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Abstract We investigate quantum information processing, transfer and storage in
hybrid systems comprised of diverse blocks integrated on chips. Strong coupling
between superconducting (SC) qubits and ensembles of ultracold atoms or N'V-center
spins is mediated by a microwave transmission-line resonator that interacts near-res-
onantly with the atoms or spins. Such hybrid devices allow us to benefit from the
advantages of each block and compensate for their disadvantages. Specifically, the
SC qubits can rapidly implement quantum logic gates, but are “noisy” (prone to deco-
herence), while collective states of the atomic or spin ensemble are “quiet”(protected
from decoherence) and thus can be employed for storage of quantum information.
To improve the overall performance (fidelity) of such devices we discuss dynamical
control to optimize quantum state-transfer from a “noisy” qubit to the “quiet” storage
ensemble. We propose to maximize the fidelity of transfer and storage in a spec-
trally inhomogeneous spin ensemble, by pre-selecting the optimal spectral portion of
the ensemble. Significant improvements of the overall fidelity of hybrid devices are
expected under realistic conditions. Experimental progress towards the realization of
these schemes is discussed.
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1 Introduction

Each quantum system considered for quantum information processing has its strengths
and weaknesses. Some systems are better suited for processing, others for storage, and
there are those best suited for writing-in/reading-out or transferring quantum infor-
mation. Realistically, to build robust quantum information systems, one will need to
combine different systems to pool their strengths in order to overcome their weak-
nesses. This has prompted the suggestion of hybrid, composite quantum systems [1—
9] that would combine the advantages of their different subsystems. An important
requirement of such hybrids is to faithfully transfer qubits between the subsystems.
Such hybrid quantum devices may be envisioned to integrate very different subsys-
tems, or “blocks” on a single chip. As a general example, but without loss of generality,
we will discuss here systems that are constructed around superconducting qubits. On
a superconducting chip we envision three main components: (1) A quantum-processor
block, (2) a quantum memory block and (3) a quantum “bus” that acts as an interface:

e The envisioned quantum-processor is based on superconducting qubits [10-12]

that can rapidly and efficiently perform quantum gate operations. Such qubits are
vulnerable to decoherence due to their strong coupling to the environment and the
noise of the external controls.
For the purpose of this paper we can view the superconducting qubit as an artificial
atom with a strong anharmonicity and a very strong coupling to the electromag-
netic field [13]. The anharmonicity of the potential defining the qubit states ensures
that one creates in a single qubit only a single excitation like in a single atom. The
strong coupling to the electromagnetic field allows efficient coupling to the quan-
tum “bus” discussed below

e The quantum-memory block is weakly coupled to the environment and the external

controls, and is robust against decoherence and therefore suitable for implement-
ing a long lived storage of quantum information. This may be a single isolated
system like a trapped ion [14], or a collective qubit encoded in, for example, a spin
ensemble [15].
For the purpose of this paper we concentrate on collective states encoded in spin
ensembles as the memory qubit. These can be very robust and can have coherence
properties similar to a single spin [16,17]. The two systems we consider here are
(1) an atomic physics implementation where the qubit is encoded in the hyper-
fine ground states of (trapped) atoms or molecules [9,18-20]; (2) a solid state
implementation where the qubit is encoded in the electron or nuclear spin states
of nitrogen-vacancy (NV) color centers in diamond [21-24]

e The interface or quantum “bus”, mediates among the different blocks or qubits and

allows therefore coupling to the quantum memory. It should be designed to provide
strong coupling and high-fidelity transfer of qubits to the quantum memory.
Here we consider as the bus a transmission line microwave cavity [25]. Such cav-
ities have very small mode volume (typically < 10~%13), which results in a large
field per photon and consequently in a strong electromagentic interaction allowing
to wire up quantum systems [4]. In addition, the interaction with the different qubits
can quickly switched on and off by, e.g., tuning them in and out of resonance.
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Controlling quantum information processing 1039

