[14, 15] have introduced a new method for calculating the probability amplitudes of

quantum walk based on spectral distribution. In this method a canonical relation between the

Fock space of stratification graph and set of orthogonal polynomials has been established which

leads to obtain the probability measure (spectral distribution) of adjacency matrix graph. The

method of spectral distribution only requires simple structural data of graph and allows us to

avoid a heavy combinational argument often necessary to obtain full description of spectrum

of the adjacency matrix.

In fact the dendrimers play an important role in recent researches, both ex-

perimentally and theoretically (e.g. see Ref.[20]). Dendrimers are hyperbranched

macromolecules with very regular structure, and are important in drug delivery.
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Therefore, that part of theoretical researches depending on probe transport pro-

cess is interesting. Since dendrimers are synthesized in a self-similar fashion by

hierarchically growing dendrimer from a core, they can be described by spidernet

graphs. In recent years, the Mulken, Bierbaum and Blumen studied the coherent

transport on dendrimers by CTQW [21]. Dendrimers may have the spidernet lat-

tices structure. As an example, we can mention the dendrimers that the authors

of Ref.[21] considered are spidernet lattices with parameters a = b = 3; c = 2 ,

i.e. S(3, 3, 2). Therefore, in this paper we study CTQW and continuous-time random walk

(CTRW) on spidernet lattices. For this work, by using the Stieltjes transform, we obtain

spectral distribution (density of states) that is an efficiency measure for the performance of

the classical and quantum mechanical transport processes on graphs [22]. Considering the

results of Ref. [21, 22, 23], one way of quantifying the global efficiency of classical

and quantum walk is the average probability of a walker to return to or stay at

the starting point. In the classical case this quantity is equal to p0(t) (transition

probability at the starting point at the time t ) and in the quantum mechanical

case |q0(t)|2 is the lower bound for the average probability. Then we analytically

obtain these quantities for CTQW and CTRW on spidernet graphs as ∼ t−3 and

∼ t−3/2 , respectively. Since the decay of the quantum mechanical average proba-

bility is quicker than that of the classical one, the quantum walk on the spidernet

graphs is more efficient than the classical random walk. In the end, by numerical

analysis we confirm these results for CTQW and CTRW on two spidernet graphs

S(4, 6, 3) and S(a, a, a− 1). As one can see from the figures, there are power law de-

cay probabilities (∼ t−1.5) and ∼ t−3 at the beginning of the transport for transition

probability for CTRW and CTQW, respectively. Due to results of this paper, since

the characteristic time tc depends on the decay of the average probability ( tc is

the time when the first maximum of the probabilities occurs on an infinite graph,
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such that this definition is held both for the classical and quantum transport. For

the classical transport, there is only one maximal value and the characteristic time

corresponds to the time when the equipartitioned probability 1/N is reached on

finite graphs [24]. ) the tc for the quantum walk is shorter than the classical

counterpart. Therefore, one can interpret that the quantum transport speed on

spidernet is faster than that of the classical one.

The organization of the paper is as follows: we give a brief review of stratification, quantum

decomposition and spidernet graph in Section 2. Section 3 is devoted to study CTQW and

CTRW on spidernet graphs via quantum probability theory and try to investigate CTQW

and CTRW on their graphs. In the conclusion we summarize the obtained results and discuss

possible development. Finally, in the appendix the determination of spectral distribution

associated with adjacency matrix by Stieltjes transform is derived.

2 Stratification, Quantum decomposition and Spidernet

graph

Let V be a non-empty set and E be a subset of {{α, β}|α, β ∈ V for α 6= β}. The pair

G = (V,E) is called a graph, where elements of V and E are vertices and edges of graph,

respectively. We say that two vertices of α and β are adjacent if {α, β} ∈ E and write α ∼ β.

