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This article reviews recent research towards a universal light-matter interface. Such an inter-
face is an important prerequisite for long distance quantum communication, entanglement assisted
sensing and measurement, as well as for scalable photonic quantum computation. We review the
developments in light-matter interfaces based on room temperature atomic vapors interacting with
propagating pulses via the Faraday effect. This interaction has long been used as a tool for quan-
tum nondemolition detections of atomic spins via light. It was discovered recently that this type of
light-matter interaction can actually be tuned to realize more general dynamics, enabling better per-
formance of the light-matter interface as well as rendering tasks possible, which were before thought
to be impractical. This includes the realization of improved entanglement assisted and backaction
evading magnetometry approaching the Quantum Cramer-Rao limit, quantum memory for squeezed
states of light and the dissipative generation of entanglement. A separate, but related, experiment
on entanglement assisted cold atom clock showing the Heisenberg scaling of precision is described.
We also review a possible interface between collective atomic spins with nano- or micromechanical
oscillators, providing a link between atomic and solid state physics approaches towards quantum
information processing.

I. INTRODUCTION

One of the long term goals in quantum information
processing is to distribute entanglement over long dis-
tances and at large rates, in order to serve as a resource
for quantum communication protocols. Such a quantum
communication network will have to make use of a quan-
tum interface which allows to efficiently perform certain
primitives, such as converting light – the natural long
distance carrier of quantum information – to stationary
quantum memories, or creating entanglement between
light and the quantum memory. Such a device will also
be necessary in order to render architectures for photonic
quantum computation scalable. For realizing an efficient
quantum interface a strong light-matter interaction is re-
quired. Various possible approaches towards this end are
being intensely explored, ranging from single atoms in-
side high finesse cavities [1], via solid state devices [2–5],
to ensembles of atoms interacting with light in free space
[6–18]. For comprehensive recent reviews on the various
approaches based on atomic ensembles we refer to [19–
21], see also [22].

Here, we focus on the most recent developments in
the light-matter interface based on room temperature
vapor of Cesium in glass cells [16–18]. The interaction
between light and macroscopic Cesium ensembles at
room temperature has been used extensively in many
different experiments over the last decade and enabled
the realization of several important quantum information
processing tasks in this system including the demon-
stration of a quantum memory for light [23], quantum
teleportation between light and matter [24] and the
generation of entanglement between two distant atomic

samples using measurements and feedback operations
[25]. The description of these and other experiments
has been based on a quantum-nondemolition (QND)
interaction between matter and light.
While QND interactions combined with measurements
have been proven to be very successful, a new generation
of developments and experiments has become possible
using a more general description of the light-matter
interaction. This allows not only for the accurate
description of effects which have not been taken into
account before and have therefore been treated as noise,
but allows also for the design and implementation of
protocols which go beyond the possibilities that can be
realized using QND interactions, for example the purely
dissipative generation of entanglement as described in
Sec. III A.

II. INTERACTION BETWEEN ATOMIC
ENSEMBLES AND LIGHT

In this section, the interaction of light with an atomic
ensemble is introduced and discussed for two-level sys-
tems (Sec. II A). It is explained how it can be real-
ized in Cesium ensembles and how this interaction can
be tuned by varying externally controllable parameters
(Sec. II B). Moreover, characteristic features of the QND-
Hamiltonian and a general quadratic interaction are high-
lighted and the respective input-output relations are dis-
cussed (Sec. II C).
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FIG. 1: Light-matter interaction involving a strong ŷ polar-
ized laser field (depicted in green) and two atomic ensembles,
which are spin polarized parallel and antiparallel with respect
to a homogeneous magnetic background field which is oriented
along x̂ and defines the quantization axis. Atoms are assumed
to posses two ground and two excited states |↑〉, |↓〉 and |e↑〉,
|e↓〉. The strong off-resonant driving field induces diagonal
transitions |↑〉 → |e↓〉, |↓〉 → |e↑〉 which lead to the emission
of photons in x̂ polarization (corresponding to the transitions
|e↑〉 → |↑〉, |e↓〉 → |↓〉). Due to the Zeeman splitting Ω of
the atomic ground states, photons are scattered into the up-
per and lower sideband (shown in blue and red respectively)
which are centered at ωL ± Ω, where ωL is the frequency of
the incident classical field.

A. Light-matter interaction in a two-level model

To start with, a simple one-dimensional two-level
model involving the ground states |↑〉 and |↓〉 is consid-
ered, as illustrated in Fig. 1, which shows a ŷ-polarized
laser beam propagating along ẑ, and two ensembles
which are strongly spin polarized and placed in a
homogeneous magnetic field oriented along x̂. In this
subsection, we focus on the interaction of the light field
with the first ensemble which is polarized in the same
direction. The light-matter interaction is assumed to be
far off-resonant and therefore well within the dispersive
regime. The excited levels are adiabatically eliminated
under the condition ∆ � Γatomic, δ, where ∆ is the
detuning, Γatomic is the largest rate at which transitions
|↑〉 ↔ |↓〉 occur, and δ is the Doppler width. This way,
an effective interaction involving atomic ground states
only is obtained. Atoms and light are described by

means of the operators aA, a†A and spatially localized

modes aL(z), a†L(z) respectively. The creation operator

a†L(z) [26] refers to a x̂-polarized photon (the strong
ŷ-polarized coherent beam is treated as classical field)
which is emitted in forward direction (emission of
photons in other directions can be included in the form

of noise terms). The operator a†A = 1√
NA

∑NA
i=1 |↓〉i〈↑|,

where NA is the number of particles in the ensemble,

refers to a collective atomic excitation. For strongly
polarized samples, these operators can be assumed

to obey bosonic commutation relations [aA, a
†
A] = 1,

within the Holstein-Primakoff approximation [27]. The
action of this collective operator on the product state
|0〉A ≡ | ↑1, ↑2, . . . , ↑NA〉, where all atoms have been
initialized in | ↑〉, results in the symmetric coherent
superposition of all NA possible terms representing the
state where one spin in the ensemble has been flipped

a†A|0〉A = 1√
NA

∑NA
i=1 |↑1, . . . , ↓i, . . . , ↑NA〉.

Atoms and light are assumed to interact according
to a Hamiltonian which is quadratic in the operators
describing the atomic ensemble and the light field [28].
The realization of strong nonlinearities in atomic sys-
tems would be desirable but represents still a formidable
challenge (the realization of a cubic term would allow for
universal quantum computation if arbitrary quadratic
interactions are available [29]).

By means of suitable local operations, any quadratic
Hamiltonian describing the interaction of two one-mode
continuous variable systems can be parametrized by two
parameters γs and Z and expressed as a sum of a passive
and an active contribution [30],

Hint =
√

2γs (µHP − νHA) , (1)

where µ = (Z+ 1
Z )/2 and ν = (Z− 1

Z )/2 (compare [16]).

