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Fast geometric gate operation of superconducting charge qubitsin circuit QED
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A scheme for coupling superconducting charge qubits via edimensional superconducting
transmission line resonator is proposed. The qubits ar&ingat their optimal points, where they
are immune to the charge noise and possess long decohereacénalysis on the dynamical time
evolution of the interaction is presented, which is showbeadnsensitive to the initial state of the

resonator field. This scheme enables fast gate operatios azatlily scalable to multiqubit scenario.
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Quantum computers have been paid much attention in the peatld and solid state systems are promis-
ing candidates for novel scalable quantum information @seing |[1]. In particularly, the idea of placing
superconducting qubits inside a cavity, i.e., the circuidrfum electrodynamics (QED), has been illus-
trated [2, 3] to have several practical advantages inctuginong coupling strength, immunity to noises,
and suppression of spontaneous emission.

Decoherence always occur during real quantum evolutiodgtarefore stands in the way of physical
implementation of quantum computers. So, how to supprassnfamous decoherence effects is a main
task for scalable quantum computation. To fight againsttgalécay, in typical circuit/[3] and cavity
[4] QED systems, convectional wisdom is to resort to the alted large detuning interaction method.
Similarly, in trapped thermal ions system, the famous lotatic excitation schemel[5] couples ions by
virtue excitation of phonon mode, also uses the large deguimiteraction. Later investigation shows that
the logical operation obtained is of the geometric natuteufl therefore has high fidelity/[7]. Meanwhile,
itis shown that by periodically decoupling to the commonminomode, the large detuning constrain can be
removed |[56] so that fast gate operation can be achieved [Bjile8 strategy can be adopted in cavity QED
system with strong driven atoms [9], superconducting anapgpits in a microwave cavity by introducing
ac magnetic flux [10] and superconducting flux qubits indwetyi coupled to a common resonator![11].

In typical circuit QED system, up to now, theory and expeniaéexplorations are still in the stage of
large detuning interaction. Here, we propose to coupe sapducting charge qubits via a one-dimensional

(1D) superconducting transmission line resonator (cavilihe qubits are capacitively coupled to the 1D
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superconducting cavity [[2] and work at their optimal poinidere they are immune to the charge noise
and possess long decoherence time. The gate operationna shidve insensitive to the initial state of the
cavity field, and thus greatly suppress the decoherencet éften the cavity decay. This scheme removes
the requirement of large detuneing, and thus enables féstogeration. Finally, the solid-state set-up is
readily scalable to multiqubit scenario.

Before proceeding, we would like to explain our proposal imare physical way. Usually, 2-qubit
coupling is demonstrated with large qubit-cavity detuning g, e.g., in Ref.[2], which makes the coupling
quite weak. In this regime, there is no energy exchange legtwebits and cavity. The effective coupling
of energy conservation transitions can be determined bynskorder perturbation theory [6]. Meanwhile,
the coupling usually contains cavity-state-dependentggrshift, i.e.,aTaU]Z- terms. Outside this regime the
internal state is strongly entangled with the cavity statend) the gate operation. By adding a driven field
to the cavity field, we get effective driven for all qubits, st is similar to scheme of atomic cavity QED
with strong driveni[12]. This driven field further mix bothellcavity and the qubit state. For successful gate
operation (evolution independent of the cavity state) weetia ensure that the cavity returns to its initial
state at the end of the gate. Fortunately, this can be achi®ya@ppropriately chosen parameters, i.e., to
fulfill Eq. (L8), where the two mix mechanisms of the cavitydistate conceal each other and thus result

in cavity state independent evolution of the system.
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FIG. 1: (Color online) The architecture of 3 supercondugtimarge qubits capacitively coupled to a 1D cavity,
which consists of a full-wave sectioh< \) of superconducting coplanar waveguide. Qubits are plaetdeen the
superconducting lines and is capacitively coupled to tmardrace at a maximum of the voltage standing wave (solid
cosine curves), and thus yielding maximum coupling. Quinitsists of two small Josephson junctions in@a1 loop

to permit tuning of the effective Josephson energy by arreatdlux ®. Input and output signals can be coupled to

the resonator, not shown here,via the capacitive gaps ioethier line.