A finite sequence α0, α1, ..., αn is said a walk of length n if αk ∼ αk+1 for k = 0, 1, ..., n− 1. A

graph is called connected if any pair of distinct vertices is connected by a walk. The degree or

valency of a vertex α ∈ V is defined by

κ(α) = |{β ∈ V | β ∼ α}| (2-1)
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where |.| denote the cardinality. For a graph G the adjacency matrix A is given by

Aαβ =















1 if α ∼ β

0 otherwise.

Obviously, (i) A is a symmetric (ii) elements of A take a value in {0, 1} (iii) diagonal ele-

ments of A are 0. Conversely, for a non-empty set V , a structure graph is uniquely determined

by a such matrix which indexed by V . On the other hand, A is considered as an operator

acting on the Hilbert space l2(V ) in such a way that

A|α〉 =
∑

α∼β

|β〉, α ∈ V,

where {|α〉| α ∈ V } forms a complete orthogonal basis of l2(V ).

The stratification is introduced [14, 26, 27] by taking o as the origin (initial site) and have

V =
∞
⋃

k=0

Vk, Vi = {α ∈ V | ∂(o, α) = k}, (2-2)

where ∂(α, β) stands for the length of the shortest walk connecting α and β. According to the

stratification (2-2), we define a unit vector by

|φk〉 =
1

√

|Vk|
∑

α∈Vk

|k, α〉, (2-3)

where |k, α〉 denotes the eigenket of the α-th vertex at the stratum k and let Γ(G) the closed

subspace of l2(V ) be spanned by {|φk〉}. Moreover, the stratification (2-2) give rise to

define three matrices Aε, ε ∈ {+,−, 0}, as follows [27]: for α ∈ Vk, k = 0, 1, 2, ...

(Aε)βα =















Aβα if β ∈ Vk+ε

0 otherwise.

where k+ε = n+1, n−1, n according as ε ∈ +,−, 0. Therefore, the adjacency matrix

A is decomposed as

A = A+ + A− + A0. (2-4)
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This is called quantum decomposition of A associated with the stratification (2-2).

Now, according to the stratification (2-2), for α ∈ Vk we set

ωε(α) = |{β ∈ Vk+ε, α ∼ β}|, ε ∈ {+,−, 0} (2-5)

where k + ε = n+ 1, n− 1, n according as ε ∈ +,−, 0. The degree or valency of α ∈ V is

κ(α) = ω+(α) + ω0(α) + ω−(α) =















a α = o

b α 6= o.

We consider the integers a, b, c such that a ≥ 1, b ≥ 2 and 1 ≤ c ≤ b− 1. A spidernet is a

graph which satisfies the following conditions:

ω+(o) = a ω−(o) = 0 ω0(o) = 0

ω+(α) = c ω−(α) = 1 ω0(α) = b− 1− c for α 6= o, (2-6)

where it is denoted by S(a, b, c), for example see Fig.1 (for more details see Refs.[27]). Spidernet

is not necessarily a regular graph so it is called a semi-regular graph (for more details see

Refs.[27, 28]). It is easy to show, by using (2-6), the number of vertices in strata as

|V0| = 1, |Vk| = ack−1, k = 1, 2, 3, .... (2-7)

Then by using Eqs.(2-6) and (2-7), one can obtain

A+|φ0〉 =
√
a|φ1〉, A+|φk〉 =

√
c|φk+1〉, k ≥ 1 (2-8)

A−|φ0〉 = 0, A−|φ1〉 =
√
a|φ0〉, A−|φk〉 =

√
c|φk−1〉, k ≥ 2 (2-9)

A0|φk〉 = (b− 1− c)|φk〉, k ≥ 1. (2-10)

Two Szegö- Jacobi sequences {ωk}∞k=1 and {αk}∞k=1 can obtain to take into consideration above

equation as following [27]

ω1 = a, ω2 = ω3 = · · · = c, α1 = 0, αk+1 = b− 1− c k ≥ 1, (2-11)

where (Γ(G), A+, A−, Ao) is an interacting Fock space associated with Szegö- Jacobi sequences