The passive contribution HP = aL(0)a†A + H.C. [31] is
energy conserving. If a collective atomic excitation is
created, a photon is annihilated. In contrast, the active
interaction HA = aL(0)aA + H.C. corresponds to the
creation (or annihilation) of atomic and photonic excita-
tions in pairs. The former interaction can be understood
as the interspecies analog of a beamsplitter interaction
while the latter creates entanglement and is referred to
as ”squeezing interaction”. The light matter interaction
considered here involves both types. The QND Hamilto-
nian corresponds to the special case |µ| = |ν|, where HA

and HP contribute exactly with equal strength. In the
simple two-level model, an imbalance |µ| 6= |ν| can arise
due to the Larmor splitting of the ground state, which
leads to different detunings ∆ + Ω and ∆−Ω for the two
photon transitions associated with the active and the pas-
sive part of the interaction respectively and therefore to
different effective coupling strengths and accordingly to
a deviation from the QND Hamiltonian. However, in the
experimental situation considered here, the detuning ∆
is much larger than the Larmor splitting such that this
effect is negligible (in a magnetic field of 1 Gauss, the
Zeeman shift of magnetic sublevels is about 105Hz while
the detuning is on the order of 108 Hz). The non-QND
character of the light-matter interaction in 133Cs atoms
is due to the fact that the levels |↑〉 and |↓〉 couple to
several excited levels [16, 32–34] as described below.
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FIG. 2: Off-resonant probing of the D2 line in spin polar-
ized 133Cs ensembles as shown in Fig. 1. The strong coherent
field in ŷ-polarization is depicted as full line, while the quan-
tum fields corresponding to the blue and the red sideband
are shown as dashed and dash-dotted lines respectively. Only
desired transitions are shown - the level splittings are not de-
picted true to scale.

B. Light-matter interaction including the
multi-level structure of Cesium

In contrast to the simple two-level model considered
above, 133Cs atoms have a multi-level structure. As illus-
trated in Fig. 2a, a two-level subsystem can be encoded
in the 6S1/2 ground state with total spin [35] F = 4
by identifying the states | ↑〉 and | ↓〉 with the outer-
most levels corresponding to the magnetic quantum num-
bers (the projection of the spin along x̂) mF = 4 and
mF = 3, such that | ↑〉 ≡ |F = 4,mF = 4〉 ≡ |4, 4〉
and | ↓〉 ≡ |F = 4,mF = 3〉 ≡ |4, 3〉. In the follow-
ing, we consider strongly polarized ensembles where all
atoms have been initialized in state |↑〉. We assume that
only a small fraction of is transferred to state |↓〉 during
the interaction and that the population in all other levels
can be neglected. The strong laser field in ŷ-polarization
probes the D2 line and couples these levels off-resonantly
to the excited states in 6P3/2. This way, the passive
part of the interaction (corresponding to the transfer of
atoms from |↓〉 to |↑〉 and the creation of a photon in the
red sideband) involves the upper levels with F = 4, 5,
while the active part of the light-matter interaction (cor-
responding to the transfer | ↑〉 → | ↓〉 and the creation
of a photon in the blue sideband) involves the manifolds
with F = 3, 4, 5. The corresponding Z-parameter can be
easily determined if the detuning and the corresponding
Clebsch-Gordan coefficients are known. In this specific
case, one obtains Z = (µ+ ν) = 2.5 for blue detuning
∆ = 850MHz with respect to the state with total spin
F = 5 within 6P3/2.

In general, Z can be calculated as follows. The ef-
fective rate for ground state transitions | ↑〉 ↔ | ↓〉 in-
volving the excited state |l〉 is given by Γ|a〉→|l〉→|b〉 =

Ω2
R|

calclb
∆l+iγl

|2γl ≈ Ω2
R
|calclb|2

∆2
l

γl, where Ω2
R is the Rabi fre-

quency of the applied laser field [36], cal and clb are the
Clebsch-Gordan coefficients for the transitions |a〉 → |l〉
and |l〉 → |b〉, γl is the natural line width of the excited

state and ∆l � γl was assumed. If several excited states
contribute, the different paths can interfere and the ef-
fective rate for the off-resonant transition |a〉 → |b〉 is
therefore given by the sum Γ|a〉→|b〉 = Ω2

R|
∑
l
calclb

∆l
|2γ,

where the line widths of the involved excited levels have
been assumed to be approximately equal. If the the ra-

tio r2 =
Γ|↓〉→|↑〉
Γ|↑〉→|↓〉

= µ2

ν2 is calculated, Z2 = r+1
r−1 can be

determined.
If the sign of the detuning is changed (using for exam-

ple red instead of blue detuning) the character of the in-
teraction can be changed from the predominantly passive
to the active type. This can also be achieved by inter-
changing the polarization of the classical and the quan-
tum field. As illustrated in Fig. 2a, using a x̂-polarized
classical field (driving vertical transitions, in this picture)
and correspondingly a quantum field in ŷ-polarization
(associated with diagonal transitions [35]) would involve
the excited levels with F = 3, 4, 5 for the passive part of
the interaction and the levels with F = 4, 5 for the active
one (as opposed to the setting discussed above, where
it is the other way round). The imbalance between the
active and the passive part becomes less pronounced for
large detunings. If ∆ is much larger than the hyperfine
splitting of the excited states, the interaction Hamilto-
nian can be well approximated by HQND [16, 20].

C. Input-output relations and characteristic
properties of the interaction

In the following, the canonical quadratures x = (a +

a†)/
√

2 and p = −i(a−a†)/
√

2 will be used. The atomic
quadratures xA and pA can be identified with the trans-
verse components of the collective spin. Since we con-
sider strongly polarized atomic ensembles (see Sec. II B),
the macroscopic spin in x̂-direction can be described by
a IC-number. The deviation from perfect x̂-alignment is
described by the collective spins in ŷ and ẑ direction

Jy =
∑N
i=1 σ

y
i and Jz =

∑N
i=1 σ

i
z, where the operators

σiy and σiz denote the y and z component of the ith atom
respectively such that within the Holstein-Primakoff ap-
proximation xA = Jy/

√
|〈Jx〉| and pA = Jz/

√
|〈Jx〉|. In

terms of quadratures, the quadratic Hamiltonian intro-
duced above (1) is given by

Hint =
√

2γs(ZpApL(0) +
1

Z
xAxL(0)). (2)

As will become apparent in Sec. II C 2 (see Eq. (4)),
Z [37] quantifies the squeezing (and corresponding anti-
squeezing) of the variances involved in the process [16],
while γs [38] characterizes the rate at which atomic
and light quadratures are swapped. In the balanced
case (µ = ν), Hint reduces to the QND Hamiltoninan
HQND ∝ pApL(0). Below, we introduce the input-
output relations describing the light-matter interaction
and highlight characteristic features of the imbalanced
and the balanced (QND) type.
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1. QND interaction

