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We calculate the two-qubit disentanglement due to classical random telegraph noise using the
quasi-Hamiltonian method. This allows us to obtain analytical results even for strong coupling
and mixed noise, important when the qubits have tunable working point. We determine when
entanglement sudden death and revival occur as functions of qubit working point, noise coupling
strength and initial state entanglement. For extended Werner states, we show that the concurrence
is related to the difference of two functions: one is related to dephasing and the other longitudinal
relaxation. A physical intepretation based on the generalized Bloch vector is given: revival only
occurs for strongly-coupled noise and comes from the angular motion of the vector.
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I. INTRODUCTION

Entanglement is a property that sets quantum sys-
tems apart from their classical counterparts [1]. In recent
years, it has drawn great attention as an important re-
source for quantum information processing and commu-
nication, such as quantum cryptography [2], dense cod-
ing [3], teleportation [4] and exponential speed-up of cer-
tain computational tasks [5]. Interactions with the noisy
environment inevitably degrade quantum coherence and
thus entanglement. It has been shown that although lo-
cal (one-body) coherence decays continuously, global co-
herence (entanglement) may terminate abruptly in a fi-
nite time, a phenomenon known as entanglement sudden
death (ESD) [6]. To date ESD has been demonstrated in
two different experiments [7].
In the theoretical investigations of ESD, the Markov

approximation is commonly used; namely, the environ-
mental noise has short, or rather instantaneous, self-
correlations [8–11]. Non-Markovian noise, however, is
widely observed in solid-state systems [12, 13] and may
even serve as the dominant source of decoherence [14–18].
It is thus crucial to extend the current understanding of
ESD to the presence of non-Markovian environments. It
is known that for noninteracting qubits coupled to their
own independent environments, nonmonotonic time de-
pendence of the entanglement can only occur with non-
Markovian noise [19–21]. Mazzola et.al. pointed out
that a common structured non-Markovian reservoir pro-
tracts the disentanglement process and enriches the re-
vivial [22]. Yu et.al. considered a pure dephasing classi-
cal Ornstein-Uhlenbeck noise model and found the short-
time behavior of the entanglement evolution is markedly
modified [23]. Some progress has been made in modeling
the behavior of interacting 2-qubit systems in the pres-
ence of charge noise [24]. For the most part, however,
the evolution of entanglement in a non-Markovian envi-
ronment is still an open question.
Pure dephasing noise models [9, 21, 23, 25–28] and

variations of the Jaynes-Cummings model [8, 19, 20, 22]
have been the standard testbeds for ESD. Our work

however, is motivated by the recent discoveries in su-
perconducting qubit designs [14–16] where the working
point of the qubit is tunable: an arbitrary mixture of
dephasing and relaxational noise is possible. In these ar-
chitectures, it is found that 1/f noise is the dominant
source of decoherence. Thus a thorough understanding
of those experiments requires models that a) deal with
non-Markovian noise, especially random telegraph noise
(RTN) [12] which are the basic building blocks of 1/f
noise; b) treat dephasing together with relaxation [29–
33].

In this paper we use the quasi-Hamiltonian method
[29–31] to investigate bipartite disentanglement of two
independent qubits caused by uncorrelated sources of
classical RTN. This method is extremely powerful for
these types of problems and we will be able to obtain
many analytic results, in an area of research dominated
by numerical studies. Four issues are addressed. Firstly,
it is known that RTNs can be put into two categories
according to the ratio of their switching rates and cou-
pling strengths to the qubit, namely the weakly-coupled
(fast, Markovian) ones and strongly-coupled (slow, non-
Markovian) ones [30–32]. We thus seek for qualitative
differences in the disentanglement caused by these two
types of RTNs. Secondly, we exploit the working point of
the qubit to see if this extra degree of freedom affects ESD
and revival. This is particularly valuable when the work-
ing point can be varied, since the number of strongly-
and weakly-coupled noise sources can actually be tuned.
Thirdly, some entangled states are known to be more ro-
bust against disentaglement than others [25]. We thus
examine different initial states, both pure (generalized
Bell states) and mixed (extended Werner states). Fi-
nally, we compare two noise models, the two-one model
where only one qubit is subject to a RTN source and the
two-two model where both qubits are attached to RTNs
individually. This allows us to see the effect of noise lo-
cality on entanglement, a global property.

There are two distinct physical effects that lead to dis-
entanglement. One is the movement of entangled states
toward product states: this can happen even in the ab-
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sence of noise. Second is the movement of entangled
states towards completely mixed states: this requires
noise. We will separate these two routes to disentangle-
ment as far as we can by considering pure entangled ini-
tial states and mixed entangled initial states; in the latter
case, the distance from purity can be parametrized if the
mixed states are chosen as generalized Werner states.
We also propose the magnitude of the generalized

Bloch vector |~n| as an appropriate purity measure for
multi-qubit states. In the single qubit case, states on
the surface of the Bloch sphere (|~n| = 1) are pure, while
states at the origin (|~n| = 0) are completely mixed. In the
2-qubit case, the situation is not quite so simple, since the
set of admissible states is not spherical. However, as we
shall show, the pure states lie on the surface |~n| =

√
3.