{ωk, αk}.



continuous-time Quantum walk 8

3 CTQW and CTRW on spidernets via quantum prob-

ability theory

We start our discussion by considering a walk on general graphs. Classically, the evolution of

CTRW is governed by Kolmogorov’s equation (master equation)[29, 30],

dPi,j

dt
=

∑

k

HikPk,j (3-12)

where H is Hamiltonian of the walk and Pi,j is the conditional probability to find the CTRW on

vertex i at time t when the walk starting in the vertex j. It is natural to choose the Laplacian

of the graph, defined as L = D−A, as Hamiltonian of walk where D is a diagonal matrix with

entries as Djj = deg(αj). Then the solution of the above equation is

Pk,j = 〈k|etH |j〉. (3-13)

Quantum mechanically, the evolution of CTQW is obtained by replacing Kolmogorov’s equa-

tion with Schrödinger’s equation

ih̄
d|φ(t)〉

dt
= H|φ(t)〉. (3-14)

where we assume h̄ = 1 and |φ0〉 is the initial amplitude wave function of the particle. The

solution of the above equation is given by

|φ(t)〉 = e−itH |φ0〉 (3-15)

On s-regular graphs D = sI, then we get

e−itH = e−it(A−sI) = eitsIe−itA. (3-16)

This introduces an irrelevant phase factor in the wave evolution, hence we can consider H = A.

In the study of CTQW on graphs, the spectral distribution or density of states

of the system, H contains essential information about the system [14] (in fact, the
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spectral distribution is an efficiency measure for the performance of classical and

quantum mechanical transport processes on graphs [22] ) and by definition the

spectral distribution is a probability distribution µ uniquely specified by

〈Hm〉 = 〈φ0|Hm|φ0〉 =
∫

xmµ(dx), m = 0, 1, 2, ..., (3-17)

where, according to [14, 15, 26], 〈Hm〉 coincides with the number of m-step walks starting and

terminating at the origin site o. For analyzing the spectral distribution µ of the adjacency

matrix A, we use the method of quantum decomposition method which is a powerful tool.

The spectral distribution µ is determined by applying the canonical isomorphism from the

interacting Fock space onto the closed linear span of orthogonal polynomials determined by

Szegö- Jacobi sequences {ωk, αk}. In fact the determination of µ is the main problem in the

spectral theory of operators, where in the case is quite possible by using the Stieltjes method, as

it is explained in appendix A. Then by using the quantum decomposition relations (2-4)-(2-10)

and the recursion relation of polynomials Pn(n)(A-1), the other matrix elements as

〈φk|Hm|φ0〉 =
1√

ω1ω2...ωk

∫

xmPk(x)µ(dx), m = 0, 1, 2, .... (3-18)

Then by using Eq.(3-18), the classical transition probability and quantum mechanical transi-

tion amplitude to go from the initial site o at time 0 to the stratum |φk〉 in time t are given

by

p0(t) = 〈φ0|etH |φ0〉 =
∫

etxµ(dx),

pk(t) = 〈φk|etH |φ0〉 =
1√

ω1ω2...ωk

∫

etxPk(x)µ(dx) for k ≥ 1, (3-19)

and

q0(t) = 〈φ0|e−itH |φ0〉 =
∫

e−itxµ(dx)

qk(t) = 〈φk|e−itH |φ0〉 =
1√

ω1ω2...ωk

∫

e−itxPk(x)µ(dx) for k ≥ 1, (3-20)

respectively, where |qk(t)|2 is the transition probability of the quantum walk at the stratum k

at time t. The conservation of probability
∑

k |qk(t)|2 = 1 (
∑

k pk(t) = 1) follows immediately
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from Eq. (3-20) by using the completeness relation of orthogonal polynomials Pn(x). In the

appendix A reference [14] is provided the walker has the same transition probability at the

all sites belonging to the same stratum, i.e., we have |qik(t)|2 = |qk(t)|2
|Vk| , for i ∈ Vk (pik(t) =

pk(t)
|Vk| , for i ∈ Vk), where |qik(t)|2 (pik(t)) denotes the transition probability of the quantum walk

(classical walk) at the i-th vertex of k-th stratum Vk. Investigation of CTQW via spectral

distribution method, which is introduced as a new method for calculating the probability

amplitudes quantum walk (for more details see [14] ), allows us to avoid a heavy combinational

argument often necessary to obtain full description of spectrum of the Hamiltonian.

