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We study the effect of decoherence on a qubit-qutrit system under the influence of global,

local and multilocal decoherence in non-inertial frames. We show that the entanglement

sudden death can be avoided in non-inertial frames in the presence of amplitude damping,

depolarizing and phase damping channels. However, degradation of entanglement is seen

due to Unruh effect. It is shown that for lower level of decoherence, the depolarizing channel

degrades the entanglement more heavily as compared to the amplitude damping and

phase damping channels. However, for higher values of decoherence parameters, amplitude

damping channel heavily degrades the entanglement of the hybrid system. Further more,

no ESD is seen for any value of Rob’s acceleration.
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I. INTRODUCTION

Quantum information and quantum computation can process multiple tasks which are in-

tractable with classical technologies. Quantum entanglement is no doubt a fundamental resource

for a variety of quantum information processing tasks, such as super-dense coding, quantum cryp-

tography and quantum error correction [1-4]. Strongly entangled, multi-partite states of qubits

and qutrits are a central resource of quantum information science. These are frequently used in

constructing many protocols, such as teleportation [5], key distribution and quantum computation

[6]. The phenomenon of sudden loss of entanglement also termed as ”entanglement sudden death”

ESD has been investigated by a number of authors for bipartite and multipartite systems [7-10].

Yu and Eberly [11, 12] showed that entanglement loss occurs in a finite time under the action of

pure vacuum noise in a bipartite state of qubits. They found that, even though it takes infinite
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time to complete decoherence locally, the global entanglement may be lost in finite time.

Recently, researchers have focused on relativistic quantum information in the filed of quantum

information science due to conceptual and experimental reasons. In the last few years, much

attention had been given to the study of entanglement shared between inertial and non-inertial

observers by discussing how the Unruh or Hawking effect will influence the degree of entanglement

[13–22]. Most of the investigations in non-inertial frames are focused on the study of the quantum

information in bipartite qubit system with one subsystem as an accelerated. Since, it is not possible

to completely isolate a quantum system from its environment. Therefore, one needs to investigate

the behavior of entanglement in the presence of environmental effects. A major problem of quantum

communication is to faithfully transmit unknown quantum states through a noisy quantum channel.

When quantum information is sent through a channel, the carriers of the information interact with

the channel and get entangled with its many degrees of freedom. This gives rise to the phenomenon

of decoherence on the state space of the information carriers. Implementation of decoherence in

non-inertial frames have been investigated by different authors [23, 24]. Peres-Horodecki [25,

26] have studied entanglement of qubit-qubit and qubit-qutrit states and established separability

criterion. According to this criterion, the partial transpose of a separable density matrix must have

non-negative eigenvalues, where the partial transpose is taken over the smaller subsystem for qubit-

qutrit case. For nonseparable states, the sum of the absolute values of the negative eigenvalues of

the partial transpose gives the degree of entanglement of a density matrix also termed as negativity.

Ann et al. [27] have studied a qubit-qutrit system where they have shown the existence of ESD

under the influence of dephasing noise.

In this paper, we study the effect of decoherence on a qubit-qutrit system in non-inertial frames

by considering different noise models, such as, amplitude damping, depolarizing and phase damping

channels. We consider different couplings of the system and the environment where the system is

influenced by global, local, or multi-local noises modeled in a number of scenarios. We show that

entanglement degradation occurs for various coupling of the system and the environment. It is

shown that different environments degrade the entanglement of the hybrid system differently.

II. QUBIT-QUTRIT SYSTEM IN NON-INERTIAL FRAMES

We consider a composite system of a qubit A and a qutrit B that is coupled to a noisy envi-

ronment both collectively and individually. Local and multi-local couplings describe the situation

when the qubit and qutrit are independently influenced by their individual noisy environments.
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Whereas, the global decoherence corresponds to the situation when it is influenced by both col-

lective and multilocal noises at the same time. The term collective coupling means when both

the qubit and qutrit are influenced by the same noise. The state shared by the two parties is an

entangled qubit-qutrit state of the form [28]

ρAR =
1

2





cos2 r(|01〉AR 〈01|+ |01〉AR 〈10|+ |10〉AR 〈01| + |10〉AR 〈10|)
+ sin2 r(|02〉AR 〈02| + |12〉AR 〈12|)



 (1)

where the two modes of Minkowski spacetime that correspond to Alice and Rob are |η〉A and |η〉R
respectively. We assume that Alice remain stationary while Rob moves with uniform acceleration.