The balanced type of the interaction corresponding
to the limit Z → ∞ (with

√
2γs · Z = κ, where κ is

constant), HQND = κpApL is referred to as quantum-
nondemolotion interaction since the p-quadratures of
atoms and light are conserved. The input-output rela-
tions for a single cell in the absence of a magnetic field
[39] are given by

xoutA = xinA + κpinL , poutA = pinA ,

xoutL = xinL + κpinA , poutL = pinL , (3)

where xinL = 1√
T

∫ T
0
dtx̄L(ct, 0) and xoutL =

1√
T

∫ T
0
dtx̄L(ct, T ) (analogous definitions hold for

pinL and poutL ). Here, the variable transformation
xL(r, t) → xL(ct − ξ, t) = x̄L(ξ, t) has been made. The
spatial variable ξ = ct − z refers to a coordinate system
which is fixed to the propagating light pulse. ξ = 0 refers
to the front part of the pulse which enters the ensemble
first, while the rear part which passes last corresponds
to ξ = cT .

Shot-noise limited measurements of the collective spin
by homodyne detection of the light field require the ap-
plication of magnetic fields. In the presence of magnetic
fields, atomic ground states are Zeeman-shifted by the
Larmorsplitting Ω as shown in Fig. 2 (here and in the
following, we use ~ = 1).

The scattering of a narrow-band classical field with
central frequency ωc leads therefore to the emission of
photons into sideband modes, which are centered around
ωc ± Ω in frequency space, as illustrated in Fig. 1 which
allows for noise reduced measurements on the light field
using lock-in methods (see [40]). In the time domain,
atomic information is mapped to sin(Ωt) and cos(Ωt)
modulated light modes

xinf,cos =

√
2

T

∫ T

0

dtf(t) cos(Ωt)x̄L(ct, 0),

xoutf,cos =

√
2

T

∫ T

0

dtf(t) cos(Ωt)x̄L(ct, T ).

xf,cos/sin and pf,cos/sin refer to a light mode with an ar-
bitrary envelope function f(t), which varies slowly on the
time scale set by the Larmor frequency Ω. The envelope

function f(t) is normalized such that 1
T

∫ T
0
dtf(t)2 = 1.

In the limit ΩT � 1, which is well fulfilled under the
experimental conditions considered here, sine and co-
sine modulated modes are canonical and independent
[xf,sin/cos, pf,sin/cos] = i, [xf,sin/cos, pf,cos/sin] = 0. The
input-output relations for a single ensemble in a magnetic
field involve an infinite hierarchy of coupled backaction
modes [39], whose envelope functions are given by Leg-
endre polynomials (the general expressions can be found
in [41]). If a setup as shown in Fig. 1 with antiparal-
lel oriented spins, or equivalently, antiparallel oriented
magnetic fields, is considered, the input-output relations

simplify considerably since all photonic contributions ex-
cept for the lowest order cancel such that

xoutA,cos = xinA,cos + κpinL0,cos, (4)

poutA,cos = pinA,cos,

xoutL0,cos = xinL0,cos + κpinA,cos,

poutL0,cos = pinL0,cos,

xoutA,sin = xinA,sin + κpinL0,sin,

poutA,sin = pinA,sin,

xoutL0,sin = xinL0,sin + κpinA,sin,

poutL0,sin = pinL0,sin,

where the EPR-operators xA,cos = (xA,I + xA,II)/
√

2,

pA,cos = (pA,I + pA,II)/
√

2 and xA,sin = −(pA,I −
pA,II)/

√
2, pA,sin = (xA,I − xA,II)/

√
2 have been used.

A comparison of Eq. (3) with Eq. (4) shows that the the
input output relations for two atomic ensembles which
are Larmor-precessing in opposite directions are formally
equivalent to two independent sets of input-output rela-
tions describing the simple case of a single ensemble in
the absence of a magnetic field.

This antiparallel setup has for instance been used for
the implementation of a quantum memory for light [23]
and entanglement generation between two ensembles [25].
Since only the p-quadrature of each set of variables is
mapped by the interaction, the realization of a quantum
memory required the measurement of the p-quadrature of
the light field and a subsequent feedback operation on the
atoms in order to transfer both quadratures xL0,sin/cos

and pL0,sin/cos. Also the creation of entanglement based
on a QND interaction requires measurements on the light
field. The light-matter interaction itself does not cre-
ate entanglement, but it allows for a projection onto
an Einstein-Podolski-Rosen (EPR) entangled state with
squeezed non-local variances var(xA,sin) and var(xA,cos)
if xL0,sin and xL0,cos are measured.

However, an ideal beamsplitter or squeezing interac-
tion which would allow for perfect mapping or for the
creation of infinitely entangled states in the limit κ→∞,
can be realized based on a QND interaction by means of
a double-pass scheme [42–44], in which one of the two
contributions, HP or HA is cancelled by interference.

2. Non-QND interaction

In the following, we consider the general interaction
described by Eq. (2). The input-output relations for a
single cell in a magnetic field are given by(

xoutA
poutA

)
= e−γsT

(
xinA
pinA

)
+
√

1− e−2γsT

(
xin+,r
pin+,r

)
,(

xout−,r
pout−,r

)
= e−γsT

(
xin+,r
pin+,r

)
−
√

1− e−γsT
(
xinA
pinA

)
,
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where the exponentially rising/falling reading modes
with quadratures x±,r, p±,r are given by(
xin±,r
pin±,r

)
=

1

2

((
Z+

1

Z

)(
xin±,us
pin±,us

)
+

(
Z− 1

Z

)(
pin±,ls
xin±,ls

))
.

x±,us, p±,us and x±,ls, p±,ls refer to exponentially mod-
ulated modes(

xin±,us
pin±,us

)
=

√
2γs
N±

∫ T

0

dτe±γsτR(τ)

(
p̄L(cτ, 0)
−x̄L(cτ, 0)

)
,(

pin±,ls
xin±,ls

)
=

√
2γs
N±

∫ T

0

dτe±γsτR(τ)

(
p̄L(cτ, 0)
x̄L(cτ, 0)

)
,

which are located at ωc ± Ω in frequency space respec-
tively (compare Fig. 1). The subscripts us and ls refer
accordingly to the upper and lower sideband. The nor-
malization constants N+, N− and the rotation matrix
R(τ) are given by

N+ =

√
e
κ2

Z2 − 1, N− =

√
1− e−

κ2

Z2 ,

R(τ) =

(
cos(Ωτ) − sin(Ωτ)
sin(Ωτ) cos(Ωτ)

)
.