We can now investigate CTQW on spidernets. For calculating CTQW we need the Stieltjes

transform Gµ(z) which takes the following form

Gµ(z) =
1

z − a
z−(b−1−c)− c

z−(b−1−c)− c
z−(b−1−c)− c

...

(3-21)

In order to evaluate the continued fraction, we need firstly to evaluate the following infinite

continued fraction defined as

G̃µ(z) =
c

z − (b− 1− c)− c
z−(b−1−c)− c

z−(b−1−c)− c
z−(b−1−c)− c

...

=
c

z − (b− 1− c)− G̃µ(z)
, (3-22)

where by solving the above equation, we have

G̃µ(z) =
1

2
(z − (b− 1− c)−

√

(z − (b− 1− c))2 − 4c). (3-23)

By substituting (3-23) into (3-21), we obtain the following expression for the Stieltjes transform

of µ

Gµ(z) =
1

z − a
z−(b−1−c)−G̃µ(z)

=
1

2

a(b− 1− c) + (2c− a)z − a
√

(z − (b− 1− c))2 − 4c

a2 + ((c− a)z + a(b− 1− c))z
.

(3-24)

Finally, by applying Stieltjes inversion formula, we acquire the absolutely continuous part of
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spectral distribution µ as follows

µ(x) =
1

2π

a
√

4c− (x− (b− 1− c))2

a2 + ((c− a)x+ a(b− 1− c))x
; −2

√
c+ (b− 1− c) ≤ x ≤ 2

√
c+ (b− 1− c).

(3-25)

Referring to the results of Refs. [21, 22, 23], |q0(t)|2 (return probability at the

initial vertex) is the lower bound of the average probability to be still or again at

the initially excited vertex for quantum walker and p0(t) is the average probability

to return the initial vertex for classical walker. Since the lower bound in the

CTQW oscillates, due to unitary time evolution, one can use the envelope of this

oscillations as a measure for quantifying the efficiency (for more detail, see Ref.

[23]). Now, by considering Refs. [21, 22, 23], we are in the position to quantify

the efficiency of classical and quantum mechanical transport processes on these

graphs. For doing this work, we study the asymptotic expansion of integral po(t)

in the Eq.(3-19) for small x and large t. The spectral distribution of Eq.(3-24) for

small x is µ(x) ∼ x−1/2(d+ x)−1/2 ∼ x−1/2(1− 1
2
x), then we have

p0(t) ∼ t−3/2. (3-26)

To obtain this result we use the Ref.[25](for more details see chapter 6). Therefore,

one can obtain the lower bound of quantum mechanical for transport processes as

|q0(t)|2 ∼ t−3, (3-27)

(for more details see Ref. [22]). Since the decay of |q0(t)|2 is much quicker than

that of p0(t), the quantum walk on this graph is more efficient than the classical

random walk [21, 23]. Now, by numerical analysis, we confirm this results for

CTQW and CTRW on two infinite graphs which can be obtained from spidernet

graph by an appropriate choice of a, b, c.

Example A.