In the 2-qubit state, we can then separate the sources
of entanglement by computing both the concurrence and
|~n|.
The paper is organized as follows. In Sec. II, we

introduce the model Hamiltonian and apply the quasi-
Hamiltonian method to reduce the two-qubit problem to
the single-qubit problem. In Sec. III we discuss the de-
phasing and relaxation behavior of single qubit as func-
tion of the qubit working point and RTN property. In
Sec. IV we define the two-qubit entanglement measure.
In Sec. V and VI, we solve the two-one and two-two
models. In Sec. VII, we discuss the geometrical inter-
pretation of the Bloch vector and qualitative difference
between weak and strong coupling, and give overall con-
clusions.

II. MODEL

The Hamiltonian of the system is given by

H(t) = −1

2

∑

K=A,B

[

B0σ
K
z + sK(t)~gK · ~σK

]

. (1)

where A,B refers to the two qubits, B0 is the energy
splitting of the qubits between the ground and excited
states, ~g is the coupling of the RTN to the qubit, and s(t)
is the RTN sequence that switches between the values ±1
with an average switching rate γ. Here ~σ = [σ1;σ2;σ3] is
the triad of the Pauli matrices.
This Hamiltonian is general enough to describe any

qubit subject to classical RTNs. For a superconducting
flux qubit, B0 =

√
ε2 +∆2, where ε is proportional to the

applied flux through the superconducting loop and ∆ is
the Josephson coupling, which are the energy difference
and tunneling splitting between the two physical states.
In this case θ = tan−1(∆/ε) is independent of K and the
angle θ is called the working point of the qubit. Since
flux noise is along the ε direction, θ is the angle between
the noise direction and the qubit eigenstate direction,
and it can be varied by changing the applied flux. For
spin qubits, θK is simply the angle between the applied
field and the magnetic noise field of the K-th fluctuator.

For general problems, an arbitrary power and angular (θ)
spectrum can be obtained by superposing noise sources.

In this paper we treat unbiased noise, so s(t) = 0,
where the overbar denotes averaging over the noise dis-
tribution. We also have

s(t)s(t′) = exp (−2γ |t− t′|) . (2)

The noise autocorrelation function dies off exponen-
tially, corresponding to a Lorentzian power spectrum
SRTN(ω) = 4γg2/(ω2 + 4γ2). There are thus two time
scales set by the RTN’s characteristics: the correlation
time of the environment τe ∼ 1/γ and the noise induced
looping time of the qubit τl ∼ 1/ (g cos θ), where θ is the
angle between the energy axis ẑ and the noise coupling
direction ĝ [31]. The relative lengths of these two time
scales are critical for the qubit decoherence and disentan-
glement. Indeed, τe < τℓ is effectively the weak-coupling
(Markovian) region while τe > τℓ is the strong-coupling
(non-Markovian) region.

The density matrix ρAB(t) is 4×4 and can be expanded
in the generators µi of SU(4)

ρAB(t) =
1

4

(

I4 +

15
∑

i=1

ni(t) µi

)

, (3)

where I4 is the 4 × 4 unit matrix. ni(t) = Tr [ρAB(t)µi]
are the components of the generalized Bloch vector ~n;
they are all real. The choice of the set of 15 Hermitian
matrices {µi} is a choice of basis. We will take them to
be

{σa ⊗ σb} \ {σ0 ⊗ σ0}, a, b = {0, 1, 2, 3} (4)

where σ0 is the 2×2 identity matrix. We adopt the base-4
ordering convention such that µ1 = σ0⊗σ1, µ2 = σ0⊗σ2,
etc. The µi are an orthonormal basis for the density
matrix space with the inner product 〈µ, µ′〉 =Tr[µµ′] /4.
Note also that Tr µi = 0.

The ni (t) are not the most common way to character-
ize a quantum state. However, they have a direct physical
meaning. For example, since µ10 = σ2⊗σ2, we have that

n10(t) = Tr [µ10ρAB(t)] = 〈σ2 ⊗ σ2〉 .

Thus n10 is the value of a certain spin-spin correlation
function.

Furthermore, the ni (t) collectively form a measure of
the purity of the state [34]. A pure state satisfies ρ2 = ρ.
Therefore any pure state satisfies 0 =Tr

(

ρ− ρ2
)

= 3
4 −

1
4 |~n|

2
,so |~n| =

√
3. At the other limit, the completely

mixed state ρ = I4/4 gives ~n = 0 and Tr
(

ρ− ρ2
)

= 3/4.

However, not all states with |~n| ≤
√
3 respect positivity

[34].

Using the quasi-Hamiltonian method [29, 30], the time
evolution of the quantum system in the presence of clas-
sical noise can be cast into a time-dependent transfer
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matrix T (t) acting on the generalized Bloch vector,

~n(t) = T (t) ~n(0)

Note T (t) is real but is not orthogonal once the average
over noise histories has been performed. Thus nonorthog-
onality is a direct consequence of the incoherent environ-
ment.