As outlined above, the setup involving two antiparallel
oriented ensembles in magnetic fields can be conveniently
described in terms of EPR modes such that two indepen-
dent sets of equations are obtained(
xoutA,sin/cos

poutA,sin/cos

)
=e−γsT

(
xinA,sin/cos

pinA,sin/cos

)
+
√

1−e−2γsTMZ

(
pout+,sin/cos

xout+,sin/cos

)
,(

xout-,sin/cos

pout-,sin/cos

)
=e−γsT

(
xin+,sin/cos

pin+,sin/cos

)
+
√

1−e−2γsTMZ

(
poutA,sin/cos

xoutA,sin/cos

)
(5)

where the matrix MZ is given by

MZ =

(
Z 0
0 −1

Z

)
.

Due to the inherent backaction of the interaction, these
input-output relations display an exponential scaling
in the coupling strength, as opposed to Eq. (4). This
is due to the fact that the light field is continuously
mapped to both atomic quadratures xA and pA which
in turn are mapped to the passing photonic field. This
way, the light field passing the ensembles at time t = t1
is subject to an interaction which involves the photonic
contributions which have been mapped to the atomic
state during the time t < t1 and experiences therefore
an effective backaction mediated by the atoms.

An imbalanced quadratic interaction (|µ| 6= |ν|) allows
for the realization of protocols which are not possible
employing an interaction of QND-type, for example the
creation of entanglement by dissipation which has been
recently demonstrated using atomic ensembles at room
temperature [45, 46] (see Sec. III A). More specifically,

the atomic system interacts with the continuum of elec-
tromagnetic modes ak. In the ideal case, the interac-
tion between the two ensembles constituting the system
and the continuum of light modes, which acts as envi-
ronment, is engineered such that the atomic system is
driven into an entangled steady state. In contrast to
standard approaches [20, 47, 48] this method creates un-
conditional entanglement, since no measurements on the
light field (bath) are required [49]. This feature is due to
the fact that the light field possesses an infinite number
of degrees of freedom, such that a non-unitary dynam-
ics which drives the system towards a fixed state can be
implemented. Due to this property, the corresponding
interaction is referred to as dissipative process. Since dis-
sipative processes are most naturally described in terms
of master equations, we will use this formalism in the
remainder of this section rather than input-output re-
lations. Both descriptions are equivalent. The master
equation for the atomic system discussed below can for
example be obtained by considering the interaction of
atoms and light as discussed above for small time steps
δt and tracing out the light field. The Hamiltonian gov-
erning the light-matter interaction for two ensembles in
a magnetic field as shown in Fig. 1 can be written in the
form [50]

H ∝
∫

∆ωls

dk
(
Aa†k +A†ak

)
+

∫
∆ωus

dk
(
Ba†k +B†ak

)
,

where ak is the creation operator for a photon with wave
vector k and the integrals cover narrow bandwidths ∆ωls

and ∆ωus centered around the lower and upper sideband
respectively. The atomic operatorsA andB [51] are given
by

A = µJ−I − νJ
−
II , (6)

B = µJ+
II − νJ

+
I ,

where J+ = Jy − iJz and J− = Jy + iJz. We assume
Markov dynamics, which is well justified for optical fre-
quencies such that a master equation of Lindblad form is
obtained after tracing out the photonic modes

d

dt
ρ = d

Γ

2

(
AρA† −A†Aρ+BρB† −B†Bρ+H.C.

)
+ Lnoiseρ,

where ρ is the reduced atomic density operator, d is the
resonant optical depth of one ensemble and Γ is the ef-
fective single particle decay rate. The first term on the
right describes the ideal case, while the second one ac-
counts for noise processes. The master equation can also
be derived starting from the input-output relations (5)
introduced above by identifying γs = dΓ [52]. In the
ideal case (Lnoiseρ = 0), the steady state of the dissipa-
tive evolution is given by ρEPR = |ΨEPR〉〈ΨEPR| with

A|ΨEPR〉 = B|ΨEPR〉 = 0.



6

Since the jump operators A and B are nonlocal (see
Eq. (6)), the steady state |ΨEPR〉 corresponds to an EPR-
entangled state where the collective spins in ŷ and ẑ direc-
tion are strongly correlated, such that var(JyI − JyII) +
var(JzI − JzII) < |〈JxI〉|+ |〈JxII〉| [53].

It can be shown that this steady state is unique for
|µ| 6= |ν| [46] (in the QND case no unique steady state
exists). This way, the desired state is reached indepen-
dently of the initial state. The initialization of the sys-
tem in a well defined fiducial state, which is typically
considered a critical issue [54], is therefore rendered un-
necessary. Moreover, the resulting state is stabilized by
the dissipative dynamics and can be maintained, in prin-
ciple, for arbitrary long times. Using these ideas, it is
therefore possible to overcome important restrictions set
by the limited coherence times of quantum systems.

III. EXPERIMENTS BASED ON FARADAY
INTERACTION BEYOND QND

In this section a series of experiments based on the
described theory are presented. In all realizations con-
sidered here, two ensembles of Cesium atoms at room
temperature are coupled to light in a controlled fash-
ion. This setup proves to be a versatile tool to realize
many different experiments on the quantum level [16],
including quantum communication protocols [17] as well
as metrology on the quantum sensitivity level [18].

The basic setup is sketched in Fig. 3. The two ensem-
bles are prepared in oppositely oriented coherent spin
states (CSS). This is achieved by optically pumping the
atoms of the ensembles in mF = ±4 in the x̂-direction
respectively. The atoms are situated in a magnetic field
B which leads to a splitting of the magnetic sublevels
by Ω. The circularly polarized pump lasers are depicted
in green and the inset of Fig. 3 shows the atomic level
structure, indicating laser frequencies and polarization.
The strong probe beam which is initially polarized in
ŷ-direction transverses the atoms in the ẑ-direction. Be-
hind the cells the detection system is set up. The light
observable of interest is the Stokes operator S2 ∝ xL
which can be measured with polarization homodyning
techniques. The signal from the detectors is analyzed
at the Larmor frequency Ω since we are interested in
the spins in the rotating frame. Additionally the mea-
surement outcome can be weighted with suitable mode-
functions f(t) to achieve an optimal signal. In the fol-
lowing three different experiments realized in the setup
are described.

