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Abstract

The usefulness of the recent experimentally realized six photon cluster state by C. Y. Lu et al. (2007

Nature 3 91), is investigated for quantum communication protocols like teleportation, quantum information

splitting (QIS), remote state preparation and dense coding. We show that the present state can be used for

the teleportation of an arbitrary two qubit state deterministically. Later we devise two distinct protocols for

the QIS of an arbitrary two qubit state among two parties and systematically compare their relative merits

in terms of classical communication and security. Sixteen orthogonal measurement basis on the cluster state

is constructed, which will lock an arbitrary two qubit state among two parties. The usefulness of the state

for dense coding is investigated and it is shown that one can send five classical bits by sending only three

qubits using this state as a shared entangled resource. We finally show that this state can also be utilised

in the remote state preparation of an arbitrary two qubit state.
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1 Introduction

Entanglement helps in carrying out several quantum tasks like teleportation [2], secret sharing [3, 4], dense

coding [5] and one-way quantum computation [6]. Multi-partite entangled states, arising from different physical

systems, have been used to achieve these purposes. The way in which a given state is entangled plays a major

role in deciding its suitability to perform a certain quantum task. Hence, not all entangled states can be used

for the desired purposes. For instance, while a three qubit GHZ state, can be used for the teleportation of

an arbitrary single qubit state |ψ1〉 = (α|0〉 + β|1〉), where α, β ∈ C and |α|2 + |β|2=1, a symmetric W state

cannot be used for the same [7]. In the case of four qubits, entanglement has been classified into nine categories

under LOCC [8]. Only one of these nine classes can be used for the teleportation of an arbitrary two qubit

state |ψ2〉 = α|00〉 + µ|10〉 + γ|01〉 + β|11〉, where |α|2 + |µ|2 + |γ|2 + |β|2=1 and α, µ, γ, β ∈ C. Recently

[9, 10], new multipartite entangled channels have been constructed based on numerical optimisation schemes

and their efficiency have been checked for various quantum protocols. For instance, it has been shown [11, 12]

that the five and six qubit states respectively, introduced by Brown et al. [9], and Borras et al. [10], through

extensive search procedures, can be used for various quantum protocols. Though a number of quantum protocols

have been explicated theoretically, only a few of them are experimentally realizable. Hence, deriving quantum

protocols using multipartite entangled states, which have been experimentally realized, is of immense interest

in quantum information theory. It is worth mentioning that in the experimental scenario, entanglement has

been achieved between six qubits [13].

In recent years, special types of entangled states known as the graph states [14] have attracted much

attention owing to their promising usefulness in quantum information theory. In general a graph state is

associated with a graph, in which each vertex is a Hadamard state and each edge represents a control phase shift

interaction. The multipartite entanglement revealed by these states depend on the geometry of the underlining

graph. The two important types of multipartite graph states are the GHZ states :

|GHZ〉N =
1√
2
(|0〉⊗N + |1〉⊗N), (1)

and cluster states [6]:

|C〉N =
1

2N/2
⊗N

a=1 (|0〉aσa+1
z + |1〉a). (2)

In general, the N -qubit cluster state belongs to the class of Bell and the GHZ state forN = 2, N = 3 respectively

and it exhibits different entanglement properties from the GHZ states for N ≥ 4 under LOCC. These states have

been proved to be useful for one way quantum computation [15] and for quantum error correction [16]. They

also show a strong violation of reality and are robust against decoherence [17]. One way quantum computing has
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been experimentally demonstrated using the cluster states [13]. Interestingly, while there exists one entangled bit

between any two subsystems in a N -qubit GHZ state, there exists two entangled bits between many subsystems

of a N -qubit cluster state. This makes cluster states a useful resource for teleportation and state sharing of an

arbitrary two qubit state |ψ2〉. The six qubit cluster state,

|C6〉 =
1

2
(|000000〉+ |000111〉+ |111000〉 − |111111〉), (3)

has been created in laboratory conditions [1]. It has been shown that the four and five qubit cluster states are

important resources for teleportation and QIS of an arbitrary two qubit state [19]. This gives us motivation to

study the usefulness of |C6〉 for several quantum protocols like teleportation, QIS, remote state preparation and

dense coding. This paper is organised as follows : In the first section, we show that |C6〉 can be used for the

teleportation of an arbitrary two qubit state |ψ2〉. It is found that |C6〉 can teleport specific types of three qubit

states e.g., GHZ states, but not an arbitrary three qubit state. In the subsequent section, we explicate two

different protocols for the QIS of |ψ2〉 using |C6〉 and compare their properties. We investigate the usefulness of

|C6〉 for dense coding of classical bits. Subsequently, we show the usefulness of |C6〉 for remote state preparation

is demonstrated.

