
ar
X

iv
:1

11
0.

64
12

v2
  [

qu
an

t-
ph

] 
 5

 S
ep

 2
01

2

Synthesis of Quantum Circuits for Linear Nearest Neighbor

Architectures

Mehdi Saeedi§, Robert Wille†, Rolf Drechsler♭

§ Computer Engineering Department, Amirkabir

University of Technology, Tehran, Iran

E-mail: msaeedi@aut.ac.ir

† Institute of Computer Science, University of

Bremen, Bremen, Germany

E-mail: rwille@informatik.uni-bremen.de

♭ Institute of Computer Science, University of

Bremen, Bremen, Germany

E-mail: drechsler@uni-bremen.de

Abstract While a couple of impressive quantum technologies have been proposed, they have several in-
trinsic limitations which must be considered by circuit designers to produce realizable circuits. Limited
interaction distance between gate qubits is one of the most common limitations. In this paper, we suggest
extensions of the existing synthesis flow aimed to realize circuits for quantum architectures with linear
nearest neighbor (LNN) interaction. To this end, a template matching optimization, an exact synthesis ap-
proach, and two reordering strategies are introduced. The proposed methods are combined as an integrated
synthesis flow. Experiments show that by using the suggested flow, quantum cost can be improved by more
than 50% on average.

1 Introduction

Since the invention of the integrated circuit in 1958, the number of transistors in such circuits has doubled
approximately every two years (also known as Moore’s Law). Currently, semiconductor technology has
advanced the world towards more powerful systems by decreasing the transistor size. However, further
miniaturization is beginning to appear insoluble due to the density of power dissipation and the impossibility
to realize patterning features approaching the atomic scale.

The difficult barriers to the ongoing improvements in semiconductor technology have intensified the
attraction of alternative computing paradigms such as quantum computing. It has been shown that quantum
computing could improve the rate of advance in processing power at least for several applications [1]. In
principle, there are several problems that cannot be executed on a classical Turing machine as efficiently
as on a quantum computer. Quantum computers would provide exponential speedups on several problems
including factoring of numbers and simulating the quantum-mechanical behavior of physical systems [2].
However, several obstacles exist in the way of physically implementing scalable quantum computers.

While several impressive physical realizations have been proposed for quantum computers (see [3] for
a classification scheme of different quantum computing technologies), all of these technologies have serious
intrinsic limitations [4]. Among the different technological constraints, limited interaction distance between
gate qubits is one of the most common ones. Although arbitrary-distance interaction between qubits is
possible in quantum computer technologies with moving qubits (for example in a photon-based system [5]),
restrictions exist in other quantum technologies. In fact, many physical quantum computer proposals only
permit interactions between adjacent (nearest neighbor) qubits [6]. For example, trapped ions (e.g., [7]),
liquid nuclear magnetic resonance (NMR) (e.g., [8]), and the original Kane model [9] have been designed
based on the interactions between linear nearest neighbor (LNN) qubits. The LNN architecture is often
considered as an appropriate approximation to a scalable quantum architecture. If one can show that a
circuit can efficiently be realized using an LNN architecture, it can be run in many other architectures as
well [10].

http://arxiv.org/abs/1110.6412v2
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The efficient realization of a given quantum algorithm for the LNN architectures is an active research
area. In the recent years, the effect of restricted interactions on several specific quantum algorithms has
been studied. For example, the physical implementation of the quantum Fourier transformation (QFT)
[11], Shor’s factorization algorithm [6,12], quantum addition [13], and quantum error correction [14] for the
LNN architectures have been explored in the past. Besides that, researchers also considered the effects of
LNN architectures on the synthesis of general quantum/reversible circuits. In [15] and [16], the worst-case
synthesis cost of a general unitary matrix under the nearest neighbor restriction has been discussed. It
has been shown that restricting CNOT gates to nearest neighbor interactions increases CNOT count of
[16] by at most a factor of 9. The authors of [17] showed that translating an arbitrary circuit to the LNN
architectures requires a linear increase in the quantum cost with respect to the number of qubits. In [18,19,
20], heuristic methods for converting an arbitrary circuit to its equivalent on the LNN architectures have
been proposed. However, their performance is limited as discussed later.

In this paper, we suggest extensions of the existing synthesis flow aimed to realize circuits for LNN
architectures. We show that with a naive treatment of the LNN restriction, quantum circuits require up
to one order of magnitude higher quantum cost in the LNN architectures. In contrast, if this restriction
is explicitly considered by the proposed synthesis flow, this increase can be reduced by more than 50% on
average (83% in the best case). To this end, the following approaches are proposed:

– An improved template-matching post-synthesis optimization method that reduces the circuit cost for
LNN architectures,

– an exact synthesis method for small functions realizing circuits with nearest neighbor interaction, and
– reordering strategies, which modify the initial qubit locations in order to reduce the distance between

non-neighbored qubits.

The remainder of this paper is organized as follows. In Section 2, basic concepts are introduced. Next,
we briefly review the naive synthesis flow for LNN architectures in Section 3. Followed by this, Section 4
describes the proposed synthesis and optimization approaches with explicit consideration of the LNN lim-
itation in detail. How to combine the respective approaches as an integrated flow is sketched in Section 5.
Finally, experimental results are given in Section 6 and conclusions are drawn in Section 7, respectively.