It is important to mention here that the above state is obtained after taking the trace over un-

observed region IV [28]. The interaction between the system and its environment introduces the

decoherence to the system, which is a process of the undesired correlation between the system and

the environment. The evolution of a state of a quantum system in a noisy environment can be

described by the super-operator Φ in the Kraus operator representation as [29]

ρf = Φρi =
∑

k

EkρiE
†
k (2)

where the Kraus operators Ei satisfy the following completeness relation

∑

k

E
†
kEk = I (3)

We have constructed the Kraus operators for the evolution of the composite system from the single

qubit Kraus operators (see table1 ) and qutrit Kraus operators as given in equations (5-8) by taking

their tensor product over all n⊗m combination of π (i) indices

Ek = ⊗
π
eπ(i) (4)

where n and m correspond to the number of Kraus operators for a single qubit and qutrit channel

respectively. The single qutrit Kraus operators for the amplitude damping channel are given by

[30]

E0 =











1 0 0

0
√
1− p 0

0 0
√
1− p











, E1 =











0
√
p 0

0 0 0

0 0 0











, E2 =











0 0
√
p

0 0 0

0 0 0











(5)
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and the single qutrit Kraus operators for the phase damping channel are given as

E0 =
√

1− p











1 0 0

0 1 0

0 0 1











, E1 =
√
p











1 0 0

0 ω 0

0 0 ω2











, (6)

The single qutrit Kraus operators for the depolarizing channel are given by [31]

E0 =
√

1− pI3, E1 =

√

p

8
Y, E2 =

√

p

8
Z, E3 =

√

p

8
Y 2, E4 =

√

p

8
Y Z

E5 =

√

p

8
Y 2Z, E6 =

√

p

8
Y Z2, E7 =

√

p

8
Y 2Z2, E8 =

√

p

8
Z2 (7)

where I3 is the identity matrix of order 3.

Y =











0 1 0

0 0 1

1 0 0











, Z =











1 0 0

0 ω 0

0 0 ω2











(8)

In the above equations, p represents the quantum noise parameter and ω = e
2πi

3 . The evolution

of the initial density matrix of the composite system when it is influenced by local and multi-local

environments is given in Kraus operator form as

ρf =
∑

i,j,k

(EB
j EA

k )ρAR(E
B
j EA

k )
† (9)

and the evolution of the system when it is influenced by global environment is given in Kraus

operator representation as

ρf =
∑

i,j,k

(EAB
i EB

j EA
k )ρAR(E

AB
i EB

j EA
k )

† (10)

where EA
k = EA

m ⊗ I3, I2 ⊗ EB
j are the Kraus operators of the multilocal coupling of qubit and

qutrit individually and EAB
i = EA

m ⊗ EA
n are the Kraus operators of the collective coupling of the

hybrid system. Using equations (5-10) along with the initial density matrix of as given in equation

(1) and taking the partial transpose over the smaller subsystem (qubit), we find the eigenvalues of

the final density matrix. Let the decoherence parameters for local and global noise of the qubit and
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qutrit be p1, p2 and p respectively. The entanglement for all mixed states ρAB of a qubit-qutrit

system is well quantified by the negativity [32]