In this example we consider spidernet in Fig.1, i.e., S(4, 6, 3). Since this graph is not regular
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it is sufficient to place άk = Dkk − αk (i.e., ά1 = a = 4, ά2 = ά3 = · · · = c + 1 = 4) in the

relation(3-24). Then the spectral distribution takes the following form

µ(x) =
1

2π

4
√

12− (x+ 4)2

−8x− x2
, −4− 2

√
3 ≤ x ≤ −4 + 2

√
3. (3-28)

The transition probability and amplitudes of the walker at the stratum k at the time t, for

classical and quantum, are given by

p0(t) = −2

π

∫ −4+2
√
3

−4−2
√
3
etx

√

12− (x+ 4)2

8x+ x2
dx,

pk(t) = −1

π

1√
3k−1

∫ −4+2
√
3

−4−2
√
3
etxPk(x)

√

12− (x+ 4)2

8x+ x2
dx, for k ≥ 1,

q0(t) = −2

π

∫ −4+2
√
3

−4−2
√
3
e−itx

√

12− (x+ 4)2

8x+ x2
dx,

qk(t) = −1

π

1√
3k−1

∫ −4+2
√
3

−4−2
√
3
e−itxPk(x)

√

12− (x+ 4)2

8x+ x2
dx, for k ≥ 1, (3-29)

respectively. Then, for analyzing the time dependent of the transition probability,

we calculate numerically p0(t), |q0(t)|2, p1(t) and |q1(t)|2 of Eq.(3-29). Figs.2 and 3

show the return probability for CTRW and CTQW on the initial site o of the

graph. For CTRW, there is a power law decay ∼ t−1.5 at the beginning of the

transport, but after some time, p0 reaches a constant value 1
N

( N is total number

of the vertices of the graph i.e, N = |V |). Since the size of the graph is infinite this

constant goes to the zero, as shown in Fig.2.

Also in Fig.3, the dashed curve indicates the quantum mechanical return probability on

the initial site o of the graph. The dashed line shows the scaling behavior as ∼ t−3, but at

large times, the return probability oscillates frequently and approaches to zero. This property

indicates that the walk escapes from the starting site o.

In order to compare the transport speed on this graph, we define the characteristic time

tc as the time when the first maximum of the probabilities occurs on an infinite graph. Such

definition is held for both the classical and quantum mechanical transport. For the classical
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transport, there is one maximal value and the characteristic time corresponds to the time when

the probability is reached uniform probability on finite graph. Figure 3 indicates that the

characteristic time tc for the quantum walk is shorter than that of the classical one. Therefore,

we can interpret that the quantum transport speed on spidernet S(4, 6, 3) is faster than that

of the classical one. The different behavior of the transport speeds between the quantum and

classical random walk is striking characteristic that distinguishes the two transport processes.

Example B.

First we consider b = a and c = a − 1. With this choice the spidernet S(a, a, a − 1) is graph

with degree κ = a and µ obtains from Eq.(3-24) as

µ(x) =
1

2π

a
√

4(a− 1)− x2

a2 − x2
, −2

√
a− 1 ≤ x ≤ 2

√
a− 1, (3-30)

where this type of measure was first obtained by Kesten [31] in classical random walk with

a different method. By using the Eq.(3-20), the transition probability and amplitudes for

observing walker at the stratum k at the time t, for classical and quantum, are given by

p0(t) =
ae−at

2π

∫ 2
√
a−1

−2
√
a−1

etx

√

4(a− 1)− x2

a2 − x2
dx.

pk(t) =
ae−at

2π

1
√

a(a− 1)k−1

∫ 2
√
a−1

−2
√
a−1

etxPk(x)

√

4(a− 1)− x2

a2 − x2
dx, for k ≥ 1,

q0(t) =
a

2π

∫ 2
√
a−1

−2
√
a−1

e−itx

√

4(a− 1)− x2

a2 − x2
dx.

qk(t) =
a

2π

1
√

a(a− 1)k−1

∫ 2
√
a−1

−2
√
a−1

e−itxPk(x)

√

4(a− 1)− x2

a2 − x2
dx, for k ≥ 1, (3-31)

respectively. particularly, when a = 2 the network S(2, 2, 1) corresponds to a line graph

which the transition amplitudes can be rewritten as q0(t) = J0(2t) (p0(t) = e−2tI0(2t)) and

qk(t) =
√
2ikJk(2t) (pk(t) = e−2t

√
2Ik(2t)) for k ≥ 2 where Jk and Ik are the Bessel and

modified Bessel function of the first kind, respectively. This is consistent with the result in

Ref.[14]. For analyzing the time dependent of probability the observing walk we calculate
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numerically |qk(t)|2, pk(t) of Eq.(3-31). The return probability at the initial vertex is a good

measure to quantify the efficiency of the transport[22].