2 Background

2.1 Reversible Logic

A function f : Bn → B
n over variables X = {x1, . . . , xn} is reversible if it maps each input assignment to

a unique output assignment. Such function must have the same number of input and output variables. In
this paper, n is particularly used to refer to the number of inputs/outputs. A circuit realizing a reversible
function is a cascade of reversible gates. Common reversible gates include:

– A multiple control Toffoli gate tm has the form tm(C, t), where C = {xi1 , . . . , xim} ⊂ X is the set of
control lines and t = {xj} with C ∩ t = ∅ is the target line. The value of the target line is inverted iff
all control lines are assigned to 1. For m=0 and m=1, the gates are called NOT gate and CNOT gate,
respectively. For m=2, the gate is called C2NOT gate or Toffoli gate.

– A multiple control Fredkin gate fm has two target lines and m control lines. The gate interchanges the
values of the target lines iff the conjunction of all m control lines evaluates to 1. For m=0, the gate is
called SWAP gate.

– A Peres gate P has one control line xi as well as two target lines xj1 and xj2 . It represents a t2({xi, xj1}, xj2)
and a t1({xi}, xj1) in a cascade.

Reversible logic has applications in various fields including quantum computation.
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a �������� × a

b • × b

c • • c

(a) A given circuit

a V V V + • V + V + V • a

b • �������� • �������� �������� • �������� • �������� �������� b

c • • • • • • c

(b) The decomposed circuit with elementary gates

Fig. 1 A reversible circuit and its decomposed circuit

2.2 Quantum Logic

A quantum bit, qubit in short, can be realized by a physical system such as a photon. Each qubit has two
basic states |0〉 as well as |1〉 and can get any linear combination of its basic states (called superposition, as
shown in (1) where α and β are complex numbers).

|ψ〉 = α|0〉+ β|1〉 (1)

An n-qubit quantum gate is a device which performs a specific 2n × 2n unitary operation on selected n
qubits in a specific period of time. A matrix U is unitary if UU† = I where U† is the conjugate transpose
of U and I is the identity matrix. Previously, various quantum gates with different functionalities have
been introduced. For examples, Hadamard (H), Controlled-V, and Controlled-V+ gates are defined by the
following unitary matrices:

H = 1√
2

[

1 1
1 −1

]

(2)

V = 1+i
2

[

1 −i
−i 1

]

(3)

V + = 1−i
2

[

1 i
i 1

]

(4)

2.3 Synthesis Cost

Each Toffoli, Fredkin, and Peres gate can be decomposed into a quantum circuit composed of a sequence
of elementary quantum gates [1]. Each elementary gate performs a single physical operation in a certain
quantum computing technology. The number of elementary gates required to realize a given reversible
gate is called quantum cost. It has been shown that NOT, CNOT, Controlled-V, and Controlled-V+ gates
can efficiently be realized in quantum computer technologies [21]. These gates are usually considered as
elementary gates for reversible Boolean functions [22]. Thus, we stay with this definition in the following
sections. However, in other technologies not only this restricted set, but all one-qubit gates and all two-qubit
gates, respectively, are considered as elementary gates [1]. This is separately considered in the experimental
evaluation of the proposed approach in Section 6.

Fig. 1(a) shows a Toffoli gate and a Fredkin gate in a cascade. The resulting (decomposed) quantum
circuit is depicted in Fig. 1(b). Here, the control lines are denoted by ● while the target lines are denoted
by ⊕, ×, a V box, or a V+ box, respectively. As can be seen, a t2 gate is decomposed into 5 elemantary
gates, while a fm gate is decomposed into 7 elemenary gates, respectively. For larger gates, the respective
decomposition depends on the number n−m of unused circuit lines: For n ≥ 5 and m ∈ {3, 4, · · · ⌊n/2⌉}, a
tm gate can be decomposed into a linear-size circuit which contains 12m−22 elementary gates. In addition,
for n ≥ 7, a tn−2 gate can be decomposed into 24n−88 elementary gates with no auxiliary bits [23]. Finally,
a tn−1 gate can be decomposed into 2n − 3 elementary gates if no unused circuit line is available [22]. The
cost of a fm gate (1 ≤ m ≤ n − 2) is the cost of a tm+1 gate plus two [1]. Obviously, always the most
efficient decomposition is applied.
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3 The Naive Synthesis Flow for the LNN Architectures

Reversible circuits can be synthesized using multiple control Toffoli gates first that are afterwards mapped
to elementary quantum gates. On the other hand, elementary gates can be directly applied during the
synthesis process. While for the latter case, only small circuits have been determined so far (e.g., see [24,
25]), approaches for Toffoli network synthesis can handle larger functions and circuits (e.g., see [26,27,
28,29,30,31,32]). However, both approaches often lead to sub-optimal circuits with respect to the LNN
architectures since the number of elementary gates (i.e., quantum cost) are improved without an explicit
consideration of the LNN restriction. The same problem exists for quantum circuit synthesis algorithms [15,
16].

In order to measure the cost of the LNN restriction, a cost metric is defined. Consider a 2-qubit quantum
gate g where its control and target are placed at the cth line and at the tth line (0 ≤ c, t < n), respectively.
The NNC (nearest neighbor cost) of g is defined as |c − t − 1| (i.e., distance between control and target
lines). The NNC of a circuit is defined as the sum of the NNCs of its gates. Optimal NNC for a circuit is 0
where all quantum gates are either 1-qubit or 2-qubit gates performed on adjacent qubits.

Since synthesis algorithms may use several non-elementary gates during synthesis, all non-elementary
gates should be decomposed into a set of elementary unit-cost gates for physical implementation. Decom-
position methods proposed in [22,23,16] are extensively used for this purpose. On the other hand, after
applying one of the available synthesis and/or decomposition algorithms, non-optimal circuits with respect
to NNC may result. For example, Fig. 2 (a) shows the standard decomposition of a Toffoli gate which leads
to an NNC value of 1. To make this circuit applicable for the LNN architectures, SWAP gates must be
applied for each non-adjacent quantum gate. More precisely, SWAP gates are added in front of each gate
g with non-adjacent control and target lines to “move” the control (target) line of g towards the target
(control) line until they become adjacent. Afterwards, SWAP gates are added to restore the original order-
ing of circuit lines. Similar methods have been applied by previous synthesis methods considering the LNN
restriction [20,15,18,19,16,33].