N(ρAB) = max{0,
∑

k

∣

∣

∣
λ
TA(−)
k

∣

∣

∣
}) (11)

where λ
TA(−)
k represents the negative eigenvalues of the partial transpose of the density matrix ρAB

with respect to the smaller subsystem. The eigenvalues of the partial transpose matrix when only

the qubit is influenced by the amplitude damping channel are given by

λ1,2 =
1

2
cos2 r

λ3 = −1

2
(−1 + p1) cos

2 r

λ4 =
1

2
(−1 + p1) cos

2 r

λ5 = −1

2
(−1 + p1) sin

2 r

λ6 =
1

2
(−1 + p1) sin

2 r (12)

The only possible negative eigenvalue is the fourth one and the negativity is calculated using the

relation given in equation (11). The eigenvalues of the partial transpose matrix when only qutrit

is influenced by the amplitude damping channel are given by

λ1 = −1

2
(−1 + p2) cos

2 r

λ2,3 =
1

4
(p2 ∓

√

p22 − 4(−1 + p2) cos4 r)

λ4,5 = −1

2
(−1 + p2) sin

2 r

λ6 =
1

2
(cos2 r + p2 sin

2 r) (13)

The only possible negative eigenvalue is the second one. The eigenvalues of the partial transpose

matrix when both qubit and qutrit are influenced by the amplitude damping channel are given by

λ1 = −1

2
(−1 + p2) cos

2 r

λ2 =
1

2
(−1 + p1)(−1 + p2) sin

2 r

λ3 = −1

2
(1 + p1)(−1 + p2) sin

2 r

λ4 = −1

2
(−1 + p1)(cos

2 r + p2 sin
2 r)

λ5,6 =













1
8(p1 + 2p2 + p1p2 + p1 cos(2r)− p1p2 cos(2r)

∓2

√

√

√

√

√

4(−1 + p1)(−1 + p2) cos
4 r+

((p1 + p2) cos
2 r + (1 + p1)p2 sin

2 r)2
]













(14)
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The only possible negative eigenvalue is the fifth one. The eigenvalues of the partial transpose

matrix when the system is influenced by the global noise of amplitude damping channel are given

by

λ1 =
1

2
(−1 + p)(−1 + p2) cos

2 r

λ2 =
1

4
(−1 + p1)

2(1 + p+ p2 − pp2 + (−1 + p)(−1 + p2) cos(2r))

λ3 =
1

2
(−1 + p)(−1 + p1)

2(−1 + p2) sin
2 r

λ4 = −1

2
(−1 + p)(−1− 2p1 + p21)(−1 + p2) sin

2 r

λ5,6 =































1
4 [p cos

2 r + 2p1 cos
2 r − p21 cos

2 r ++p2 cos
2 r − pp2 cos

2 r

+p sin2 r + 2pp1 sin
2 r − pp21 sin

2 r + p2 sin
2 r − pp2 sin

2 r

+2p1p2 sin
2 r − 2pp1p2 sin

2 r − p21p2 sin
2 r + pp21p2 sin

2 r

∓

√

√

√

√

√

√

√

√

4(−1 + p)(−1 + p1)
2(−1 + p2) cos

4 r

+((−2p1 + p21 + p(−1 + p2)− p2) cos
2 r

−(−1− 2p1 + p21)(p(−1 + p2)− p2) sin
2 r)2

]































(15)

The only possible negative eigenvalue is the fifth one. The eigenvalues of the partial transpose

matrix when only the qubit is influenced by the depolarizing channel are given by

λ1,2 =
1

2
sin2 r

λ3 =
1

4
(−2 cos2 r + 3p1 cos

2 r)

λ4,5,6 = −1

4
(−2 + p1) cos

2 r (16)

The only possible negative eigenvalue is the third one. The eigenvalues of the partial transpose

matrix when only qutrit is influenced by the depolarizing channel are given by

λ1,2,3 =
1

32
(8− 3p2 + 8cos(2r)− 9p2 cos(2r))

λ4 =
1

32
(−8 + 15p2 − 8 cos(2r) + 9p2 cos(2r))

λ5,6 =
1

32
(8− 3p2 + (−8 + 9p2) cos(2r)) (17)
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The only possible negative eigenvalue is the fourth one. The eigenvalues of the partial transpose

matrix when both the qubit and the qutrit are influenced by the depolarizing channel are given by