2 Teleportation of |ψ2〉 using |C6〉

As stated earlier, |C6〉 is an useful resource for the teleportation of |ψ2〉, as there are two entangled bits between

several of its subsystems. In this protocol, the sender Alice possesses qubits 1, 6, 2, 5 and Bob possesses qubits

3 and 4 of |C6〉, respectively. Alice also has the state |ψ2〉 that she wants to teleport to Bob. The scheme

proceeds as follows: Initially, Alice performs a six qubit von-Neumann measurement on her qubits and then

conveys her outcome to Bob via four cbits. Depending on the classical information sent by Alice, Bob can apply

an appropriate unitary operator and retrieve |ψ2〉. The outcome of the measurements performed by Alice and

the state obtained by Bob are shown in Table 1.

All the outcomes of the measurement are mutually orthogonal to each other indicating that this scheme

is deterministic. This successfully completes the teleportation protocol of an arbitrary |ψ2〉 using |C6〉. It is

worth mentioning that each of the six qubit measurement outcomes can be further decomposed into Bell state

measurements. For instance, the first measurement outcome could be further decomposed as

(|ψ+〉|+〉+ |ψ−〉|−〉)(|ψ+〉|+〉+ |ψ−〉|−〉) + (|ψ+〉|−〉+ |ψ−〉|+〉)(|ψ+〉|−〉+ |ψ−〉|+〉) + (4)

(|φ+〉|+〉 − |φ−〉|−〉)(|φ+〉|+〉+ |φ−〉|−〉) + (|φ+〉|−〉 − |φ−〉|+〉)(| − φ+〉|−〉 − |φ−〉|+〉),
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Table 1: Teleportation : The outcome of the measurements performed by Alice and the states obtained by Bob
using the cluster state. Normalisation factors have been omitted for convenience.

Outcome of the measurement State obtained

[|000000〉+ |100101〉+ |011010〉+ |111111〉] α|00〉+ µ|01〉+ γ|10〉 − β|11〉
[|000000〉 − |100101〉 − |011010〉+ |111111〉] α|00〉 − µ|01〉 − γ|10〉 − β|11〉
[|000000〉 − |100101〉+ |011010〉 − |111111〉] α|00〉 − µ|01〉+ γ|10〉+ β|11〉
[|000000〉+ |100101〉 − |011010〉 − |111111〉] α|00〉+ µ|01〉 − γ|10〉+ β|11〉
[|000101〉+ |101010〉+ |011111〉+ |110000〉] α|01〉+ µ|10〉 − γ|11〉+ β|00〉
[|000101〉 − |101010〉 − |011111〉+ |110000〉] α|01〉 − µ|10〉+ γ|11〉 − β|00〉
[|000101〉 − |101010〉+ |011111〉 − |110000〉] α|01〉 − µ|10〉 − γ|11〉+ β|00〉
[|000101〉+ |101010〉 − |011111〉 − |110000〉] α|01〉+ µ|10〉+ γ|11〉 − β|00〉
[|001010〉+ |101111〉+ |010000〉+ |110000〉] α|10〉 − µ|11〉+ γ|00〉+ β|01〉
[|001010〉 − |101111〉 − |010000〉+ |110000〉] α|10〉+ µ|11〉 − γ|00〉+ β|01〉
[|001010〉 − |101111〉+ |010000〉 − |110000〉] α|10〉+ µ|11〉+ γ|00〉 − β|01〉
[|001010〉+ |101111〉 − |010000〉 − |110000〉] α|10〉 − µ|11〉 − γ|00〉 − β|01〉
[|001111〉+ |100000〉+ |010101〉+ |111010〉] −α|11〉+ µ|00〉+ γ|01〉+ β|10〉
[|001111〉 − |100000〉 − |010101〉+ |111010〉] −α|11〉 − µ|00〉 − γ|01〉+ β|10〉
[|001111〉 − |100000〉+ |010101〉 − |111010〉] −α|11〉 − µ|00〉+ γ|01〉 − β|10〉
[|001111〉+ |100000〉 − |010101〉 − |111010〉] −α|11〉+ µ|00〉 − γ|01〉 − β|10〉

where |±〉 = 1√
2
(|0〉 ± |1〉). Hence, this protocol is experimentally feasible.