Example 1 Consider the standard decomposition of a Toffoli gate as depicted in Fig. 2 (a). As can be seen,
the first gate is non-adjacent. Thus, to achieve NNC-optimality, SWAP gates in front and after the first gate
are inserted (see Fig. 2 (b)). Since each SWAP gate requires 3 elementary quantum gates1, this increases
the total quantum cost to 11, but leads to an NNC value of 0.

By inserting SWAP gates consecutively for each non-adjacent gate, a quantum circuit with NNC of
0 (and thus applicable to LNN architectures) can be determined in linear time. This method is denoted
by naive NNC-based decomposition in the rest of this paper. However, as can easily be seen, synthesizing
quantum circuits for LNN architectures using this method (or similar approaches like [20,15,18,19,16]) often
leads to a significant increase in the quantum cost. In contrast, often smaller realizations (with NNC of 0)
are possible. As an example, consider Fig. 2 (c) that shows an NNC-optimal decomposition with quantum
cost of 9 (instead of 11). In the next sections, a synthesis flow is described that explicitly takes NNC into
account. Hence, better quantum circuit realizations for the LNN architectures can be found as shown in the
experimental results section.

4 Explicit Consideration of NNC

In this section, we propose new synthesis and optimization approaches that explicitly take NNC into ac-
count. More precisely, a template-matching post-optimization algorithm is introduced to simplify the circuits
resulted from the existing synthesis flow. Furthermore, an exact synthesis approach is proposed that de-
termines NNC-optimal circuits with minimal quantum cost. The resulting circuits can later be exploited
to optimize large circuits. Finally, two heuristic approaches are introduced that modify the initial qubit
locations in order to remove unnecessary SWAP gates and therewith to reduce the cost.

4.1 NNC-based Template Matching

The idea of exploiting templates has originally been proposed in [34] and extended in [35] for LNN architec-
tures. In this section, further templates for LNN architectures are proposed that outperform the previous
ones as shown below.

1 As mentioned above, in certain quantum technologies all two-qubit gates are considered as elementary gates. Thus, in
this case the SWAP gate is seen as an elementary gate increasing the costs by 1, instead of 3. While this special case is not
considered in the following, it is separately evaluated in the experimental evaluation in Section 6.
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•

•
��������

✟✟✟✟✯Standard

❍❍❍❍❥

NNC-based
(naive)

❇
❇
❇
❇❇◆

NNC-based
(exact)

• • •

• �������� • ��������

V V V +

(a)

Quantum cost: 5
NNC: 1

• �������� •
�������� • ��������

(b)

× × • •

× • × • �������� • ��������

V V V +

Quantum cost: 11
NNC: 0

• �������� • • �������� •

�������� • �������� • �������� • • �������� •

V V + V
(c)

Quantum cost: 9
NNC: 0

Fig. 2 Different decompositions of a Toffoli gate

× U1 U2 × ×
U1 UR

1

×

× U2 = U1 × , × = ×

(a) With one SWAP gates

U1

× ×
U1

× ×

×
U2

× = ×
UR
1

×
UR
2

, ×× = ××
UR
1

× × × ×

(b) With two SWAP gates
× × ×

× × × = × × ×

× × ×

(c) With three SWAP gates

Fig. 3 Proposed templates

Two neighboring gates can be interchanged if the target line of the first gate is not equal to the control
lines of the second gate and vice versa (moving rule). In addition, two neighboring SWAP gates with the
same target lines can be removed (deletion rule). The general idea of template matching is to replace a
cascade of reversible gates by a different cascade with the same functionality and afterwards applying the
moving and deletion rules to optimize the circuit. By considering this approach, templates with one, two,
and three SWAP gates are proposed in Fig. 3(a), Fig. 3(b), and Fig. 3(c), respectively. The Ui boxes thereby
represent any one-qubit or two-qubit gate. A UR

i box represents the same gate as a Ui box, but probably
with interchanged control and target lines.

As an example, consider the circuit shown in Fig. 4(a) with quantum cost of 16. By applying a template
introduced in Fig. 3(b), the circuit shown in Fig. 4(b) results. Now, a 1-SWAP template (Fig. 3(a)) can
be applied leading to the circuit depicted in Fig. 4(c). Finally, by applying the deletion rule, gates can be
removed and, the final quantum cost is improved by about 37%. The final circuit is shown in Fig. 4(d).

The authors of [35] introduced a set of nearest neighbor templates for Toffoli and CNOT combinations. It
can be verified that the introduced templates in Fig. 6(b) and Fig. 6(c) of [35] can be found by applying the
deletion rule. Moreover, consider the circuit shown in Fig. 5(a) which includes a Toffoli-CNOT combination.
Fig. 5(b) illustrates a template as proposed in Fig. 6(a) of [35]. This circuit still has to be decomposed to
elementary gates leading to a circuit with quantum cost of 30 as shown in Fig. 5(c). On the other hand,
consider the circuit shown in Fig. 5(d) obtained by applying the naive method on the circuit of Fig. 5(a).
The equivalent circuit after applying the templates introduced in Fig. 3(b) is given in Fig. 5(e). Applying
the deletion rule finally leads to a circuit with quantum cost of 24 as shown in Fig. 5(f). Thus, applying the
templates proposed in this paper in conjunction with the deletion rule improves the result of [35] by 20%.