To simplify notation, we include µ0 = I4 in the gener-
alized Bloch vector, i.e. we define the ’extended’ gener-
alized Bloch vector as ~n = [n0;~n]. Note n0(t) = 1 for all
time. We thus have

~n(t) = T (t) ~n(0)

and the time evolution T (t) can be succinctly written as

T (t) = RA(t)⊗RB(t),

where RK(t), K = A,B are the 4 × 4 ’extended’ single
qubit transfer matrices. They are derived from the single
qubit transfer matrices RK by padding the matrix: the
(00) entry is set to 1 and the (0i), (i0) entries for i =
1, 2, 3 are set to 0. Now

RK(t) = 〈xf | exp(−iHK
q t) |if 〉 , K = A,B

and

HK
q = −iγ + iγτ1 +

[

B0Lz + τ3 ~gK · ~L
]

.

Here |if 〉 and |xf 〉 are related to the initial distributions
of the RTN. We only consider unbiased RTN in this pa-
per: |if 〉 = |xf 〉 = [1; 1]/

√
2.

If the qubit is not subject to any noise, the ’extended’
single qubit transfer matrix can be written as

R0(t) =







1 0 0 0
0 cosB0t sinB0t 0
0 − sinB0t cosB0t 0
0 0 0 1






.

R0(t) is orthogonal and thus conserves the length of the
Bloch vector. The time evolution of the single qubit
Bloch vector is simply a precession along the ẑ direction
with Larmor frequency B0.

If the qubit is subject to a RTN, the transfer matrix
can be calculated by known methods [30, 31] and we have

RRTN(t) =







1 0 0 0
0 ζ (t) cosB0t ζ (t) sinB0t 0
0 −ζ (t) sinB0t ζ (t) cosB0t 0
0 0 0 e−Γ1t






. (5)

where ζ(t) characterizes the dephasing behavior of the
qubit and Γ1 is the longitudinal relaxation rate. They
will be discussed in the next section. RRTN is generally
a nonorthogonal matrix since both ζ (t) and exp(−Γ1t)
decrease with time.

As been pointed out by Bellomo et.al. [19], the dynam-
ics of N -qubit density matrix elements follows from the
dynamics of each single qubit, and it is essentially inde-
pendent of the initial condition of the total system. This
feature is especially clear in our formalism, since T (t) is
constructed directly from tensor products of single qubit
transfer matrices RK(t) and is independent of the ini-
tial conditions. It is know that collective channels (com-
mon reservoir) can also lead to entanglement instability,
either in the Markovian [11] or non-Markovian environ-
ment [22]. In this case, the two-qubit transfer matrix
T (t) is no longer of product form of single-qubit transfer
matrices. The noise correlations glue up the single qubit
Hilbert spaces and indirectly couple the two qubits [35].
The results in this paper have been calculated using

the quasi-Hamiltonian method and have also been veri-
fied through numerical simulations. A single numerical
”run” is calculated by generating a sequence of RTN and
then exactly solving the density matrix for that given se-
quence. The final numerical simulation result is found by
producing thousands of runs (40,000 for the figures in this
paper) each with a different sequence of RTN, and then
finding the average density matrix over all the runs. This
allows us to numerical simulate the quasi-Hamiltonian
results which are inherently averaged over all RTN se-
quences. The numerical and quasi-Hamiltonian simula-
tions are in agreement to within round-off error and could
be plotted on the same graph without any visible differ-
ence.

III. SINGLE-QUBIT DEPHASING AND

RELAXATION

It is known that the fast (weakly-coupled, Markovian)
RTNs and slow (strongly-coupled, non-Markovian) RTNs
have qualitatively different effects on the single qubit
time evolutions [30–33] .
The two types of RTNs are separated by the criterion

g cos θ = γ . For the fast ones (γ > g cos θ), we have τl >
τe and the memory of the environment is short comparing
to the looping time. Redfield theory [36] applies in this
case and both dephasing and relaxation of the elements
of the density matrix is exponential at long times while
the very short time behavior is quadratic [30].
For the non-Markovian RTN sources (γ < g cos θ),

τl < τe, the correlation of noise is long enough to make
possible the looping of the Bloch vector on the Bloch
sphere. This looping manifests itself as oscillations in the
Free-Induction signal (FID) and Spin-Echo (SE) signals
[31].
The function ζ (t) introduced in Eq.5 is directly related

to the FID signal, i.e. nFID(t) = cosB0t ζ(t). Physically,
ζ (t) is the probability for the single-qubit Bloch vector
to return to its starting point on the Bloch sphere in the
rotating frame when no pulses are applied. We thus
call ζ (t) the dephasing function. Note ζ(t = 0) = 1 and
ζ(t → ∞) = 0 if dephasing occurs.
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For the Markovian RTN we have the well-known re-
sults:

ζ(t) = e−Γ2t, (6)

where

Γ2 =
Γ1

2
+

g2 cos2 θ

2γ
, (7)

Γ1 =
2γg2 sin2 θ

4γ2 +B2
0

. (8)

For the non-Markovian RTN

ζ(t) = e−γt [cos(g cos θt) + ǫ1 sin(g cos θt)] (9)

and the longitudinal relaxation rate is

Γ1 = 2γǫ22 sin
2 θ, (10)

where ǫ1 = γ/g cos θ and ǫ2 = g/B0. In each case the
dephasing function ζ (0) = 1 and ζ (t → ∞) = 0.