3 QIS of |ψ2〉 using |C6〉

Quantum secret sharing provides an useful tool for the sharing of both classical and quantum information using

entanglement as a resource. Sharing of quantum information among a group of participants such that the

original information cannot be completely reconstructed by any one of the parties by themselves is referred to

as “quantum information splitting.” One can devise different protocols for splitting of a state using the same

entangled channel by redistributing the qubits among the participants. In general, it has been proven that one

can devise (N − 2n) protocols for the splitting of an arbitrary n qubit state among two parties [18]. From this

theorem, we can see that one can devise two protocols for the QIS of |ψ2〉 among two parties.

3.1 Protocol 1

In this protocol, Alice, possesses qubits 1, 3 Bob possesses qubits 5, 6 and Charlie possesses qubits 2, 4 in |C6〉,

respectively. Alice possesses |ψ2〉, that she wants Bob and Charlie to share. To achieve this purpose, Alice

performs a von-Neumann, joint four partite measurement on her qubits and conveys its outcome to Charlie via

four classical bits. The outcome of the measurement performed by Alice and the corresponding Bob-Charlie

system is shown in Table 2.
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Table 2: Protocol I: The outcome of the measurements performed by Alice and the states obtained by Bob and
Charlie using the Cluster state. Normalisation factors have been omitted for convenience.
Outcome of the measurement State obtained

[|0000〉+ |1001〉+ |0110〉+ |1111〉] α|0000〉+ µ|0101〉+ γ|1010〉 − β|1111〉
[|0000〉 − |1001〉 − |0110〉+ |1111〉] α|0000〉 − µ|0101〉 − γ|1010〉 − β|1111〉
[|0000〉 − |1001〉+ |0110〉 − |1111〉] α|0000〉 − µ|0101〉+ γ|1010〉+ β|1111〉
[|0000〉+ |1001〉 − |0110〉 − |1111〉] α|0000〉+ µ|0101〉 − γ|1010〉+ β|1111〉
[|0001〉+ |1010〉+ |0111〉+ |1100〉] α|0101〉+ µ|1010〉 − γ|1111〉+ β|0000〉
[|0001〉 − |1010〉 − |0111〉+ |1100〉] α|0101〉 − µ|1010〉+ γ|1111〉 − β|0000〉
[|0001〉 − |1010〉+ |0111〉 − |1100〉] α|0101〉 − µ|1010〉 − γ|1111〉 − β|0000〉
[|0001〉+ |1010〉 − |0111〉 − |1100〉] α|0101〉+ µ|1010〉+ γ|1111〉 − β|0000〉
[|0010〉+ |1011〉+ |0100〉+ |1100〉] α|1010〉 − µ|1111〉+ γ|0000〉+ β|0001〉
[|0010〉 − |1011〉 − |0100〉+ |1100〉] α|1010〉+ µ|1111〉 − γ|0000〉+ β|0001〉
[|0010〉 − |1011〉+ |0100〉 − |1100〉] α|1010〉+ µ|1111〉+ γ|0000〉 − β|0001〉
[|0010〉+ |1011〉 − |0100〉 − |1100〉] α|1010〉 − µ|1111〉 − γ|0000〉 − β|0001〉
[|0011〉+ |1000〉+ |0101〉+ |1110〉] −α|1111〉+ µ|0000〉+ γ|0101〉+ β|1010〉
[|0011〉 − |1000〉 − |0101〉+ |1110〉] −α|1111〉 − µ|0000〉 − γ|0101〉+ β|1010〉
[|0011〉 − |1000〉+ |0101〉 − |1110〉] −α|1111〉 − µ|0000〉+ γ|0101〉 − β|1010〉
[|0011〉+ |1000〉 − |0101〉 − |1110〉] −α|1111〉+ µ|0000〉 − γ|0101〉 − β|1010〉

Bob now performs a two qubit measurement on qubits 5 and 6 and conveys its outcome to Charlie via

two classical bits. Depending on the outcomes of both their measurements, Charlie can apply an appropriate

unitary transformation on his qubits to reconstruct |ψ2〉. For instance, had the Bob-Charlie system evolved into

the first state given in Table 2, then the outcome of the measurement performed by Bob and the corresponding

state obtained by Charlie is shown in the Table 3.

Table 3: State Sharing : QIS between Bob and Charlie. Normalisation factors have been omitted for convenience.
Outcome of the measurement State obtained

[|00〉+ |01〉+ |10〉+ |11〉] [α|00〉+ µ|01〉+ γ|10〉 − β|11〉]
[|00〉+ |01〉 − |10〉 − |11〉] [α|00〉+ µ|01〉 − γ|10〉+ β|11〉]
[|00〉 − |01〉 − |10〉+ |11〉] [α|00〉 − µ|01〉 − γ|10〉 − β|11〉]
[|00〉 − |01〉+ |10〉 − |11〉] [α|00〉 − µ|01〉+ γ|10〉+ β|11〉]

It can be noticed that all the basis states for Alice’s measurement can be further decomposed into individual Bell

basis measurements. For instance, the first measurement outcome can be further decomposed as 1

2
(|ψ+〉|ψ−〉+

|φ+〉|φ−〉). Since this protocol involves only Bell basis measurements, it can be experimentally realized in various

systems. We now devise another protocol for the QIS of |ψ2〉 using |C6〉.