Besides that, the efficiency of the proposed templates is illustrated by the following practical relevant
example.
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a × × × �������� × a

b × • × �������� × • • × b

c �������� • V c

(a) A circuit with quantum cost of 16

a • • • a

b × �������� × �������� × V × �������� b

c × × • × × c

(b) Applying 2-SWAP template
a • • • a

b × �������� • × × V × �������� b

c × �������� ×× × c

(c) Applying 1-SWAP template

a • • • a

b × �������� • V × �������� b

c × �������� × c

(d) Final circuit with quantum cost of 10

Fig. 4 Application of the proposed NNC-based templates

a • • a

b • b

c c

d �������� �������� d

(a) Given circuit

a × × a

b × × • × × × × b

c × • × • × × c

d �������� �������� d

(b) Equivalent circuit from [35]

a × × a

b × × × × • • × × × × b

c × × • × • �������� • �������� × • × × c

d V V V + �������� d

(c) The circuit of Fig. 5(b) after decomposition (quantum cost of 30)

a × × • • × × a

b × × × × × × �������� × × �������� × × × × b

c × • × × • × × • × × • × c

d V V V + �������� d

(d) The circuit of Fig. 5(a) after applying the naive method (quantum cost of 42)

a × × • • × × a

b × • × • �������� • �������� × • × b

c × V × × V × × V + × × �������� × c

d × × × × × × × × d

(e) The circuit of Fig. 5(d) after applying 2-SWAP templates

a × × • • × × a

b × • × • �������� • �������� × • × b

c × V V V + �������� × c

d × × d

(f) The resulting simplified circuit (quantum cost of 24)

Fig. 5 An existing nearest neighbor template for a Toffoli-CNOT combination and our proposed template
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H • × H • × H • × H ×× × •

R2 × • × R2 × • × R2 × ××× × × • × R5 ×

R3 × • × R3 × ×× × • × R4 × • ××

R4 × × • × R3 × • × R5 ×××

R2 × • × R4 × • ××× H • × H • × H • × H ×× ×

R3 × • × R5 ×× R2 × • × R2 × • × R2 × ×××××

R4 × • × R3 × • × R3 × ×××

R5 R4 × ×

(a) Based on the method by Takahashi et al. [11] with 36 SWAP gates

H • • • •

R2 × R3 ×× R4 R3 × • × R5 H ×

× ××× H • • × R2 H • × R4 × • × • × ×

× R2 H • × R2 R3 × × • × R5 R2 ×× × H • ×

× • × • × R4 × • × • × R2 × ××

R3 × • × R5 R3 × × × ×× •

R4 × • × • ×× R3 R2 H ×

R5 R4 × H • ×

(b) Based on the method by Hirata et al. [20] with 24 SWAP gates

H • × H × •

R2 × • • × • • • × R5 ×

R3 × R4 R3 × R2 H • • × R4 × • ××

× × R2 H • × R3 × • × R5 ×××

R2 × • × R4 × • ××× H • × H ×

R3 × • × R5 ×× R2 × • • × • •

R4 × • × R3 × R4 R3 × R2 H •

R5 × × R2 H

(c) Our optimized realization with 20 SWAP gates

Fig. 6 Circuits realizing the Approximate Quantum Fourier Transform (AQFT)

Example 2 Consider the circuit shown in Fig. 6(a) which is the approximate quantum Fourier transform
circuit (AQFT) [36] with 36 SWAP gates obtained by the method of [11] for 8 qubits and an approximation
parameter of 5. Note that Rk is the rotation by 2π/2k andH is the Hadamard gate. Fig. 6(b) is an equivalent
circuit with 24 SWAP gates constructed by a method recently introduced in [20]. On the other hand, applying
the proposed templates on the result of [11] leads to the circuit with 20 SWAP gates illustrated in Fig. 6(c).

4.2 Exploiting Exact Synthesis

A few exact synthesis methods for quantum circuits have recently been introduced. They generate quantum
circuits with minimal quantum cost (for examples see [24,25]). However, no approach to determine optimal
circuits for LNN architectures has been proposed so far. In this section, an exact synthesis algorithm is
proposed to construct quantum circuits with both, minimal quantum cost and minimal NNC.

The developed approach is similar to the one introduced in [25]. Here, the synthesis problem is expressed
as a sequence of Boolean satisfiability (SAT) instances. For a given function f , it is checked if a circuit with c
gates realizing f exists. Thereby, c is initially assigned to 1 and increased in each iteration if no realization
is found.

More formally, for a given c and a reversible function f : Bn → B
n, the following SAT instance is created:

Φ ∧
2
n−1
∧

i=0

([
−→
inpi]2 = i ∧ [

−→
outi]2 = f(i)),

where

–
−→
inpi is a Boolean vector representing the inputs of the network to be synthesized for truth table line i,

–
−→
outi is a Boolean vector representing the outputs of the network to be synthesized for truth table line i,
and
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Table 1 List of available macros

n Macro
Cost

Impr.
Naive Exact

3 P({a,b},c), P({c,b},a) 12 8 33%
3 P({a,c},b), P({c,a},b) 24 12 50%
4 P({a,b},d), P({d,c},a) 30 11 63%
3 t2({a,b},c), t2({c,b},a) 11 9 18%
4 t2({a,b},d), t2({d,c},a) 29 12 59%
3 t2({a,c},b) 17 13 24%
4 t2({d,b},a), t2({a,c},d) 29 13 55%

a • • a

b • • b

c �������� • • c

d �������� �������� d

e • e

Fig. 7 Circuit of Example 3

– Φ is a set of constraints representing the synthesis problem for a given gate library.