Unlike the monotonic decay in the Markovian RTN
case, ζ (t) is oscillatory in the presence of non-Markovian
RTN. It hits zero at discrete points in time

ζ (tℓ) = 0 at tℓ =
πℓ− tan−1(1/ǫ1)

g cos θ
, ℓ = 1, 2, . . .

(11)

Note in both strong and weak coupling region, the lon-
gitudinal qubit relaxation can always be well character-
ized by a single exponential coefficient Γ1.

Finally, we note that there is an exact result for ζ (t)
at the pure dephasing point θ = 0 [30]

ζ (t) = e−γt



cosh
(

√

γ2 − g2t
)

+
sinh

(

√

γ2 − g2t
)

√

1− ( g
γ
)2



 .

(12)

For Eq.12, if g > γ (strong coupling), the hyper-
bolic functions need to be replaced by the corresponding
trigonometric functions

ζ (t) = e−γt









cos(
√

g2 − γ2t) +
sin(

√

g2 − γ2t)
√

(

g
γ

)2

− 1









. (13)

Using the exact result, the zeros of ζ (t) are given by

tℓ =

πℓ − tan−1

(

√

(

g
γ

)2

− 1

)

√

g2 − γ2
, ℓ = 1, 2, 3, . . . (14)

We see Eq.11 is indeed the the correct behavior as γ → 0.

IV. CONCURRENCE

For bipartite entanglement, all entanglement measures
are compatible and we use concurrence [37] for its ease
of calculation. The concurrence varies from 0 for the
disentangled state to 1 for the maximally entangled state.
It is defined as CAB(t) = max{0, q(t)}, and

q(t) = λ1 − λ2 − λ3 − λ4 , (15)

where λi are the square roots of the eigenvalues of the
matrix ρAB ρ̃AB arranged in decreasing order and

ρ̃AB = (σA
y ⊗ σB

y )ρ∗AB(σ
A
y ⊗ σB

y ), (16)

where ρ∗AB is the complex conjugate of the density matrix
ρAB(t).
The product ρAB ρ̃AB can be expanded as

ρAB ρ̃AB =

15
∑

i,j=0

ninj

16
µi µ̃j ,

where µ̃j = (σy ⊗ σy)µ
∗
j (σy ⊗ σy). Note µ̃i = −µi, if

i = 1, 2, 3, 4, 8, 12 and µ̃i = µi for other i’s.
Thus our formalism allows us to investigate the time

evolution of bipartite entanglement with the knowledge
of the Bloch vector n(t).
ESD occurs when q(t) < 0 since the ’max’ operation

forces CAB = 0 and CAB is not an analytic function.
For the situations considered in this paper, we find that
λ1 and λ2 have the same long time limit and λ3 = λ4.
Thus ESD happens if limt→∞ λ3,4(t) 6= 0. In this work,
we also find q(t) has a structure of |ζ| − ξ, where ξ is
generally related to the initial state as well as the longi-
tudinal relaxation process. Thus ESD happens whenever
ξ(t → ∞) 6= 0 since ζ(t) always decays to zero in the
presence of dephasing.
We also compute |~n|(t), the magnitude of the gener-

alized Bloch vector. This is a measure of purity in the
single-qubit case. In the two-qubit case it appears to
track CAB to a large extent, and might serve as a poten-
tial measure of both entanglement and purity for multi-
ple qubit (> 2) systems when concurrence is no longer
defined.

V. TWO-ONE MODEL

In this section, we consider the case where only one of
the two qubits is subject to RTN. The ’extended’ transfer
matrix is thus given by

T (t) = RA
RTN(t)⊗RB

0 (t), (17)

In this model qubit B enjoys coherent time evolution
and is stationary in the rotating frame. Thus all dis-
entanglement and decoherence of the two-qubit system
come from qubit A’s interaction with RTN. We can think
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of the qubit B as forming a kind of reference frame for
entanglement with qubit A.

A. Pure States

We consider the generalized Bell states as initial states

|Φ〉 =α |00〉+ β |11〉 (18)

|Ψ〉 =α |01〉+ β |10〉 (19)

where α is real positive, β = ‖β‖eiδ and α2 + ‖β‖2 = 1.

Note α = 1/
√
2, β = ±1/

√
2 gives the Bell bases |Φ±〉

and |Ψ±〉.
With |Φ〉 or |Ψ〉 as initial state, a complete analytic

solution is possible.

The time evolution of the generalized Bloch vector for
initial state |Φ〉 is given by

n3(t) =2α2 − 1, (20)

n5(t) =2α ζ [cos(2B0t)Re β + sin(2B0t)Im β] , (21)

n6(t) =2α ζ [cos(2B0t)Im β − sin(2B0t) Re β] , (22)

n9(t) =n6(t), (23)

n10(t) =− n5(t), (24)

n12(t) =n3(t)e
−Γ1t, (25)

n15(t) =e−Γ1t, (26)

while the other ni(t) = 0. Here ζ (t) and Γ1 are given by
Eq.6, 8 or 9, 10, depending on the coupling of the RTN.