A. Entanglement generated by dissipation and
steady state entanglement of two macroscopic

objects

The input-output-relations (5) arising from the non-
QND model for the scenario sketched in Fig. 3 reveal

FIG. 3: Experimental setup. The inset shows the atomic
level scheme in x̂-quantization. The relevant laser frequencies
and polarizations are indicated. The dc polarization detec-
tors measure the Faraday rotation angle Θ proportional to
the macroscopic spin Jx. The S2 detector signal processed
by the lock-in amplifier (LA). The evaluated modes xf,cos ∝∫ T

0
cos(Ωt)f(t)S2(t)dt and xf,sin ∝

∫ T
0

sin(Ωt)f(t)S2(t)dt
with the interaction duration T are used to determine the
atomic quantum spin components Jy,z in the rotating frame.
The used mode functions f(t) are mostly exponentially decay-
ing or growing functions. The inset shows the optical pumping
scheme.

interesting possibilities, when evaluated for long interac-
tion times:

xout
−,cos/sin → Zpin

A,cos/sin, pout
−,cos/sin→−

1

Z
xin
A,cos/sin

xout
A,cos/sin → Zpin

+,cos/sin, pA,cos/sin→−
1

Z
xin

+,cos/sin.(7)

The two systems, light and atoms, swap state and
individually get squeezed by the factor Z2 if both
systems start in a minimum uncertainty state. In
[16] the observation of two mode squeezing of light in
pout
−,cos and pout

−,sin is reported. There a noise reduction
of 3dB was achieved. At the same time the equations
predict a reduction in the noise of the atomic operators
pA,cos and pA,sin, indicating a possibility to achieve
entanglement between the two ensembles via this light-
atom interaction. Atomic entanglement is of special
interest as it can in principle be distributed and then
stored until one wishes to use it. However, exactly the
storage represents a major problem in most previously
conducted atomic entanglement experiments. Atomic
entangled states proved to be extremely fragile, whether
they were generated by mapping of squeezed light onto
atoms [55, 56], by measurement [25, 57–61], atomic
interactions [62, 63] or a nonlinear interaction mediated
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by light [64]. The coupling to the environment leads to
decoherence which until now irresistibly was followed
by the disappearance of entanglement after a certain
time. Several proposals have been made, as to how
to use carefully engineered environments to create a
situation where entanglement is reached by dissipation
to overcome this shortcoming [65–69]. More specifically,
dissipatively generated entanglement was proposed for
our system in [46]. This theoretical approach is an
extension of the presented theory, in which spontaneous
emission in the continuum of modes and atomic decay
mechanisms are considered. The understanding gained
this way is that entanglement between the two ensembles
is generated by the interference of different processes in
the two ensembles for which an indistinguishable photon
is emitted into the common mode. The processes in the
forward direction are collectively enhanced and a photon
emitted into for example the upper sideband stands for
an atomic excitation in ensemble one, or an annihilation
in ensemble two.

The pulse sequence for an entanglement generation ex-
periment is shown on top in Fig. 4a. However, when the
experiment was carried through, the proposed uncondi-
tional entanglement generation procedure lead only to
a long entanglement duration of around 15ms, but not
the wanted steady state entanglement. The reason is the
loss of atoms from the atomic two level system of rele-
vance due to decay. To counteract this depopulation, two
pump lasers are added. First a pump laser on resonance
with the F = 4 → F ′ = 4 transition on the D1 line is
added (depicted by the blue lines in the inset of Fig. 3),
for which m = 4 is a dark state. This incoherent pro-
cess leads to an increase in the duration of unconditional
entanglement to ∼ 40ms. In this scenario atoms still un-
dergo transitions to the F = 3 ground state, effectively
reducing the number of atoms participating in the inter-
action. To avoid this depletion, a repump beam is added
(green lines in the inset of Fig. 3). In this experimental
setting (bottom of Fig. 4a), a steady state is achieved af-
ter few ms, but no entanglement can be deduced from the
noise of the collective atomic operators. However, when
a measurement on the light output is added to the pro-
tocol [25], a steady state which is entangled conditioned
on the continuous measurement outcomes of xL arises.
The principle of this procedure is sketched in Fig. 4b. In
[70] such a long time entanglement was measured for up
to an hour, where a 1dB noise reduction was achieved.

B. Quantum memory for entangled two-mode
squeezed states

A quantum memory for light is a key element for the
realization of future quantum information networks. The
basic principle of such a memory protocol is the trans-
fer of the quantum state of light to a storage medium.
Here, this means the canonical quantum variables of light

FIG. 4: (a) Pulse sequence. In the upper sequence a CSS
is prepared by optical pumping after which the atomic state
evolves in the presence of the probe light. Below a pulse
sequence for the experimental realization of a steady state
scenario with high atomic population of the relevant atomic
sublevels is shown. Here, the pump lasers are not com-
pletely turned off but ramped down to optimized strength.(b)
Schematic illustration of entanglement generation in the
steady state and verification. The signal taken at t < T is
given to the verifier as additional information to reduce the
noise of the collective atomic operators. The signal from the
detector D for times t > T is used for verification of entan-
glement. This corresponds to the pulse sequence presented at
the bottom of (a).

are transferred to the corresponding atomic ones. We
know from the input-output equations presented in sec-
tion II C, that if we could achieve the long interaction
time regime, the underlying interaction would swap the
states of the two systems (see Eq. (7)). However, as
this is not possible for our experimental realization due
to decoherence, a trick is applied to achieve the desired
state transfer; the xL0,cos/sin of the outgoing light are
measured and the measured results are fed back to the
atoms via RF magnetic fields: pout

A,cos/sin − g · x
out
+,cos/sin.

Following eq. (5) and assuming a coupling constant

κ =
√

1− e−2γsT · Z = 1 and a feedback gain g which is
also 1, the collective atomic operators are then left as:

P fin
A,cos/sin = −xin

+,cos/sin, (8)

xfin
A,cos/sin =

√
1− 1

Z2
xin
A,cos/sin + pin

+,cos/sin

Clearly the input light state is mapped onto the atoms
with some additional noise coming from the atomic x op-
erators. Compared to a protocol based on a QND inter-
action and feedback, this additional noise is suppressed.
A memory based on a similar protocol was conducted
for coherent states in the setup exceeding the achiev-
able fidelity for any classical memory [23]. The next
obvious step was to map non classical states, like two
mode squeezed light states, in other words states possess-
ing Einstein-Podolsky-Rosen (EPR) entanglement. A
squeezed light source [71] was used to produce displaced
squeezed states, which were mapped onto the atoms. The
setup is shown in Fig. 5 and described briefly in the cap-
tion and in more detail in [17].

The experiment was refined by employing an addi-
tional probe pulse after the preparation of the atomic
CSS to reduce the input noise of xA,cos/sin. The achieved



8

FIG. 5: Two-mode entangled (squeezed) light is generated by
an optical parametric amplifier (OPA). A variable displace-
ment of the state is achieved by injecting a coherent input
into the OPA which is displaced with help of electro-optical
modulators (EOM). The output of the OPA is shaped by a
chopper, and combined on a polarizing beamsplitter with the
local oscillator (LO) beam, such that the squeezed light is
only on during the second probe pulse. A beam shaper and
a telescope create an expanded flat-top intensity profile. The
light is then send to the memory consisting of two oppositely
oriented ensembles and the homodyne detection system. The
detector signal is processed electronically and used as feed-
back onto the spins via RF magnetic field pulses. Below, the
pulse sequence is shown. After preparing the squeezed spins
state, the actual storage takes place, followed by a verification
pulse.

squeezing was approximately −14%. The initial light
state was squeezed by 6dB.