Having obtained transition probability for arbitrary spidernet S(a, a, a − 1) we

investigate numerically CTRW and CTQW on its graph for a = 3, 4. Figs. 4, 5

show the transition probability for CTRW on spidernet with a = 3, 4, respectively.

For CTRW, there is a power low decay (∼ t−1.5) at the beginning of the transport,

but after some time the transition probability reach a constant value. Also, the

figures 6, 7 show the transition probability for CTQW this graph with with a = 3, 4,

respectively. In this case the dashed line shows the scaling behavior ∼ t−3, and the

return probability oscillate frequently and approach to zero which this property

indicate the walk escape form a starting site o. This figures indicate that the

characteristic time tc for quantum walk is shorter than it classical. Therefore, we

can interpret which the quantum transport speed on spidernet is faster than that

of the classical one.

Finally, for large a (i.e., a −→ ∞) we discuss this question as a quantum central limit

theorem [19]. Since qk(t) = 0 in the limit a −→ ∞, then we have normalization Hamiltonian

and probability amplitudes as

qk(t) = lim
a−→∞

〈φk|e−iAt/
√
a|φ0〉 = lim

a−→∞
1

√

a(a− 1)k

∫ 2
√
a−1

−2
√
a−1

e−itx/
√
aPk(x)

a

2π

√

4(a− 1)− x2

a2 − x2
dx

= lim
a−→∞

1

2π
√

a(a− 1)k

∫ 2
√

(a−1)/a

−2
√

(a−1)/a
e−itxPk(

√
ax)

√

4(a− 1)/a− x2

1− x2/a
dx

=
1

2π

∫ 2

−2
e−itxPk,∞(x)

√
4− x2dx

=
2

π

∫ 1

−1
e−i2xtPk,∞(2x)

√
1− x2dx, (3-32)

where the polynomials Pk,∞(x) is defined as

Pk,∞(x) = lim
a−→∞

1
√

a(a− 1)k
Pk(x). (3-33)
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By comparing this recursion relation with Tchebichef polynomials, we have

Pk,∞(x) = Uk(x/2), (3-34)

where Uk(x) is the Tchebichef polynomials of second kind. Therefore, the probability ampli-

tudes of Eq.(3-32) obtain

qk(t) =
2

π

∫ 1

−1
e−i2xtUk(x)

√
1− x2dx = ik(k + 1)

Jk+1(2t)

t
, (3-35)

where in this case the return probability is |q0(t)|2 =
(

J1(2t)
t

)2
which the results are obtained

in agreement with Ref.[17]. In this case, we see that the spectral distribution obeys

Wigner’s semi-circle law (i.e, µ(x) = 1
π
(
√
1− x2)) and one can obtain that the power

law decay ∼ t−3 and ∼ t−3/2 for the quantum mechanical transport processes and

classical counterpart (for more details see Ref. [22]).

4 Conclusion

In this paper we have studied CTQW and CTRW on spidernet lattices. For this

work, by using the Stieltjes transform, we have obtained spectral distribution (den-

sity of states) that it is a efficiency measure for the performance of classical and

quantum mechanical transport processes on graphs. The we have analytically ob-

tained the power laws ∼ t−3 and ∼ t−3/2 for CTQW and CTRW on spidernet graphs,

respectively. By numerical analysis for two examples S(4, 6, 3) and S(a, a, a− 1), we

have confirmed this results. Due to quick decrease of the quantum mechanical

transport processes than that of the classical one, the quantum walk on spider-

net graphs is more efficient than the classical counterpart. Also, this results have

shown that the characteristic time tc (the tc is the time when the first maximum

of the probabilities occur on infinite graph ) for quantum walk is shorter than it
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classical. Therefore, in this lattices the speed of quantum transport is faster than

that of the classical one.