The difference in comparison to [25] is that the constraints in Φ do not represent the whole set of elementary
quantum gates and a restricted gate library with only adjacent gates is applied.

Although solving the generated SAT instances using a modern SAT solver can produce optimized cir-
cuits, the applicability of the exact method is limited to functions with a small number of qubits and gates
due to the exponential search space. Actually, the proposed exact method is sufficient to construct minimal
realizations with respect to both quantum cost and NNC for a set of Toffoli and Peres gate configurations
as shown in Table 1. However, these optimal circuits can be exploited to improve the naive NNC-based de-
composition method. More precisely, once an exact NNC-optimal quantum circuit for a function is available
(denoted by macro in the following), the decomposition from the naive approach is replaced by the optimal
circuit. The following example illustrates the idea.

Example 3 Reconsider the decomposition of a Toffoli gate as depicted in Fig. 2. By applying the proposed
exact synthesis approach, an NNC-optimal quantum circuit as shown in Fig. 2(c) results. In comparison
to the naive method (see Fig. 2(b)), this reduces the quantum cost from 11 to 9 while still ensuring NNC
optimality.

After finding the optimal decomposition of a given gate, it can be used as a macro to simplify other
circuits. For example, consider the circuit shown in Fig. 7. Here, for the second gate the naive method is
applied and SWAPs are added, while for the remaining ones the obtained macro is used. This enables a
quantum cost reduction from 96 to 92.

Moreover, Fig. 8(b) and Fig. 8(c) show the NNC-optimal circuit of the Peres gate obtained by the naive
and by the exact approach, respectively. As illustrated, applying the naive approach leads to quantum cost
of 28 while the optimal circuit has only quantum cost of 11.

In total, we generated 13 macros as listed in Table 1 together with the respective costs in comparison
to the costs obtained by using the naive method. As can be seen, exploiting these macros reduces the cost
for each gate by up to 63%. The effect of these macros on the decomposition of larger circuits is considered
in the experimental results section in detail.

4.3 Reordering Circuit Lines

Applying the approaches introduced so far leads to an increase in the quantum cost for each non-adjacent
gate. In contrast, by modifying the ordering of the circuit lines, some of the additional costs can be saved.
As an example, consider the circuit in Fig. 9(a) with quantum cost 3 and an NNC value of 6. By reordering
the lines as shown in Fig. 9(b), the NNC value can be reduced to 1 without increasing the total quantum
cost. It is worth noting that manipulating the line order has been previously done to reduce the quantum
cost (e.g., in [26,37]). To determine which lines should be reordered, two heuristic methods are proposed in
the following. The former one changes the ordering of the primary inputs and outputs according to a global
view while the latter one applies a local view to assign the line ordering.
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a • • a

b • �������� b

c c

d �������� d

(a) Original circuit

a × × • a

b × × × × × × �������� × × b

c × • × × • × × • × c

d V V V + d

(b) Circuit obtained by the naive method
a • • • a

b • �������� • �������� • �������� • b

c �������� • �������� • �������� • �������� • c

d V + V + V V d

(c) Circuit obtained by exploiting exact synthesis

Fig. 8 NNC-based synthesis of a Peres gate

a �������� V �������� a

b b

c • c

d • d

e • e

(a)

d • d

a �������� V �������� a

c • c

e • e

b b

(b)

Fig. 9 Reordering circuit lines

4.3.1 Global Reordering

After applying the standard decomposition algorithms [22,23], a cascade of 1- and 2-qubit gates is gener-
ated. Now, an ordering of the circuit lines which reduces the total NNC value is desired. To do that, the
“contribution” of each line to the total NNC value is calculated. More precisely, for each gate g with control
line i and target line j, the NNC value is calculated. This value is added to variables impi and impj which
are used to save the impacts of the circuit lines i and j on the total NNC value, respectively. Next, the line
with the highest NNC impact is chosen for reordering and placed at the middle line (i.e., swapped with the
middle line). If the selected line is the middle line itself, a line with the next highest impact is selected. This
procedure is repeated until no better NNC value is achieved. Finally, SWAP operations as described in the
previous sections are added for each non-adjacent gate. The following example illustrates the idea.

Example 4 Consider the circuit depicted in Fig. 10(a). After calculating the NNC contributions, we have
impa = 1.5, impb = 0, impc = 0.5, and impd = 1, respectively. Thus, lines a (highest impact) and c (middle
line) are swapped. Since further swapping does not improve the NNC value, reordering terminates and
SWAP gates are added for the remaining non-adjacent gates. The resulting circuit is depicted in Fig. 10(b)
and has quantum cost of 9 in comparison to 21 that results if the naive method is applied.

4.3.2 Local Reordering

In order to save SWAP gates, line ordering can also be applied according to a local schema as follows. The
circuit is traversed from the inputs to the outputs. As soon as there is a gate g with an NNC value greater
than 0, a SWAP operation is added in front of g to enable an adjacent gate. However, in contrast to the
naive NNC-based decomposition, no SWAP operation is added after g. Instead, the resulting ordering is
used for the rest of the circuit (i.e., propagated through the remaining circuit). This process is repeated
until all gates are traversed.
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a �������� V • a

b • b

c • c

d �������� d

(a) Original circuit

c × × c

b • × • × b

a �������� V • a

d �������� d

(b) Global reordering

a �������� × b

b • × V • a

c • c

d �������� d

(c) Local reordering

Fig. 10 Global and local reordering

Example 5 Reconsider the circuit depicted in Fig. 10(a). The first gate is not modified since it has an NNC
of 0. For the second gate, a SWAP operation is applied to make it adjacent. Afterwards, the new line
ordering is propagated to all remaining gates resulting in the circuit shown in Fig. 10(c). This procedure is
repeated until the whole circuit has been traversed. Finally, a circuit with quantum cost of 9 (in contrast
to 21) is produced.