To evaluate the performance of the memory the fidelity
of certain sets of input states was calculated and com-
pared to a classical benchmark also presented in [17]. The
classical benchmark was surpassed for a certain input set
with a square displacement range with a maximum dis-
placement of 3.8 and two possible squeezing phases.

C. Quantum noise limited and
entanglement-assisted magnetometry

Oriented atomic ensembles can be used as a sensor for
magnetic fields. The realization of quantum noise limited
experiments in the presented setup in the past [23, 24]
laid the basis for a high performing atomic magnetometer
presented in [18]. Ultra-sensitive atomic magnetometry is
usually based on the measurement of the polarization ro-
tation of light transmitted through an ensemble of atoms
placed in the magnetic field [73]. For NA atoms, the
magnetic moment (spin) of the optically pumped ensem-
ble has the length Jx = 4NA. A magnetic field along the
y axis causes a rotation of the spin in the x − z plane.

The corresponding displacement of the transversal spin
Jy will be proportional to the strength of the applied
magnetic field and also to the macroscopic spin Jx. Also,
the longer the exposure duration τ to a given magnetic
field, the bigger the caused rotation. However, the de-
coherence time T2 of the transversal spin sets a limit to
the optimal duration τ . The introduced light atom in-
terface can now be utilized to read out the caused spin
rotation. Polarization of light propagating in z-direction
will be changed due to Jz (similar to the Faraday ef-
fect), as can be seen from the input-output equations
where xL ∝ S2 is changed according to pA ∝ Jz. This
measurement is limited by quantum fluctuations (shot
noise) of light and the projection noise (PN) of atoms.
Quantum back-action noise of light onto atoms is avoided
by the antiparallel initialization of the two ensembles
[25]. As shown rigorously in [74], the backaction can-
cellation method applied here is the most general way
of measuring ac fields and forces with the sensitivity be-
yond the Standard Quantum Limit (SQL) which leads to
achieving the Quantum Cramer-Rao bound of sensitivity.
PN originates from the Heisenberg uncertainty relation
var(Jz) · var(Jy) ≥ J2

x/4, and corresponds to the mini-
mal transverse spin noise δJz,y =

√
2NA for uncorrelated

atoms in a CSS [75] where δJz,y is referring to the stan-
dard deviation. Here we are looking at atomic ensembles
in a bias magnetic field with B ≈ 0.9G which causes the
atomic spins in y- and ẑ-direction to precess at the Lar-
mor frequency Ω = 2π 322kHz. A magnetic RF-field with
frequency Ω causes a displacement of the atomic spin as
illustrated in fig. 6c. To optimize the decoherence time
T2, while the RF field is turned on, all laser fields are
turned off. The pulse sequence of relevance is shown on
the left of fig.6b. After the RF field, the displacement
is read out via S2 which is analyzed at the frequency Ω.
The measurements are weighted with suitable exponen-
tially decaying modefunctions which give the best signal
to noise ratio (SNR). In fig.6d a scatter plot of mea-
surement outcomes for a specific realization is shown. In
another setting, for NA = 1.5·1012 and τ = 22ms a sensi-
tivity of 4.2(8) ·10−16Tesla/

√
Hz was achieved approach-

ing the best to-date atomic rf magnetometry sensitivity
[76] obtained with 104 times more atoms.

The achieved performance lies around 30% above the
PN limit. The residual noise sources arise due to the
decay of the spin and from the SN of light - which is
suppressed due to the ”non-QND” type of interaction.

In earlier works [25, 77] it was shown that entangle-
ment between two atomic ensembles can be generated
via a measurement on light that has interacted with both
ensembles [25]. In principle it should be possible to im-
prove the sensitivity by venturing away from the CSS
and towards such two mode squeezed atomic states. The
drawback is that due to the short lifetimes of the squeez-
ing compared to the optimal exposure time, the optimal
setting cannot be improved in such a way. However, it
is possible to improve the measurement performance for
shorter RF-pulses or larger bandwidths. An additional
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FIG. 6: (a) The experimental setup is similar to the usual
settings. A pulse of BRF at the frequency Ω is applied or-
thogonally to the B field, such that the created displacement
in the spin lies in the same direction for both cells. (b) The
pulse sequence for projection noise limited magnetometry is
also similar to previous experiments. The temporal mode
function for the probe is indicated as the dashed black curve.
The pulse sequence to the right shows the scenario including
the temporal modes for entanglement-assisted magnetometry.
(c) Function principle of radio-frequency magnetometer. The
atomic spin J precesses in crossed dc and rf magnetic fields
(the blue dashed spiral). The state of the spin after the rf
pulse (black dashed circle) is measured using a probe beam,
on which the precessing J imposes oscillating polarization ro-
tation. (d) Experimental results. Grey points are the exper-
imental data for for the spin projection on yz plane in the
rotating frame for a series of measurements of the polariza-
tion rotation signal Sout

2 (t) before the BRF is applied. The
blue and the dashed black lines show the standard deviation
of the total noise, and the contribution due to the projection
noise (PN), respectively. The spin precession as illustrated
in (c) is in corresponds to the displacement in the rotating
frame indicated by the dashed blue arrow in (d). Results of
the series of measurements taken with a BRF = 36 fT rf field
applied over 15 ms are shown as pink points. The rf field is
calibrated using a pick-up coil. When the entangling probe
pulse is applied as explained in the text, the grey points and
the pink points become correlated which leads to a reduced
spin noise and improved sensitivity.

probe pulse was used to conditionally squeeze the atomic
input operators prior to the exposure to the RF field. In
[18] it was shown that an increase in the SNR can be seen
for short pulses when an entangling step (see rigth pulse
sequence in Fig. 6) was added.

D. Outlook

One future perspective of the presented setup lies in
engineering miniaturized gas cells with a cross section of
200 × 200µm2 opening up for the possibility of smaller
magnetic field sensors as well as a small fiber integrated
cell network. Moving to new setup designs also gives the

opportunity to decrease the effect of the main limiting
factor of all presented experiments: decoherence. Here,
decoherence arises amongst others from collisions with
the wall, magnetic field instabilities and spontaneous
emission. The resulting decay of the spin, reduces the
achievable degree of entanglement, the mappping-fidelity
and the sensitivity of magnetic field measurements. To
diminish the effect of spontaneous emission, one approach
could be the inclusion of a bad cavity around the next
generation of micro cells. This enhances the collective
effect on the atoms which lays the basis for all presented
experiments without increasing the spontaneous emis-
sion. The effect of wall collisions can presumably be
decreased by working with recently developed coatings
[72]. In alkali-metal vapor cells prepared with such coat-
ings lifetimes of the spin up to one minute have been
observed.