Appendix A

Determination of spectral distribution by the Stieltjes transform

In this appendix we explain how we can determine spectral distribution µ(x) of the graphs,

by using the Szegö-Jacobi sequences ({ωk}, {αk}). To this aim we may apply the canonical

isomorphism from the interacting Fock space onto the closed linear span of the orthogonal

polynomials determined by the Szegö-Jacobi sequences ({ωi}, {αi}). More precisely, the spec-

tral distribution µ under question is characterized by the property of orthogonalizing the

polynomials {Pn} defined recurrently by

P0(x) = 1, P1(x) = x− α1,

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x), (A-1)

for n ≥ 1.

As it is shown in [32], the spectral distribution can be determined by the following identity:

Gµ(z) =
∫

R

µ(dx)

z − x
=

1

z − α1 − ω1

z−α2− ω2

z−α3−
ω3

z−α4−···

=
Q

(1)
n−1(z)

Pn(z)
=

n
∑

l=1

Al

z − xl
, (A-2)

where Gµ(z) is called the Stieltjes transform and Al is the coefficient in the Gauss quadrature

formula corresponding to the roots xl of polynomial Pn(x) and where the polynomials {Q(1)
n }

are defined recurrently as

Q
(1)
0 (x) = 1,

Q
(1)
1 (x) = x− α2,

xQ(1)
n (x) = Q

(1)
n+1(x) + αn+2Q

(1)
n (x) + ωn+1Q

(1)
n−1(x),

for n ≥ 1.
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Now if Gµ(z) is known, then the spectral distribution µ can be recovered from Gµ(z) by

means of the Stieltjes inversion formula:

µ(y)− µ(x) = −1

π
lim

v−→0+

∫ y

x
Im{Gµ(u+ iv)}du. (A-3)

Substituting the right hand side of (A-2) in (A-3), the spectral distribution can be determined

in terms of xl, l = 1, 2, ..., the roots of the polynomial Pn(x), and Guass quadrature constant

Al, l = 1, 2, ... as

µ =
∑

l

Alδ(x− xl) (A-4)

( for more details see Refs. [14, 15, 32, 33].)
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Figure Captions

Figure-1: Spidernet lattice S(4, 6, 3) given by Hora et al. ([27], Fig. 4.3, p. 121).

Figure-2: The solid and dashed curves show the return probability on initial site o

and transition probability from initial site to the first strata for CTRW on spidernet lattice

S(4, 6, 3), respectively.

Figure-3: (a) and (b) show the return probability on initial site o and transition probability

from initial site to the first strata for CTQW on spidernet lattice S(4, 6, 3), respectively, in

which the dashed curves indicate the scaling behavior |q0(t)|2 and |q1(t)|2 ∼ t−3.

Figure-4: Fig.4 indicates the transition probabilities p0(t) and p1(t) of CTRQ on S(a, a, a−

1), for a = 3.

Figure-5: Fig.5 shows the transition probabilities p0(t) and p1(t) of CTRQ on S(a, a, a−1),

for a = 4.

Figure-6: (a) and (b) indicate the transition probabilities |q0(t)|2 and |q1(t)|2 for CTQW

on S(a, a, a− 1), for a = 3, in which the dashed curves show the scaling behavior |q0(t)|2 and

|q1(t)|2 ∼ t−3.

Figure-7: (a) and (b) indicate the transition probabilities |q0(t)|2 and |q1(t)|2 for CTQW

on S(a, a, a − 1), for a = 4, in which the dashed curves show the scaling behavior |q0(t)|2

and,|q1(t)|2 ∼ t−3.