λ1,2 =
1

32
(8− 3p2 + (−8 + 9p2) cos(2r))

λ3,4 =
1

32
((16 − 12p2 + p1(−8 + 9p2)) cos

2 r + 6p2 sin
2 r)

λ5,6 =





1
64(8p1 + 12p2 − 9p1p2 ∓ 2

√
2
√

2(−1 + p1)2(8− 9p2)2 cos4 r

+8p1 cos(2r)− 9p1p2 cos(2r))



 (18)

The only possible negative eigenvalue is the fifth one. The eigenvalues of the partial transpose

matrix when the system is influenced by the global noise of depolarizing channel are given by

λ1,2 =

















1
512 (96p + 128p1 − 144pp1 − 64p21 + 72pp21 + 96p2 − 108pp2 − 144p1p2

+162pp1p2 + 72p21p2 − 81pp21p2 ∓ 2
√
2
√

2(8− 9p)2(−1 + p1)4(8− 9p2)2 cos4 r

+128p1 cos(2r)− 144pp1 cos(2r)− 64p21 cos(2r) + 72pp21 cos(2r)

−144p1p2 cos(2r) + 162pp1p2 cos(2r) + 72p21p2 cos(2r)− 81pp21p2 cos(2r))

















λ3,4 =
1

256
(64− 24p2 + 3p(−8 + 9p2)− (−8 + 9p)(−8 + 9p2) cos(2r))

λ5,6 =





1
256((3p(4 − 6p1 + 3p21)(−8 + 9p2)− 8(4(−4 + 3p2)− 2p1(−8 + 9p2)

+p21(−8 + 9p2))) cos
2 r + 6(p(8− 9p2) + 8p2) sin

2 r)



 (19)

The only possible negative eigenvalue is the first one. The eigenvalues of the partial transpose

matrix when only qubit is influenced by the phase damping channel are given by

λ1,2 =
1

2
cos2 r

λ3 = −1

2

√

cos4 r − p1 cos4 r

λ4 =
1

2

√

cos4 r − p1 cos4 r

λ5,6 =
1

2
sin2 r (20)

The only possible negative eigenvalue is the third one. The eigenvalues of the partial transpose

matrix when only qutrit is influenced by the phase damping channel are given by

λ1,2 =
1

2
cos2 r

λ3 = −1

2

√

(1− 3p2 + 3p22) cos
4 r

λ4 =
1

2

√

(1− 3p2 + 3p22) cos
4 r

λ5,6 =
1

2
sin2 r (21)
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The only possible negative eigenvalue is the third one. The eigenvalues of the partial transpose

matrix when both qubit and qutrit are influenced by the phase damping channel are given by

λ1,2 =
1

2
cos2 r

λ3 = −1

2

√

(−1 + p1)(−1 + 3p2 − 3p22) cos
4 r

λ4 =
1

2

√

(−1 + p1)(−1 + 3p2 − 3p22) cos
4 r

λ5,6 =
1

2
sin2 r (22)

The only possible negative eigenvalue is the third one. The eigenvalues of the partial transpose

matrix when the system is influenced by the global noise of phase damping channel are given by

λ1,2 =
1

2
cos2 r

λ3 = −1

2

√

(1− 3p + 3p2)(−1 + p1)2(1− 3p2 + 3p22) cos
4 r

λ4 =
1

2

√

(1− 3p+ 3p2)(−1 + p1)2(1− 3p2 + 3p22) cos
4 r

λ5,6 =
1

2
sin2 r (23)

The only possible negative eigenvalue is the third one. The negativity is calculated using equation

(5) for all the above cases and results are discussed in detail in the next section.