5 A Synthesis Flow for LNN Architectures

Having the proposed approaches from the previous section available, they can be combined to an extended
synthesis flow that explicitly takes the LNN limitation into account. Fig. 11 illustrates this flow. As shown
in this figure, first an off-the-shelf synthesis approach is applied to create an initial circuit realization.
Afterwards, if macro replacement is enabled, the proposed macro replacement method from Section 4.2 is
applied to simplify the circuit (lines 2-3). Then, one of the available standard decomposition methods is
applied to decompose all non-elementary gates into a set of elementary unit-cost gates (line 4). The resulting
quantum circuit can be optimized by the reordering methods proposed in Section 4.3 (lines 5-8). Finally,
SWAP gates for the remaining non-adjacent gates have to be added (line 9) and template matching as
introduced in Section 4.1 can additionally be applied (lines 10-11). Note that each method is applied on the
result of the previous method in the proposed synthesis flow. It can be verified that for the naive method,
only lines 1, 4, and 9 are executed.

input: a given reversible or quantum specification
output: a synthesized circuit for LNN architectures

1. synthesize the given specification using an appropriate synthesis method
2. if macro replacement is enabled
3. apply the available macros
4. decompose each gate into a set of elementary gates
5. if global reordering is enabled
6. reorder initial qubit locations based on the global reordering method
7. if local reordering is enabled
8. reorder initial qubit locations based on the local reordering method
9. insert a set of SWAP gates for each non-adjacent gate

10. if template matching is enabled
11. apply the available templates

Fig. 11 The extended synthesis flow

6 Experimental Results

In this section, experimental results are presented. We evaluated the methods introduced in Section 4 and
compared them to the naive approach, which has been used by other synthesis methods [20,15,18,19,16,33]
so far. All approaches have been implemented in C++ and applied to the benchmark collection available at
RevLib [38] including a wide variety of circuits that already have been used by other researchers to evaluate
previous reversible synthesis approaches. The experiments have been carried out on an Intel Pentium IV
2.2GHz computer with 2GB memory.



Synthesis of Quantum Circuits for Linear Nearest Neighbor Architectures 11

The results are shown in Table 2 and Table 3, respectively. The former table shows the results obtained
by applying the established decomposition, where a SWAP gate is composed of three elementary gates.
Additionally, Table 3 shows the results obtained by assuming the SWAP gate itself to be an elementary
gate (as done by certain quantum technologies [1]). The first column gives thereby the names of the circuits
followed by unique identifiers as used in RevLib. Then, the number of circuit lines (n), the gate count (gc),
the quantum cost (qc), and the NNC value of the original reversible circuits are shown. The following
columns denote the quantum cost of the NNC-optimal circuits obtained by the naive method (N) as well
as by the proposed synthesis flow where a combination of macro replacement (M ), global reordering (G),
local reordering (L), and template matching (T ) methods has been applied. For example, MT denotes the
results obtained by the proposed flow with macro replacement and template matching methods enabled (i.e.,
reordering methods disabled). Besides that, the results of the best configurations are given in column Best
config. The percentages of the best quantum cost reduction obtained by the extended synthesis flow in
comparison to the widely used naive method are reported in Column Best Impr.. Column Time denotes
the overall run-time needed to generate the results for all possible configurations (with and without any
possible options). Finally, the last column shows the remaining overhead in terms of quantum cost needed
to achieve NNC-optimality in comparison to the original circuit (Ohead).

As can be seen, decomposing reversible circuits to have NNC-optimal quantum circuits for LNN archi-
tectures is costly. Using the widely used naive method, the quantum cost increases significantly. This result
has been obtained in recent synthesis papersas well [17,16,33]. However, using the proposed methods, this
can be improved. Even if reordering may worsen the results in some few cases, in total this leads to an
improvement. The results have been obtained in negligible run-time (i.e., in less than one CPU second).
Only if template matching was enabled more run-time was needed.

Overall, reductions of more than 50% on average – in the best case of 83% – have been observed
considering the established decomposition (see Table 2). Similar results are obtained applying the extended
definition of elementary gates (see Table 3). As a result, NNC-optimal circuits can be synthesized with a
moderate increase of quantum cost.

7 Conclusions

Quantum technologies are in preliminarily state and several limitations should be resolved to have a scalable
quantum technology. Limited interaction distance between gate qubits is one of the most common limitations
of the current technologies. In this paper, we illustrated how the synthesis flow can be modified to produce
efficient circuits for quantum technologies with limited interactions. The proposed flow includes a set of NNC-
based decomposition methods equipped by an NNC-based template matching algorithm. The experiments
show that with a naive treatment of the LNN restriction, quantum circuits require up to one order of
magnitude higher quantum cost in the LNN architectures. In contrast, using the suggested methods, this
increase can be reduced by more than 50% on average (83% in the best case).
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Table 2 Experimental results (considering a SWAP gate to be composed out of 3 elementary gates)

circuit

Original circuit Decomposed circuit
Time

OheadN T M MT G L GL Best Best
n gc qc NNC n qc qc qc qc qc qc qc qc Method Impr.% Sec.