With |Ψ〉 as initial state, the non-zero components are

n3(t) =1− 2α2, (27)

n5(t) =2α Re β ζ (t) , (28)

n6(t) =− 2α Im β ζ (t) , (29)

n9(t) =− n6(t), (30)

n10(t) =n5(t), (31)

n12(t) =− n3(t)e
−Γ1t, (32)

n15(t) =− e−Γ1t. (33)

Note in this case the generalized Bloch is not dependent
on B0. This is because σA

z + σB
z annihilates |Ψ〉.

For both initial states, the square roots of the eigen-
values of ρAB ρ̃AB are

λ1 =
α‖β‖
2

(

1 + e−Γ1t + 2|ζ|
)

, (34)

λ2 =
α‖β‖
2

(

1 + e−Γ1t − 2|ζ|
)

, (35)

λ3 =λ4 =
α‖β‖
2

(1− e−Γ1t). (36)

0

0.2

0.4

0.6

0.8

1

λ 1,
2,

3,
4

0 200 400 600 800
t

0 200 400 600 800
t

C
A

B
, |

n|

0

0.5

1

1.5

2

(a) (c)

(b) (d)

Figure 1: Pure dephasing noise for the two-one model. Top
panels (a) and (c): Square roots of eigenvalues of ρρ̃(t). Bot-
tom panels (b) and (d): magnitude of Bloch vector n(t) above
and concurrence CAB(t) below. These are calculated from
Eqs. 20-37 and confirmed by numerical simulations. Both
qubits are operated at the pure dephasing point and only
one of them is connected to the RTN, i.e. g1 = 0.1, g2 = 0,
θ = 0. The initial state is set to

∣

∣Φ+
〉

. In (a) and (b),
γ = 0.005 and the RTN is in the strong-coupling region while
in (c) and (d), γ = 0.5 and the RTN is in the weak-coupling
region. λ1 is plotted as a solid blue line, λ2 as a dashed green
line; λ3 = λ4 = 0. n(t) is plotted as a solid red line and
CAB(t) as a solid black line. Time is in the unit 1/B0. These
results are exact.

which gives the concurrence as

CAB = 2α
√

1− α2 max

{

0, |ζ(t)| − 1− e−Γ1t

2

}

= 2α
√

1− α2 max {0, |ζ(t)| − ξ (t)} . (37)

The concurrence has a remarkable form. ξ (t) ≥ 0 is
only related to the longitudinal relaxation rate Γ1 and
varies between 0 for the unrelaxed state and 1/2 for the
fully relaxed state; it describes relaxation only, while ζ (t)
is related only to dephasing. Entanglement exists only
when |ζ| > ξ. The effects of dephasing (the decrease of
|ζ|) and relaxation (the increase of ξ) are additive, and
they race to disentangle the state. However, ζ (t) can be
oscillatory, and then revival of entanglement is possible.
Once the envelope of ζ (t) is less than ξ (t), entanglement
is gone for good.
As a function of working point θ, Γ1 is finite except for

θ = 0: the pure dephasing point. At this point Γ1 = 0 and
ξ (t) = 0. Two of the four eigenvalues vanish: λ3,4 = 0.
If ζ (t) is a monotonic function (weak coupling), then

CAB = 2α
√
1− α2|ζ(θ = 0)| > 0 at all finite times and

ESD does not occur. This is seen in Fig. 1 (c,d). If
ζ (t) is oscillatory (strong coupling) then ESD and re-
vival occurs, as seen in Fig. 1 (a,b). In fact the revival
happens an infinite number of times, since the envelope
is exponential. We again note that the result at the pure
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dephasing point is exact; see Eqs. 12 and 13.

For θ > 0, intermediate working points, Γ1 > 0 and
ξ (t → ∞) = 1/2. λ3 = λ4 increase monotonically with
time. In fact all eigenvalues approach the same limit:
λ1,2,3,4 (t → ∞) = α

√
1− α2/2 as seen in Fig. 2 (a,c). If

θ > 0, then ESD is inevitable. All λ’s have α
√
1− α2/2

as their long time limit. At strong coupling, there are
a finite number of revivals, while at weak coupling, ESD
occurs at a finite time and no revival occurs. This generic
behavior is the same at all intermediate working points.

As we begin in a pure state, we have |~n (t = 0)| =√
3. At long times the magnitude of the Bloch vector

approaches a finite limit in the dephasing case because
n3 = 〈σ0 ⊗ σ3〉, proportional to the expectation value of
the z-component of the spin for qubit B, is independent
of time. This is due to the cylindrical symmetry of the
Hamiltonian: [H,σ0 ⊗ σ3] = 0. In the case θ > 0, |~n|
decays to zero, though this happens on a time scale longer
than is shown in Fig. 1. Nevertheless, in both cases the
time dependence of |~n (t)| tracks the time dependence of
CAB to a large extent. In particular, the oscillations in
CAB (t) observed at strong coupling are also present in
|~n (t)|. These oscillations might naively be supposed to
come from oscillations between entangled and product
states; the fact that the oscillations are also present in
|~n| means that the disentanglement is coming essentially
from mixing, even though it is non-monotonic.

Notice that |~n| , unlike CAB, is a continuous function
of the elements of the density matrix ρ; as a result it does
not suffer sudden death but rather decays exponentially.
The oscillations in CAB are not as long-lived as those in
|~n|. This is due to the fact that once the envelope of ζ is
less than ξ, ESD kills off CAB. No such effect occurs for
|~n|.