IV. HEISENBERG SCALING IN
ENTANGLEMENT ASSISTED ATOMIC

METROLOGY

Atoms of an ensemble in a spin squeezed state (SSS)

are entangled [78] if (δJz)
2 < |〈J〉|2

NA
⇒ ξ ≡ (δJz)2

|〈J〉|2 NA < 1

where Jz is one of the collective (quasi)-spin components
orthogonal to the mean spin direction and ξ defines the
squeezing parameter. Under this condition the state also
improves the signal-to-noise ratio in atom interferometry,
metrology and sensing [79].

Generation of such SSS fulfilling the above condition
in an ensemble of ∼ 105 atoms via a QND measurement
of Jz. was reported in [61]. The quasi-spin corresponded
to the two clock levels of Cs atoms. Later it was shown
that this SSS improves the precision of an atomic clock
[80]. As discussed in [81], the degree of spin squeezing
scales with the optical depth d = σ0NA/A (with scatter-
ing cross section on resonance σ0, number of atoms NA,
and beam cross sectionA) as ξ = (1/(1+dη)+aη)/(1−η)2

where η is the probability of spontaneous emission caused
by the QND measurement. The first term in paranthesis
describes the Jz noise reduction due to the QND mea-
surement, the second term describes the change in the
Jz component due to the spontaneous emission and the
factor (1 − η) is responsible for the shortening of the
macroscopic spin due to the spontaneous emission. The
constant a depends on the particular level scheme and
details of the QND interaction.

The QND measurement of the clock state population
difference in [61] is realized by detecting the state de-
pendent phase shift of two off-resonant probe laser beams
using a Mach-Zehnder interferometer. One probe P↓ is
coupled to the state |↓〉 ≡ 6S1/2(F = 3,mF = 0), while a
second probe P↑ is coupled to the state |↑〉 ≡ 6S1/2(F =
4,mF = 0) (see Fig. 7B). Cold Cs atoms are loaded into
an optical dipole trap, aligned to overlap with the probe

arm of the MZI, and a CSS
⊗NA

i=1

[
1√
2

(
|↓〉+ |↑〉

)]
i

is pre-
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FIG. 7: Blue points, stars and dashed line: Variances var(φ1),
var(φ2) of the Jz spin noise variance of atoms in a CSS pro-
portional to NA . Dash-dotted line: equivalent CSS projec-
tion noise reduced by the loss of atomic coherence. Red dia-
monds and red line: reduced noise of SSS which asymptoti-
cally approaches a constant level independent of the number
of atoms. Blue fields: optical shot noise (light blue) and de-
tector noise (dark blue). Inset, Atomic level scheme and two
QND probes.

pared. Successive QND measurements on the sample are
performed, after which all atoms are pumped into the
F = 4 level to determine the total atom number NA.
The sequence is repeated several thousand times for var-
ious NA.

The dichomatic QND measurement with cyclic transi-
tions does not add any noise to δJ2

z as elaborated in [81]
which corresponds to a = 0 in the expression for ξ. Hence
the optimal squeezing ξmin ∝ 1/

√
NA is expected for

η = 1
3 , assuming a large resonant optical depth d0 where

NA is the number of atoms. The precision of the deter-
mination of the macroscopic spin direction then scales as
δJz/(J) ∝

√
ξ/NA ∝ (1/NA) which is the Heisenberg

scaling.
Fig. 7 demonstrates approaching the Heisenberg scal-

ing. The atomic spin noise of the SSS becomes indepen-
dent of the NA for large atomic numbers, the feature that
ensures Heisenberg scaling for the precision of the spin
direction δJz/(J).

V. INTERFACE TO SOLIDS

In this last section we will turn to yet another avenue
which is opening up for experiments with room temper-
ature vapors of neutral atoms, and the perspective for
quantum information processing associated to it. This
avenue promises to lead to the integration of the Fara-
day based light matter interface to solid state systems, in
particular to hybrid quantum systems [82] of atomic en-

sembles and micro- or nanomechanical oscillators. The
coupling of the latter systems to light has recently be-
come the focus of the burgeoning field of optomechanics.
Strong light-matter coupling [83] and optical cooling of
mechanical oscillators close to their ground states [83]
have been seen in recent experiments. For recent reviews
on this field see [84].

The physics of an optomechanical system can be under-
stood from the simple picture of a harmonically bound,
moving mirror, which provides one end mirror of a Fabry-
Perot cavity. Small displacements of the mirror from its
equilibrium position will result in phase shifts of the cav-
ity field, i.e. shifts of the phase quadrature pc depending
on the mirror position xm [85]. In turn, the radiation
pressure force will change the mirror momentum, which
amounts to a change of the mechanical momentum pm
depending on the cavity’s amplitude quadrature xc. In a
picture where only linear effects of this mutual changes
are considered, we see that the resulting dynamics can be
described by relations similar to the ones given in Equa-
tions (3) with xA(L), pA(L) being replaced by pc(m), xc(m)

respectively. In the bad cavity limit, where the intracav-
ity field can be adiabatically eliminated from the dynam-
ics this statement will just as well hold true for the me-
chanical quadratures and the quadratures for a propagat-
ing pulse being reflected off the optomechanical system.
This reasoning so far neglects the free oscillatory mo-
tion of the harmonically bound mirror at frequency ωm.
In a regime where the pulse length T is much shorter
than a period 1/ωm this is well justified. The associated
QND measurement of the mechanical displacement has
recently been discussed in detail for a current optome-
chanical setup in [86]. In the other limit where T � 1/ωm
the oscillatory motion has to be taken into account and
the input-output relations for the mechanical system and
the propagating pulse are in fact equivalent to the ones
for an atomic ensemble in a magnetic field causing a Lar-
mor splitting of Ω = ωm interaction with a pulse in QND
fashion, as given in Sec. II C 1.

This analogy lies at the heart of the interface of atomic
ensembles to solids suggested in [87], and will be sum-
marized in the following. It was explained in Sec. II C 1
how the QND interaction between an atomic spin and
light can be realized. We have also seen that placing two
atomic ensembles in magnetic fields will give rise to a
QND interaction of light with EPR-operators associated
to the transverse spin components of the two ensembles,
cf. Equ. (4). The idea of the interface to solids is to
apply this method to a hybrid system consisting of an
atomic ensemble and an optomechanical system. While
the latter necessarily has an effective positive “Larmor”
frequency Ω = ωm > 0, the atomic ensemble can in turn
be used to effectively realize a mechanical oscillator of
negative mass with Larmor frequency Ω = −ωm. For
mechanical oscillators with typical resonance frequencies
of several 100kHz this requires only moderate magentic
field strengths. Overall, when a sufficiently long light
pulse interacts first with an optomechanical system and



11

then with an atomic ensemble tuned to Ω = −ωm and
in QND mode, then the overall input-output relation
is given by Eqns. (4), with xA,cos = (xA + pm)/

√
2,

pA,cos = (pA − xm)/
√

2 and xA,sin = (xA − pm)/
√

2,

pA,sin = (pA + xm)/
√

2 describing now hybrid EPR op-
erators involving the atomic spin quadratures xA, pA and
mechanical position and momentum operators xm, pm. A
homodyne measurement of of light will then project the
hybrid system in an entangled EPR state, which can in
principle serve as a resource for teleportation protocols.