3.2 Protocol 2

In this protocol Alice possesses qubits 1, 3 and 5 Bob possesses qubit 6 and Charlie possesses qubits 2 and 4

in |C6〉 respectively. Alice performs a five partite von-Neumann measurement on his qubits and sends its qubit

to Bob via four classical bits. The outcome of the measurement performed by Alice and the corresponding

Bob-Charlie system is shown in Table 4.
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Table 4: State Sharing : The outcome of the measurements performed by Alice and the states obtained by Bob
and Charlie using the cluster state. Normalisation factors have been omitted for convenience.

Outcome of the measurement State obtained

[|00000〉+ |01101〉+ |10010〉+ |11111〉] α|000〉+ µ|010〉+ γ|101〉 − β|111〉
[|00000〉+ |01101〉 − |10010〉 − |11111〉] α|000〉+ µ|010〉 − γ|101〉+ β|111〉
[|00000〉 − |01101〉 − |10010〉+ |11111〉] α|000〉 − µ|010〉 − γ|101〉 − β|111〉
[|00000〉 − |01101〉+ |10010〉 − |11111〉] α|000〉 − µ|010〉+ γ|101〉+ β|111〉
[|00101〉+ |01010〉+ |10111〉+ |11000〉] α|010〉+ µ|101〉 − γ|111〉+ β|000〉
[|00101〉+ |01010〉 − |10111〉 − |11000〉] α|010〉+ µ|101〉+ γ|111〉 − β|000〉
[|00101〉 − |01010〉 − |10111〉+ |11000〉] α|010〉 − µ|101〉+ γ|111〉+ β|000〉
[|00101〉 − |01010〉+ |10111〉 − |11000〉] α|010〉 − µ|101〉 − γ|111〉 − β|000〉
[|00010〉+ |01111〉+ |10000〉+ |11101〉] α|101〉 − µ|111〉+ γ|000〉+ β|010〉
[|00010〉+ |01111〉 − |10000〉 − |11101〉] α|101〉 − µ|111〉 − γ|000〉 − β|010〉
[|00010〉 − |01111〉 − |10000〉+ |11101〉] α|101〉+ µ|111〉 − γ|000〉+ β|010〉
[|00010〉 − |01111〉+ |10000〉 − |11101〉] α|101〉+ µ|111〉+ γ|000〉 − β|010〉
[|00111〉+ |01000〉+ |10101〉+ |11000〉] −α|111〉+ µ|000〉+ γ|010〉+ β|000〉
[|00111〉+ |01000〉 − |10101〉 − |11000〉] −α|111〉+ µ|000〉 − γ|010〉 − β|000〉
[|00111〉 − |01000〉 − |10101〉+ |11000〉] −α|111〉 − µ|000〉 − γ|010〉+ β|000〉
[|00111〉 − |01000〉+ |10101〉 − |11000〉] −α|111〉 − µ|000〉+ γ|010〉 − β|000〉

Table 5: Protocol 2. Normalisation factors have been omitted for convenience.
The outcome of Bob’s measurement Charlie’s state

(|0〉+ |1〉) (α|00〉+ µ|01〉+ γ|10〉 − β|11〉)
(|0〉 − |1〉) (α|00〉+ µ|01〉 − γ|10〉+ β|11〉)

Now Alice sends the outcome of her measurement using four c-bits to Charlie. Bob then performs a

Hadamard measurement on his qubits and sends his outcome to Charlie via one classical bit. For instance, had

the Bob-Charlie system evolved into the first state shown in the Table 4, then the outcome of Bob’s measurement

and the corresponding state obtained by Charlie is shown in Table 5.

Bob can now, perform an appropriate unitary operation and reconstruct |ψ2〉. Here, each measurement

outcome of Alice can be further decomposed into three qubit measurements as

1

2
((|000〉+ |111〉)(|00〉+ |11〉) + (|000〉 − |111〉)(|00〉 − |11〉) + (5)

(|011〉+ |100〉)(|01〉+ |10〉) + (|011〉 − |100〉)(|01〉 − |10〉)).

As the individual GHZ measurements can be further broken down into Bell state measurements, this scheme is

also completely feasible.