Fig. (1) shows our proposed setup with 3 qubits. The 1D caahsists of a full-wave section £ \) of
superconducting coplanar waveguide. A distinct advantdgércuit QED approach is that the zero-point
energy is distributed over a very small effective volumeijcliheads to significant rms voltages between the
center conductor and the adjacent ground plane at the datipositions. At a cavity resonant frequency of
10 GHz andd = 10 pm, V,.,,s = 2 uV corresponding to electric fields,.,,,s = 0.2 V/m, which is several
hundreds times largeri[2] than that of achieved in 3D cavith Rydberg atoms.

The superconducting charge qubit considered here comsiatsmall superconducting box with excess
Cooper-pair charges, formed by an symmetric SQUID with thgacitance’’; and Josephson coupling
energyE;, pierced by an external magnetic fldx permit tuning of the effective Josephson energy. A
control gate voltagéd/; is connected to the system via a gate capaditapr Focus on the charge regime
(E; < E. = 2¢2/Cx, with Cx, = C,, + 2C}), at temperatures much lower than the charging eneffgy (
and restricting the induced charge£ C,V,/(2¢)] to the range of: € [0, 1], only a pair of adjacent charge

states{|0), |1) } on the island are relevant. Then, the device is described]by [
Hy=—--0°——0", (1)

wheree = E.(1 — 2n), A = 2E; cos(m®/¢o) with ¢ being the flux quantag” and s are the Pauli
matrices in the{|0), |1)} basis. Note that the qubit splitting now can be tunable byettternal magnetic
flux, which can be used to turn on/off cavity mediated qubiteriaction. As this can be tuned individually,
the cavity mediated qubits interaction can be implementesetective qubits.

The qubits are capacitively coupled to the cavity, as shawrig. (1). For simplicity, we here assume
that the cavity has only a single mode that plays a role. Tainbhaximum coupling strength, they are
fabricated close to the voltage antinodes of the cavity.h&stave length of the cavity moda ¢ 1 cm) is
much larger than the linear length of the qubif{h), we may treat the qubit-cavity coupling as a constant
within the qubit geometry. This coupling is determined bg tiate voltage, which contains both the dc
contribution and a quantum part. If the qubit is placed indbeter of the resonator, as shown in F[g. (1),

the latter part contribution is given By° _(a + af) with V0 _ being the rms voltage between the center

rms rms

conductor and the ground plane. Then, the Hamiltonian descthis setup takes the form of [2]
N
He=wrala =) [%a;+ %a§+gj(a+af)(1 —2n—357)|, )
j=1
where we have assuntie= 1, w,, a anda! is the frequency, annihilation and creation operator ottty
field, respectively; the coupling strength fth qubit to the cavity igj; = eCy;V,2,./Cs; € [5.8,100]
MHz [2]. Rotate to the qubit eigen basis of

0 0 0 0
| 1) = cos §|0> + sin §|1>> |4 = —Sin§|0> + cos §|1>7 3)



wheretan § = A /e, Hamiltonian [2) takes the form of
¢ =wra CL—I—Z[—O’ —gj a+a)(1—2ﬁ—cos€aj+sin90f)], 4)

wherew, = V€2 + A2 is the qubit splittings” andc? are the Pauli matrices in the 1), | J)} basis. The
qubits are set to work at their optimal points £ 1/2, w, = A andf = 7 /2, corresponding t@ . basis),
where they are immune to the charge noise and possess loolgetdlence time. Then, the Hamiltonian (4)

reduces to
Yora
H, = wyala + Z {50]2- —gjla+ aT)aﬂ . (5)
j=1
Neglecting fast oscillating terms using the rotating-wapgroximation lead Hamiltoniafl(5) to the usual

Jaynes-Cummings form

N
A _
Hjc = wrala + Z |:7]UJZ- - gj ((ITO'J- + aa;-r)} . (6)
=1

Meanwhile, driving in the form of
h =e(t)ale @t 4 *(t)ae™d! 7)

on the resonator can be obtained [2] by capacitively cogpiirto a microwave source with frequency
wg and amplitudes(¢). Depending on the frequency, phase, and amplitude of the,ddifferent logical
operations for qubit can be realized. To get fast gate, wdwath large amplitude driving fields, where
guantum fluctuations are very small compare with the drivplauaae, and thus the drive can be considered
as a classical field. In this case, it is convenient to disptae field operators using the time-dependent

displacement operatar [13]:

D(a) = exp <ozaT - a*a) . (8)