B. Mixed States

We have found that for pure initial states, the disentan-
glement comes mainly from mixing. Additional insight
is gained by taking mixed initial states. We will use the
”extended Werner states” [20, 38] as initial states,

wΦ
r (0) = r |Φ〉 〈Φ|+ 1− r

4
I4, (38)

wΨ
r (0) = r |Ψ〉 〈Ψ|+ 1− r

4
I4, (39)

where 0 < r < 1 measures the purity of the initial states.
r = 1 gives the (pure) generalized Bell states of the pre-
vious section and r = 0 is the fully mixed state ρ = I4/4.

|~n (t = 0)| =
√
3r.

The generalized Bloch vectors for the Werner states
(

~nwΦ
r
, ~nwΨ

r

)

are related to the those for the generalized
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Figure 2: Mixed noise for the two-one model. Top panels
(a) and (c): square roots of eigenvalues of ρρ̃(t). Bottom
panels (b) and (d): magnitude of Bloch vector n(t) above and
concurrence CAB(t) below. The curves are calculated from
Eqs. 20-37 and confirmed by numerical simulations. Both
qubits are operated at an intermediate working point and
only one of them is connected to the RTN, i.e. g1 = 0.1,
g2 = 0, θ = π/3, φ = π/2. The initial state is set to

∣

∣Φ+
〉

. In
(a) and (b), γ = 0.005 and the RTN is in the strong-coupling
region while in (c) and (d), γ = 0.5 and the RTN is in the
weak-coupling region. λ1 is plotted as a solid blue line, λ2 as
a dashed green line; λ3 as a dottd red line, and λ4 as a dotted
black line. n(t) is plotted as a solid red line and CAB(t) as a
solid black line. Time is in the unit 1/B0.

Bell states
(

~n|Φ>, ~n|Ψ>

)

by simple scaling

~nwΦ
r
(t) = r ~n|Φ>(t), (40)

~nwΨ
r
(t) = r ~n|Ψ>(t). (41)

For both initial states wΦ
r (0) and wΨ

r (0), the λ’s are
given by

λ1 =rα‖β‖
(

ξ̃ + |ζ|
)

, (42)

λ2 =rα‖β‖
(

ξ̃ − |ζ|
)

, (43)

λ3 =λ4 = rα‖β‖ ξ (44)

where

ξ̃ =

√

(1 + re−Γ1t)2 − (1 + e−Γ1t)2r2(2α2 − 1)2

4rα
√
1− α2

,

and the relaxation function is given by

ξ =

√

(1− re−Γ1t)2 − (1− e−Γ1t)2r2(2α2 − 1)2

4rα
√
1− α2

,

which depends both on the relaxation rate Γ1 and the
initial conditions of the qubit.
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Figure 3: Top panels (a) and (c) square roots of eigenvalues
of ρρ̃(t). Bottom panels (b) and (d): Bloch vector n(t) above
and concurrence CAB(t) below. The curves are calculated
from Eqs. 40-45 and confirmed by numerical simulations.
Both qubits are operated at pure dephasing point and only
one of them is connected to the RTN, i.e. g1 = 0.1, g2 = 0,

θ = 0. The initial state is set to ρΦ
+

r with r = 0.5. In (a) and
(b), γ = 0.005 and the RTN is in the strong-coupling region
while in (c) and (d), γ = 0.5 and the RTN is in the weak-
coupling region. λ1 is plotted as solid blue line, λ2 dashed
green line, λ3 dotted red line, λ4 dotted black line, n(t) solid
red line and CAB(t) solid black line. Note λ3 = λ4 6= 0 and
ESD occurs in both cases. Time is in the unit 1/B0.

The concurrence is then

CAB = max
{

0, 2rα
√

1− α2 (|ζ| − ξ)
}

, (45)

If Γ1 6= 0, i.e., if the qubit is operated at intermediate
working point, the long time limit of ξ is

ξ(t → ∞) =

√

1− r2(2α2 − 1)2

4rα
√
1− α2

. (46)

If Γ1 = 0 (pure dephasing),

ξ(t) =
1− r

4rα
√
1− α2

. (47)

Thus the only situation where ESD does not happen is
when r = 1 and Γ1 = 0. ESD is thus essentially a uni-
versal behavior if qubits are subjected to RTNs.

In Fig. 3 and 4, we can see in greater detail how the
introduction of r, i.e. the interpolation with I4 in the
initial density matrix, changes the situation. First, it lifts
λ3 and λ4 to finite values. This causes ESD to happen
even at the pure dephasing point. r is essentially a radial
variable in ~n-space. Comparing Fig. 1 to Fig. 3 (pure
dephasing noise), we find, in agreement with Eq. 40 that
~n is simply proportional to r. Thus the decay time of
|~n| is unchanged. The dependence of CAB on r, however,
is more complicated. There is an overall proportionality,