3.3 Comparison

Its worth noting here, that the classical information to be sent to Charlie to reconstruct the state varies in the

two protocols. The first measurement basis has 16 four qubit orthogonal states, whereas the second protocol
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uses 16 states, having 5 qubits. In the former case, the respective subsystems of Bob-Charlie composite system

is more mixed as compared to the latter. Hence, we observe that Charlie has a higher probability of guessing the

state without receiving Bob’s classical information in the second protocol. Therefore, the first protocol is more

advantageous, though it requires more classical resource. One observes a trade-off between the net classical

information resource and the security of the given protocols.

4 Dense coding

Dense coding is a technique of encoding classical information into quantum bits by using appropriate local

unitary operations. In general, for a given quantum state, the amount of classical bits that can be encoded into

a given quantum state ρAB, shared by Alice and Bob, is given by [20],

X(ρAB) = log2dA + S(ρB)− S(ρAB) (6)

Here, dA refers to the dimension of the Alice’s system. By distributing the first, sixth and the fourth qubits to

Alice and the rest to Bob, we obtain the dense coding capacity of |C6〉 to be X(ρAB) = 3 + 2 − 0 = 5. Hence,

Alice can send five classical bits by sending only three qubits to Bob. As in the standard dense coding protocol,

Alice can encode her classical bits by using Pauli operators as,

U1 ⊗ U2 ⊗ U3 ⊗ I ⊗ I ⊗ I → |C6〉i, (7)

where, U1, U2 ∈ {I, σ1, σ2, σ3} and U3 ∈ {I, σ1} and send it to Bob. Bob can either perform a cluster basis

measurement or a non-destructive measurement on the cluster state [21, 22, 23] and construct the classical

information sent by Alice. This completes the dense coding protocol using |C6〉.

5 Remote state preparation

Remote state preparation [24] refers to the teleportation of a quantum state where the state is initially known

to the sender. It was shown that [25], if the initial state to be teleported, is chosen from the real or equatorial

part of the Bloch sphere, then this task can be achieved by using just one classical bit as against two classical

bits, when the state is unknown to the sender. It was shown recently [26], that remote state preparation

can also be achieved using quantum information splitting. In this section, it is demonstrated that |C6〉 is an

important resource for remote state preparation. We show that if α = β= 1

2
and µ = γ = 1

2
eiφ, then RSP can
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Table 6: Remote state preparation using |C6〉. Normalisation factors have been omitted for convenience.
α|0000〉+ µ ∗ |0101〉+ γ ∗ |1010〉+ β|1111〉 α|00〉+ µ|01〉+ γ|10〉 − β|11〉
α|0000〉+ µ ∗ |0101〉 − γ ∗ |1010〉 − β|1111〉 α|00〉+ µ|01〉 − γ|10〉+ β|11〉
α|0000〉 − µ ∗ |0101〉 − γ ∗ |1010〉+ β|1111〉 α|00〉 − µ|01〉 − γ|10〉 − β|11〉
α|0000〉 − µ ∗ |0101〉+ γ ∗ |1010〉 − β|1111〉 α|00〉 − µ|01〉+ γ|10〉+ β|11〉

be achieved by using just two classical bits, as against four classical bits in the teleportation protocol described

above. Hence, if the initial state belongs to the above states, then the classical information need not be wasted.

The remote state preparation protocols proceed as follows: Initially Alice possesses qubits 1, 6, 2, 5 and Bob

possesses qubits 3 and 4 and Alice wants to teleport a special class of two qubit state, discussed above to Bob.

Now, Alice performs a four qubit measurement on her qubits and conveys its outcome to Bob via two classical

bits. The outcome of the measurement performed by Alice and the corresponding state obtained by Bob are

shown in Table 6. This completes the remote state preparation protocol using |C6〉. We can also explicate

protocols for RSP using QIS involving |C6〉 as an entangled channel.

6 Conclusion

We explicated several quantum protocols using the experimentally achieved cluster state |C6〉, involving largest

number of entangled photons as a quantum channel. After demonstrating that it can be used for the teleportation

of an arbitrary two qubit state, it is shown that |C6〉 can also be used for the QIS of an arbitrary two qubit state

in two distinct ways. We noted that, the classical information resource is not the same for different protocols

involving the same states. Further, it was found that one can send five cbits by sending three quantum bits,

using |C6〉 as an entangled resource. We then explicated the usefulness of |C6〉 for the remote state preparation

of an arbitrary two qubit state. Since, all the measurement basis could be broken down into respective Bell

state measurements, we hope that our schemes will soon be experimentally realized.
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