Under this transformation, the fietdgoes tau + « wherea is a c-number representing the classical part of

the field. Choosing
i = wra + £(t) exp(—iwgt) 9)

to eliminate the direct drive on the resonator, then thelaiga Hamiltonian reads![2]

Hp =wra a+2{—a — gj [(a—ka)a;f—kH.c.]}. (20)



Under resonant drivingX; = wg), the drive amplitude is independent of time, and change flarae

rotating atvg, the displaced Hamiltonian reads

N
Q . _
p=dala+ Z [5026 —9j (aa;f + aTaj >] . (11)
j=1
whered = w, —wy andQ = 2¢ge/46 is the Rabi frequency.
Rotate to the eigen basis @f
Hrr = Ho + Hint,

O
Hy = da'a+ 3 g 102, (12)
j:

Hinp = =5 ) [gja (o + [+);(=| = [=);(+]) + Hc].

| =

7j=1
In the interaction picture with respect Ify the interaction Hamiltonian reads [12]

N
1 , S .
Hy =3 > gjae™ (o] + V) (—| — e =) (+]) + H.c (13)
j=1

In the case of) > {9, g}, we can omitting the fast oscillation terms (of frequendies 6) and only keep

the oscillation frequency af, then the Hamiltonian reads
Hy = 1 (ae—m n aTemt) igjg%_ (14)
2 =
Rotate back to the eigen basismf, the Hamiltonian reads
H _ Y sttt = x
3 5 (ae +a'e > ;g]aj. (15)

For N = 2, the corresponding closed Lie algebra for Hamilton[ad (&5)1, ao?, aTa ,oio3}. The
time evolution of Hamiltonian(15) is the product of theipexentials. Clearly, the first term represents a
global phase factor, and thus can be neglected. The miduhes t@volve real excitation of the cavity field
state, and thus entangle the qubits with the cavity field.lda$steerm denotes a two qubits operation without

entanglement with the cavity field. The time evolution oparaan be written as [6]
2 .
Uy = exp (—2iAs0703) Hexp (—z’B%aaf) H exp ( (B))*at x) (16)

with

B8 (1), =2 (o) ). )



It is clear that the whole time evolution operator is not aigmical function buth is and it vanishes at

intervals
0T, = 2nm (18)
with n being a positive integer. At these time intervals, the timawdion operator reduce to
Uz(Ty) = exp [~2i Az (T )07 03] (19)

with Ay (T),) = —g192T3, /0.

The reduced operator is equivalent to a two qubits systetniamiltonian of the type of o735 . This
two qubits operation is achieved without the entanglematit thie cavity field state, and thus the cavity
field do not transfer population to the qubits system. Tleeefthe operation is insensitive to the cavity
field state, the equilibrium state of which is usually a mistate at finite temperature. The operation also
remove the constrain of large detuning $ ¢), andT; ~ 1/g for 6 ~ g, which is comparable to the
resonant coupling strategy. This shows fast gate operatiarbe achieved. Geometrically, the cavity state
traverses cyclically and returns to its original phase sgaordinates at intervalg, leaving an geometric
phase equals to the area of the trajectory [6]. This is shovioeta unconventional geometric phase factor
[14], which still depends only on global geometric featuamsl is robust against random operation errors
[15], and thus high-fidelity two-qubit operation can be agied [7].

This gate operation can be readily scale up to multiqubiénado. For the purpose of simplicity, we
assumey; = g and define the collective spin operators/as= Ej\f:la; with v = z,y, 2. In this case, the

time evolution operator can be written as

Uy = exp (—iANJg) exp (—iByadJ;)exp (—iB}kVaTJx) (20)
with
2
_ 9 ( —ist _ _ 9\ L )
By = (o), ay =% |5 (e -1) . (21)

Similarly, cavity field state insensitive operator
UN(Tn) = exp [_ZAN(Tn)Jg] (22)

can be obtained at time interval¥,, = 2nw. It is obvious thatdy ~ A,, i.e., the time needed for this
gate operation is comparable to that of the two-qubit cages i another distinct merit of our proposed
gate operation: the gate speed is not slowed down with tlieasing involved qubits. Therefore, this merit

enables efficient construction of entanglement and erngecton code [10].



To sum up, scheme for coupling superconducting charge gjutdta cavity is proposed. The qubits
are working at their optimal points, the time evolution oé tinteraction is shown to be insensitive to the
initial state of the cavity field. This scheme enables fast gperation and is readily scalable to multiqubit

scenario.
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