0
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0.6
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Figure 4: Top panels (a) and (c): square roots of eigenval-
ues of ρρ̃(t). Bottom panels (b) and (d): magnitude of Bloch
vector n(t) above and and concurrence CAB(t) below. The
curves are calcuated from Eqs, 40-45 and confirmed by numer-
ical simulations. Both qubits are operated at intermediate

working point and only one of them is connected to the
RTN, i.e. g1 = 0.1, g2 = 0, θ = π/3, φ = π/2. The initial

state is set to ρΦ
+

r with r = 0.5. In (a) and (b), γ = 0.005
and the RTN is in the strong-coupling region while in (c) and
(d), γ = 0.5 and the RTN is in the weak-coupling region. λ1

is plotted as solid blue line, λ2 dashed green line, λ3 dotted
red line, λ4 dotted black line, n(t) solid red line and CAB(t)
solid black line. Note λ3 = λ4 6= 0 and ESD occurs in both
cases. Time is in the unit 1/B0.

but the relaxation function ξ also dpends on r. This
means that the decay time of CAB is reduced when r =
0.5 as compared to when r = 1 (pure initial state). This
is in agreement with Eq. 45. Comparison of Figs. 2 and
4 (arbitrary working point) shows that this qualitative
behavior does not change when we have mixed noise.
This says something important about the geometry of

the 15-dimensional space in which ~n lives. If we move
radially in this space from a point with |~n| =

√
3 and

CAB = 1 (a pure state with maximal entanglement)
to the origin (the maximally mixed state) along a path
determined by our model the entanglement diminishes
monotonically, but not smoothly, to 0. If we move on the
surface of the sphere of pure states (changing angular
variables only), it is obviously possible to move contin-
uously from an entangled pure state with CAB = 1 to
a product (separable) state that would have CAB = 0.
We may summarize this by saying that in our model pu-
rity is a radial variable in ~n-space while entanglement
is, roughly speaking, the product of the purity and an
angular variable.

VI. TWO-TWO MODEL

In this section, both qubits are subject to RTNs and
the two RTNs are not correlated and do not necessarily
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have the same prameters g and γ. The transfer matrix
for this model is

T (t) = RA
RTN(t)⊗RB

RTN(t).

We only consider the extendedWerner states here since
the generalized Bell states are included as special cases.

With wΦ
r as initial state, the non-zero components of

the generalized Bloch vector are

n3(t) =r (2α2 − 1) e−ΓB

1 t, (48)

n5(t) =2r ζAζBα [cos(2B0t)Re β + sin(2B0t)Im β]
(49)

n6(t) =2r ζAζBα [cos(2B0t)Im β − sin(2B0t)Re β]
(50)

n9(t) =n6(t), (51)

n10(t) =− n5(t), (52)

n12(t) =r (2α2 − 1) e−ΓA

1 t, (53)

n15(t) =r e−(ΓA

1 +ΓB

1 )t. (54)

With wΨ
r as initial state, the non-zero components of

the generalized Bloch vector are

n3(t) =r(1 − 2α2) e−ΓB

1 t, (55)

n5(t) =2rα Re β ζAζB, (56)

n6(t) =− 2rα Im β ζAζB , (57)

n9(t) =− n6(t), (58)

n10(t) =n5(t), (59)

n12(t) =r(2α2 − 1) e−ΓA

1 t, (60)

n15(t) =− re−(ΓA

1 +ΓB

1 )t. (61)

Note there is no B0 dependence in this case.

The square roots of eigenvalues of ρAB ρ̃AB for both
initial states are

λ1 = rα‖β‖
(

ξ̃ + |ζAζB |
)

(62)

λ2 = rα‖β‖
(

ξ̃ − |ζAζB |
)

(63)

λ3 = λ4 = rα‖β‖ ξ (64)

where

ξ̃ =

√

(

1 + re−(ΓA

1
+ΓB

1
)t
)2 − r2(2α2 − 1)2

(

e−ΓA

1
t + e−ΓB

1
t
)2

4rα
√
1− α2

(65)

and the relaxation function is

ξ =

√

(

1− re−(ΓA

1
+ΓB

1
)t
)2 − r2(2α2 − 1)2

(

e−ΓA

1
t − e−ΓB

1
t
)2

4rα
√
1− α2

.

(66)
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Figure 5: Top panels (a) and (c): square roots of eigenval-
ues of ρρ̃(t). Bottom panels (b) and (d): magnitude of Bloch
vector n(t) above and and concurrence CAB(t) below. The
curves are calcuated from Eqs. 48-67 and confirmed by nu-
merical simulations. Both qubits are operated at pure de-

phasing point and both of them are connected to the RTN,
i.e. g1 = 0.1, g2 = 0.1, θ = 0 . The initial state is set
to

∣

∣Φ+
〉

. In (a) and (b), γ = 0.005 and the RTN is in the
strong-coupling region while in (c) and (d), γ = 0.5 and the
RTN is in the weak-coupling region. λ1 is plotted as solid
blue line, λ2 dashed green line, λ3 dotted red line, λ4 dot-
ted black line, n(t) solid red line and CAB(t) solid black line.
Note λ3 = λ4 = 0 and ESD does not occur in both cases.
Time is in the unit 1/B0.

The concurrence is given by

CAB = max
{

0, 2rα
√

1− α2
[
∣

∣ζAB (t)
∣

∣− ξ (t)
]

}

(67)

where

ζAB (t) = ζA (t) ζB (t) .

This simple product form is due to the independence be-
tween the two qubits.