0410184 169 14 46 90 68 14 234 212 197 189 234 423 423 189 MT 19 0 2.10
3 17 13 3 6 14 8 3 32 32 28 26 32 32 32 26 MT 18 0 1.86
4 49 17 4 12 32 64 4 158 104 120 102 128 98 98 92 GT 41 0 2.88
4gt10-v1 81 5 6 34 164 5 282 120 282 120 258 150 147 120 T 57 0 3.53
4gt11 84 5 3 7 26 5 49 31 47 29 25 22 16 14 MGL 71 0 2.00
4gt12-v1 89 5 5 42 320 6 525 195 525 195 321 171 168 141 GT 73 0 3.36
4gt13-v1 93 5 4 16 104 5 173 83 173 83 77 56 53 47 GT 72 0 2.94
4gt4-v0 80 5 5 34 218 6 366 168 364 166 168 138 141 132 GT 63 0 3.88
4gt5 75 5 5 21 76 5 142 94 138 96 118 82 79 70 GT 50 0 3.33
4mod5-v1 23 5 8 24 90 5 174 84 155 101 114 78 78 72 GLT 58 0 3.00
4mod7-v0 95 5 6 38 144 5 256 140 256 140 352 127 121 121 GL 52 0 3.18
add16 174 49 64 192 220 49 762 446 473 473 762 1104 1104 428 MGL 43 0 2.23
add32 183 97 128 384 444 97 1530 894 953 953 1530 3744 3744 860 MGL 43 2 2.24
add64 184 193 256 768 892 193 3066 1790 1913 1913 3066 13632 13632 1724 MGL 43 14 2.24
add8 172 25 32 96 108 25 378 222 233 233 378 360 360 212 MGL 43 0 2.21
aj-e11 165 4 13 45 144 5 280 166 260 164 280 181 181 160 GT 42 0 3.56
alu-v4 36 5 7 31 136 5 242 146 238 148 218 113 104 98 GT 59 0 3.16
cnt3-5 180 16 20 120 1634 16 2621 613 2591 677 1457 731 728 511 GT 80 0 4.26
cycle10 2 110 12 19 1126 13472 12 21420 13700 21420 13700 21420 8046 8046 7874 LT 63 4 6.99
decod24-v3 46 4 9 9 36 4 63 27 63 27 39 21 24 21 L 66 0 2.33
ham15 108 15 70 453 9978 15 15494 10610 15390 10582 14030 2627 2588 2588 GL 83 2 5.71
ham7 104 7 23 83 624 7 1035 681 1027 695 657 342 333 327 GT 68 0 3.94
hwb4 52 4 11 23 40 4 107 77 83 63 107 65 65 63 MT 41 0 2.74
hwb5 55 5 24 104 470 5 823 407 817 415 595 337 340 335 LT 59 0 3.22
hwb6 58 6 42 142 710 6 1304 692 1160 672 1268 614 545 542 GLT 58 0 3.82
hwb7 62 7 331 2325 16890 8 27967 15547 27869 15533 25939 13390 12955 12853 LT 54 4 5.53
hwb8 118 8 633 14260 115030 9 187272 96906 186880 96834 182196 87495 87498 87495 L 53 39 6.14
hwb9 123 9 1959 18124 189426 10 304659 168147 304540 168160 302481 124068 124041 124041 GL 59 74 6.84
mod5adder 128 6 15 83 600 6 1011 435 978 432 675 330 333 330 L 67 0 3.98
mod8-10 177 5 14 88 582 6 975 407 969 409 621 372 363 317 GT 67 0 3.60
plus127mod8192 162 13 910 57400 661596 14 1057946 675624 1057804 675610 1057946 503516 503516 496698 LT 53 376 8.65
plus63mod4096 163 12 429 25492 254864 13 407926 256792 407784 256778 407926 210400 210400 210100 LT 48 113 8.24
plus63mod8192 164 13 492 32578 397864 14 633994 409384 633852 409358 633994 279016 279016 271030 LT 57 187 8.32
rd32-v0 67 4 2 10 10 4 38 26 19 17 20 32 20 17 MT 55 0 1.70
rd53 135 7 16 77 466 7 822 450 750 456 702 330 303 303 GL 63 0 3.94
rd73 140 10 20 76 450 10 790 400 739 401 646 304 295 286 LT 63 0 3.76
rd84 142 15 28 112 910 15 1516 626 1465 639 1696 556 586 556 L 63 0 4.96
sym9 148 10 210 4368 48736 10 77556 46110 77556 46110 67428 20643 25023 20640 LT 73 11 4.73
sys6-v0 144 10 15 67 358 10 638 326 587 329 842 263 308 263 L 58 0 3.93
urf1 149 9 11554 57770 462708 9 794582 353732 735170 329762 659150 238475 238490 238475 L 69 261 4.13
urf2 152 8 5030 25150 171284 8 297178 133606 276882 126348 297178 101683 101683 101656 LT 65 56 4.04
urf3 155 10 26468 132340 1282724 10 2121808 897358 2038584 874848 1933372 596368 596371 596356 LT 71 1298 4.51
urf5 158 9 10276 51380 442748 9 740084 333674 706412 321496 667484 208709 208706 208700 LT 71 231 4.06
urf6 160 15 10740 53700 951276 15 1487904 589662 1478080 586572 1334916 320412 320409 320400 LT 78 596 5.97

N: Naive method (i.e., synthesis, decomposition, SWAP insertion) T: With template matching M: With macros replacement G: With global reordering L: With local reordering

Column Time denotes the overall run-time needed to generate the results for all possible configurations.
Almost all results have been obtained in negligible run-time (i.e., in less than one CPU second). Only if template matching was enabled more run-time was needed.
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Table 3 Experimental results (considering a SWAP gate as an elementary gate)

circuit Original circuit Decomposed circuit Time Overhead
N NT NM NMT G L GL Best Best Sec.