The important point made in the original proposal [87]
was to show that the parameters of these two very dif-
ferent systems – a nanomechanical oscillator and a col-
lective atomic spin – can be matched in such a way that
it becomes possible to establish an interface in the sense
described above. Apart from matching Larmor to me-
chanical resonance frequencies this requires also that the
optomechanical coupling strength can be of similar mag-
nitude than the one of the light atoms interface. We
have seen that in the latter system it is essentially only
the parameter κ which enters the input output relations.
In the optomechanical system the equivalent parameter
turns out to be

κOM = 2kxZPF
√
NphF ,

where k is the wave number, xZPF =
√
~/2mωm the

zero point fluctuation of the mechanical oscillator, Nph
the number of photons and F the cavity finesse of the
optomechanical system. In [87], we demonstrated that
it is possible to have κOM ' κ ' 1 under compatible
experimental conditions.

One major difference of the mechanical system as com-
pared to the atomic spin is of course that the prepara-
tion of the ground state can be achieved very efficiently
in atoms via optical pumping while it is a much more
demanding task on the side of the mechanical oscillator.
While these systems can provide very high quality fac-
tors Q = ωm/γ on the order of 106 (with γ the width
of the mechanical resonance), there is still a rather large
mean occupation n̄ = kBT0/~ωm in thermal equilibrium
at ambient temperature T0, and associated to it a com-
paratively large thermal decoherence rate γn̄. It turns
out that the protocol described above is remarkably re-
silient to the initial thermal occupation of the mechan-
ical oscillator. For an initial thermal occupation n̄ ho-
modyne detection of xoutL0,cos

and xoutL0,sin
will prepare an

EPR squeezed state with reduced EPR variance

∆
(
poutA,cos

)2
+ ∆

(
poutA,sin

)2
=

[
1

1 + n̄
+ 2κ2

]−1

.

An entangled state will be produced if the right hand
side falls below one, which can be achieved for moder-
ate values of κ even for mean initial occupations much
larger than one. This can be understood by noting that –
for large κ – entanglement is here created in a projective
measurement, such that the initial state and its entropy

become irrelevant for a suffiently strong QND measure-
ment. The state thus created opens an EPR channel of
entanglement between optomechanics and atomic spins,
a basis for quantum state transmission or transduction
[88, 89].

Overall, it is remarkable to see that these very dis-
parate systems realize very similar physics in that the
light matter interaction is described by the same equa-
tions. Moreover, also the time scales of the dynamics in
both systems can be comparable and are compatible for
combination and interfacing. Other possible realizations
of such ideas were worked out in [90],[91] and [92]. Note
that micro- and nanomechanical systems can not only
be coupled to atoms, as demonstrated here, but also to
many other systems, such as e.g. spin impurities, electri-
cal (superconducting) circuits etc. [88, 89]. In the long
run we thus expect that these systems can play an im-
portant role as transducers for quantum information in
architectures for quantum information processing.

VI. CONCLUSIONS

We have reviewed the recent developments in the light-
matter interface based on the Faraday interaction of light
with room temperature atomic vapors. These develop-
ments are largely based on an extension of this dynamics
from the well known and established QND interaction
to a regime of more general interaction with a tunable
balance between the components of a passive beam split-
ter and an active down conversion dynamics. The re-
alization of improved magnetometry, quantum memory
for squeezed state and the preparation of steady state
entanglement by dissipative dynamics are all based on
this tunability of the Faraday interaction. We also re-
viewed possible combinations and interfaces of collective
atomic spins with nano- or micromechanical oscillators,
providing a link between atomic and solid state physics
approaches towards quantum information processing.

In the past decade quantum interfaces between neu-
tral room temperature objects and optical photons have
been extensively explored by a number of leading groups.
Quantum state transfer between light and atoms, such
as quantum memory and quantum teleportation, entan-
glement of massive objects, as well as measurements
and sensing beyond standard quantum limits have been
demonstrated. One promising direction for the future de-
velopments in this field is to develop a robust, integrated
and scalable room temperature atom-light interface and
to incorporate it into a hybrid multi-facet quantum net-
work with other relevant quantum systems, such as nano-
mechanical oscillators and electronic circuits. Micro-size
room temperature atomic quantum memories in spin pro-
tecting micro-cells appear to be excellent candidates for
this task. This research thus adds to the highly interdis-
ciplinary effort to enable large scale quantum information
processing, be it for long distance quantum communica-
tion, distributed quantum computation or scalable pho-
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tonic quantum computers.
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P. Zoller, Nature Physics 4, 878 (2008).
[68] F. Verstraete, M.M. Wolf, J.I. Cirac, Nature Physics 5,

633 (2009).
[69] J.T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz,

M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt,
Nature 470, 486 (2011).

[70] H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J.
M. Petersen, J. I. Cirac, E. S. Polzik, Phys. Rev. Lett.
107, 080503 (2011).

[71] C. Schori, J.L. Sørensen, E.S. Polzik, Phys. Rev. A 66,
033802 (2002).

[72] M. Balabas, T. Karaulanov, M. Ledbetter, D. Budker,
Phys. Rev. Lett. 105, 070801 (2010).

[73] D. Budker, M. Romalis, Nature Phys. 3, 227 (2007).
[74] M. Tsang, H.M. Wiseman, C.M. Caves, Phys. Rev. Lett.

106, 090401 (2011).
[75] D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore,

D.J. Heinzen, Phys. Rev. A 46, R6797 (1992).
[76] S. Lee, K. Sauer, S. Seltzer, O. Alem, M. Romalis, Appl.

Phys. Lett. 89, 214106 (2006).
[77] J. Sherson, B. Julsgaard, E. Polzik, Advances in Atomic,

Molecular, and Optical Physics 54 (2006).
[78] A. Sørensen, L.M. Duan, J. Cirac, P. Zoller, Nature 409,

63 (2001).
[79] D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore,

D.J. Heinzen, Phys. Rev. A 46, R6797 (1992).
[80] A. Louchet-Chauvet, J.J.R. J. Appel, D. Oblak,

N. Kjaergaard, E.S. Polzik, New J. Phys 12, 065032
(2010).

[81] M. Saffman, D. Oblak, J. Appel, E.S. Polzik, Phys. Rev.
A 79, 023831 (2009).

[82] M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, P. Zoller,
Physica Scripta T137, 014001 (2009).

[83] S. Groblacher, K. Hammerer, M. Vanner, M. Aspelmeyer,
Nature 460, 724 (2009).
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