The long time limit of the relaxation function is

ξ(t → ∞) =
1

4rα
√
1− α2

if ΓA
1 6= 0,ΓB

1 6= 0.

If ΓA
1 = ΓB

1 = 0, Eq.47 is recovered and r = 1 prevents
ESD from happening, as seen in Fig. 5.

The qualitative behavior of all quantities is rather sim-
ilar in Figs. 1, 3 and 5, all referring to dephasing noise.
This confirms a qualitative picture in which both qubits
undergo a random walk in their respective Hilbert spaces;
relative variables therefore also undergo a random walk,
but faster. Quantities like CAB that depend on the rela-
tive variables have a faster decay time. (Note the differ-
ence in the time scales on Figs. 1 and 5.)

Finally we note the norm of the Bloch vector |n| re-
sembles concurrence in all cases considered. This can be
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Figure 6: ”Phase diagram” of the behavior of CAB(t), given
’extended’ Werner state as initial state. In the upper region,
we have ESD and revival before CAB goes permanently to
zero. In the lower region, CAB dies just once and for all.

seen from the explicit expression

|n| = r

√

√

√

√

8α2(1− α2)
(

ζAB
)2

+ e−2(ΓA

1 t+ΓB

1 t)

+(1− 2α2)2
[

e−2ΓA

1 t + e−2ΓB

1 t
] . (68)

Since the generalized Bloch vector fully describes the sys-
tem, a geometric picture of ~n for entanglement might be
possible. To our knowledge, such a description is not
yet available except for some special parameterized states
[39] or close to ~n = ~0 [40].

VII. DISCUSSION AND CONCLUSION

The most important conclusion of the paper is that
the disentangling effect of non-Markovian, or strongly-
coupled, noise and the effect of Markovian, or weakly-
coupled, noise is qualitatively different. In Sec. V and
VI, we see CAB(t) can take on two forms before ESD
occurs: oscillatory and exponential, depending on the
coupling of the RTN. By numerical exploration, we have
constructed the ”phase diagram” in Fig. 6, where the
boundary is given by

g/γ = sec θ.

The oscillatory behavior arises from looping of ~n on
the Bloch sphere. This can only occur if the noise is slow
enough that the topology if the sphere is fully explored
before the Bloch vector decays entirely. If the noise is
fast, the relaxation moves ~n along a radial path to the
origin no looping occurs.

If the noise acts only on one qubit, the two-one model,
the situation can be analyzed in some detail. Qubit B
is not subject to RTN and is stationary in the rotating
frame. It effectively serves as a reference and the two-
qubit concurrence is fully determined by qubit A, as seen
in Eq. 37.

Figure 7: Single-qubit Bloch representation of the two-one
model. Initial states are the generalized Bell states. Inside
the cone CAB = 0.

In the single-qubit Bloch sphere picture,

|ζ| = ρA| sin θA| (69)

e−Γ1t = ρA cos θA, (70)

where ρA and θA are the length and polar angle of the
three dimensional Bloch vector of qubit A.
Given generalized Bell states as initial state, CAB = 0

is equivalent to

2ρA| sin θA|+ ρA cos θA ≤ 1.

Geometrically, it means CAB = 0 as long as qubit A’s
Bloch vector falls inside the cone shown in Fig. 7.
In the two-two model, however, both qubits have non-

trivial time evolution. This simple one-qubit picture for
concurrence then does not work and one needs to treat
the full 15-dimensional Bloch vector for the whole sys-
tem.
One important question is the relation of this work to

previous results on single qubits [31–33]. The oscillations
that occur in |~n| and CAB are clearly related to the noise-
induced looping on the single-qubit Bloch sphere. For
example, they have the same period. However, in the
single-qubit case these oscillations occur in the tails of an
overall Gaussian decay. They are much more pronounced
in |~n| and CAB.
Entanglement revival was introduced in Ref. [11] and

later on shown to exist in different systems [19, 41]. It has
sometimes been attributed to back-action from the non-
Markovian environment [22]. There is no back-action in
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our model so this cannot be a general statement. Fur-
thermore, the revival seen in the present work is a simple
oscillation and does not arise from any constructive in-
terference of multiple reservoirs.
In conclusion, we used the quasi-Hamiltonian method

to study the entanglement dynamics of two non-
interacting qubits subject to uncorrelated RTNs, utiliz-
ing the generalized (15-dimensional) Bloch vector ~n. This
turns out to be very well suited to determining entangle-
ment measures such as the concurrence, since ~n has a
rather direct relation to entanglement. We found in our
work that disentanglement caused by classical noise on
2-qubit systems falls into two distinct categories. In the
Markovian noise case familiar from perturbation (Red-
field) theory, the motion of ~n is essentially radial and
ESD happens except in special cases. The time scale of
ESD is similar to the time scale of exponential decay of
|~n|. In the Markovian noise case there is a combination
of radial and angular motion of ~n; |~n| typically shows os-
cillatory behavior, while the concurrence undergoes ESD

and revival. The quasi-Hamiltonian method provides us
a flexible way to deal with independent qubits and un-
correlated noises. The formalism for multiple qubits has
been established in Ref. [30] and it is therefore straight-
forward to extend the present work to this case. Other
future work would be to explore the effects of inter-qubit
coupling and noise correlations.
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