n gc qc NNC n qc qc qc qc qc qc qc qc Method Impr.%

0410184 169 14 46 90 68 14 138 124 157 149 138 201 201 124 NT 10 0.10 1.38
3 17 13 3 6 14 8 3 20 20 24 22 20 20 20 20 N 0 0.01 1.43
4 49 17 4 12 32 64 4 74 56 76 70 64 54 54 52 GT 29 0.01 1.62
4gt10-v1 81 5 6 34 164 5 118 64 118 64 110 74 73 64 NT 45 0.02 1.88
4gt11 84 5 3 7 26 5 21 15 23 17 13 12 10 10 GL 52 0.00 1.43
4gt12-v1 89 5 5 42 320 6 205 95 205 95 137 87 86 77 GT 62 0.03 1.83
4gt13-v1 93 5 4 16 104 5 69 39 69 39 37 30 29 27 GT 60 0.00 1.69
4gt4-v0 80 5 5 34 218 6 146 80 148 82 80 70 71 68 GT 53 0.02 2.00
4gt5 75 5 5 21 76 5 62 46 66 52 54 42 41 38 GT 38 0.02 1.81
4mod5-v1 23 5 8 24 90 5 74 44 75 57 54 42 42 40 GLT 45 0.02 1.67
4mod7-v0 95 5 6 38 144 5 112 72 112 72 144 69 67 66 LT 41 0.02 1.74
add16 174 49 64 192 220 49 382 254 413 413 382 496 496 254 NT 33 0.54 1.32
add32 183 97 128 384 444 97 766 510 829 829 766 1504 1504 510 NT 33 2.32 1.33
add64 184 193 256 768 892 193 1534 1022 1661 1661 1534 5056 5056 1022 NT 33 14.07 1.33
add8 172 25 32 96 108 25 190 126 205 205 190 184 184 126 NT 33 0.11 1.31
aj-e11 165 4 13 45 144 5 124 86 128 96 124 91 91 84 GT 32 0.02 1.87
alu-v4 36 5 7 31 136 5 102 70 106 76 94 59 56 54 GT 47 0.03 1.74
cnt3-5 180 16 20 120 1634 16 957 281 987 349 569 327 326 247 GT 74 0.49 2.06
cycle10 2 110 12 19 1126 13472 12 7948 5372 7948 5372 7948 3490 3490 3430 LT 56 3.61 3.05
decod24-v3 46 4 9 9 36 4 27 15 27 15 19 13 14 13 L 51 0.00 1.44
ham15 108 15 70 453 9978 15 5470 3842 5458 3854 4982 1181 1168 1168 GL 78 2.22 2.58
ham7 104 7 23 83 624 7 403 285 411 299 277 172 169 167 GT 58 0.09 2.01
hwb4 52 4 11 23 40 4 51 41 59 51 51 37 37 37 L 27 0.02 1.61
hwb5 55 5 24 104 470 5 347 207 353 219 271 185 186 183 LT 47 0.10 1.76
hwb6 58 6 42 142 710 6 532 328 512 348 520 302 279 278 GLT 47 0.16 1.96
hwb7 62 7 331 2325 16890 8 11023 6883 11033 6921 10347 6164 6019 5985 LT 45 3.90 2.57
hwb8 118 8 633 14260 115030 9 72060 41938 72032 42014 70368 38801 38802 38801 L 46 39.05 2.72
hwb9 123 9 1959 18124 189426 10 115167 69663 115180 69720 114441 54970 54961 54961 GL 52 73.77 3.03
mod5adder 128 6 15 83 600 6 395 203 394 212 283 168 169 168 L 57 0.08 2.02
mod8-10 177 5 14 88 582 6 387 195 393 205 269 186 183 165 GT 57 0.09 1.88
plus127mod8192 162 13 910 57400 661596 14 396286 268836 396272 268866 396286 211476 211476 209194 LT 47 269.17 3.64
plus63mod4096 163 12 429 25492 254864 13 152998 102612 152984 102642 152998 87156 87156 87048 LT 43 60.56 3.41
plus63mod8192 164 13 492 32578 397864 14 236066 161188 236052 161214 236066 117740 117740 115070 LT 51 132.34 3.53
rd32-v0 67 4 2 10 10 4 18 14 19 17 12 16 12 12 G 33 0.02 1.20
rd53 135 7 16 77 466 7 326 202 314 216 286 162 153 153 GL 53 0.11 1.99
rd73 140 10 20 76 450 10 314 176 315 197 266 152 149 138 LT 56 0.08 1.82
rd84 142 15 28 112 910 15 580 274 581 299 640 260 270 260 L 55 0.16 2.32
sym9 148 10 210 4368 48736 10 28820 18338 28820 18338 25444 9849 11309 9848 LT 65 8.88 2.25
sys6-v0 144 10 15 67 358 10 254 150 255 169 322 129 144 129 L 49 0.03 1.93
urf1 149 9 11554 57770 462708 9 303374 156424 300962 165226 258230 118005 118010 118005 L 61 193.37 2.04
urf2 152 8 5030 25150 171284 8 115826 61302 115666 65100 115826 50661 50661 50652 LT 56 35.66 2.01
urf3 155 10 26468 132340 1282724 10 795496 387346 799448 410372 732684 287016 287017 287012 LT 63 831.05 2.17
urf5 158 9 10276 51380 442748 9 280948 145478 280052 151332 256748 103823 103822 103820 LT 63 99.52 2.02
urf6 160 15 10740 53700 951276 15 531768 232354 531664 234208 480772 142604 142603 142600 LT 73 302.61 2.66

N: Naive method (i.e., synthesis, decomposition, SWAP insertion) T: With template matching M: With macros replacement G: With global reordering L: With local reordering

Column Time denotes the overall run-time needed to generate the results for all possible configurations.
Almost all results have been obtained in negligible run-time (i.e., in less than one CPU second). Only if template matching was enabled more run-time was needed.
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