III. DISCUSSIONS

In this work, we investigate the effect of decoherence on a qubit-qutrit system in non-inertial

frames. In figure 1, we plot negativity as a function of Rob’s acceleration, r for decoherence param-

eters pi = 0.2 for amplitude damping channel. It is seen that maximal entanglement degradation

occurs under global noise. It is also seen that the entanglement is degraded heavily as we increase

the value of Rob’s acceleration. However, the entanglement loss is consistent for all the cases and

no ESD behaviour is seen for any acceleration. In figure 2, we plot the negativity as a function of

Rob’s acceleration, r for p1 = p2 = 0.2 (multi-local noise) and p = 0.2 (global noise) for depolariz-

ing channel. It is seen that depolarizing channel heavily degrades the entanglement as compared

to amplitude damping channel, particularly in case of global decoherence. In figure 3, we plot the

negativity as a function of Rob’s acceleration, r for p1 = p2 = 0.2 (multi-local noise) and p = 0.2

(global noise) for phase damping channel. A similar behaviour of amplitude damping and phase

damping channels is seen towards entanglement degradation.
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In figure 4, we plot the negativity as a function of Rob’s acceleration, r for p1 = p2 = p = 0.2

for amplitude damping, depolarizing and phase damping channels. It is shown that depolarizing

channel influences the entanglement of the system more heavily as compared to the other two

channels. On the other hand, for higher values of decoherence parameters, the amplitude damping

channel have more influence on the entanglement degradation as clear from figure 5. Further more,

it is also seen that no ESD occurs for any acceleration of Rob for the entire range of decoherence

parameters.

IV. CONCLUSIONS

We analyze the effect of decoherence on a qubit-qutrit system under the influence of decoherence

in non-inertial frames. We consider different noise models such as amplitude damping, depolarizing

and phase damping channels with different couplings of the system and the environment. We show

that the entanglement sudden death can be avoided in non-inertial frames. However, degradation

of entanglement is seen due to Unruh effect. It is seen that for lower values of decoherence pa-

rameters, the depolarizing channel heavily degrades the entanglement of the system as compared

to the amplitude damping and phase damping channels. However, for higher values of decoher-

ence parameters, amplitude damping channel heavily degrades the entanglement of the system. In

conclusion, no ESD occurs for any value of Rob’s acceleration.
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Figures captions
Figure 1. The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = 0.2

(multi-local noise) and p = 0.2 (global noise) for amplitude damping channel.

Figure 2. The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = 0.2

(multi-local noise) and p = 0.2 (global noise) for depolarizing channel.

Figure 3. The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = 0.2

(multi-local noise) and p = 0.2 (global noise) for phase damping channel.

Figure 4. The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = p = 0.2

for amplitude damping, depolarizing and phase damping channels.

Figure 5. The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = p = 0.5

for amplitude damping, depolarizing and phase damping channels.

Table Caption
Table 1. Single qubit Kraus operators for amplitude damping, depolarizing and phase damping

channels where p represents the decoherence parameter.

TABLE I: Single qubit Kraus operators for amplitude damping, depolarizing and phase damping channels

where p represents the decoherence parameter.

Depolarizing channel
E0 =

√

1− 3p

4
I, E1 =

√

p

4
σx

E2 =
√

p

4
σy, E3 =

√

p

4
σz

Amplitude damping channel E0 =





1 0

0
√
1− p



 , E1 =





0
√
p

0 0





Phase damping channel E0 =





1 0

0
√
1− p



 , E1 =





0 0

0
√
p




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FIG. 1: The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = 0.2 (multi-local noise)

and p = 0.2 (global noise) for amplitude damping channel.
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FIG. 2: The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = 0.2 (multi-local noise)

and p = 0.2 (global noise) for depolarizing channel.
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FIG. 3: The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = 0.2 (multi-local noise)

and p = 0.2 (global noise) for phase damping channel.
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FIG. 4: The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = p = 0.2 for amplitude

damping, depolarizing and phase damping channels.
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FIG. 5: The negativity is plotted as a function of Rob’s acceleration, r for p1 = p2 = p = 0.5 for amplitude

damping, depolarizing and phase damping channels.
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