Even though the mode volume of chip-based microwave cavities is very small,
their coupling to the long lived spin states is very weak (typically 100 Hz). This limi-
tation can be overcome by using polar molecules [1-3] or Rydberg atoms [5,6,26,27]
which couple strongly to the cavity field to assist the transfer of quantum information
(QI). Alternatively, we may employ ensembles with N >> 1 spins (atoms),whose ~/N
scaling enhances the coupling to collective states of the ensemble [8,9,28]. Recent
experimental demonstrations of trapping atoms on superconducting atom chips [29—
34], decelerating and trapping of polar molecules on a chip [35], and strong coupling
between spin ensembles and microwave photons in superconducting cavities [36—40]
are important steps towards implementing functional, hybrid quantum devices of this
kind.

Implementations using trapped atoms or molecules on a chip [41] have the advan-
tage that the ensembles are homogeneous, but small and require the large over-
head of cooling and trapping to be implemented in a cryogenic environment at
mK temperatures. On the other hand, implementations using solid-state based spin
ensembles are simpler to prepare and handle at mK temperatures, and will allow
large ensembles with N ~ 10'2 but are prone to inhomogeneous spectral broaden-
ing.

This broadening can both reduce the fidelity of the QI transfer and limit its coherent
storage time [42—44]. Although spin-echo methods [45] can in principle prolong the
storage time, they are restricted by the requirement to be faster than the inverse spectral
width of the spin ensemble [46,47]. In addition, these methods cannot compensate for
the fidelity loss during the QI transfer/retrieval.

In this work we discuss possible avenues for realizing such integrated hybrid quan-
tum devices. QI transfer between the cavity and the ensemble-based quantum memory
is typically the main experimental bottleneck. The coupling between the processing
(superconducting) qubit and the cavity is, by contrast, very strong and can be quickly
switched on and off at will [25,48-51].

It is interesting to note that at present, high-Q cavities are the best media for quan-
tum-state storage (see, for example, Ref. [52]). Hence, the quality benchmark of inte-
grated hybrid devices should be such that as to allow longer or higher-fidelity storage
than such cavities. We discuss the prospects for achieving this benchmark.

The paper is organized as follows: We first give an overview of the superconducting
qubit—cavity coupling, Sect. 2, and then concentrate on the coupling and transfer to
the quantum memory, Sects. 3—6. We discuss how the fidelity of this transfer, and
of the entire hybrid QI device, can be significantly improved by combining several
methods of dynamical control: (i) In Sect. 3 we examine a strategy for maximizing
the average fidelity of quantum state-transfer in such hybrids, from a noisy subspace
(fragile under decoherence), used for QI writing / reading, to a quiet (robust) subspace,
used for memory / storage, by choosing an appropriate dynamical control field. (ii)
In Sect. 4 we analyze the effect ‘of optimal spectral filtering of the inhomogeneous
atomic or spin ensemble on the total fidelity of transfer, memory and retrieval. In
Sects. 5 and 6 we then discuss these strategies in the context of three different imple-
mentations, and point out in Sect. 7 ways to achieve the quality benchmark discussed
above.
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2 Superconducting qubit—cavity coupling

To have in mind a concrete scenario, we consider a solid state qubit that is represented
by a SC Cooper pair box coupled to a SC electrode via two tunnel junctions at the
rate E; (charge qubit) in the SQUID configuration [12]. At the charge degeneracy
point, the energy separation w19 = 2E; cos(r ®/D() between the qubit states |0)
and |1) can be dynamically controlled via an external magnetic field B, that induces
flux & = AB through the SQUID area A (®g = hc/2e is the flux quantum). Typical
values for E; /1 are the microwave range (10-20 GHz). The dipole moment gy for the
transition |0) <> |1) is typically very large, po1 =~ 10* age. Thus, many fast quantum
logic gates can be implemented within the qubit dephasing time 1/y, 2 1 us [53].

Charge qubits can be embedded in near-resonant SC transmission line resonators,
such as a coplanar waveguide (CPW) cavity of Fig. 1a [4,25,48-50], having a high
quality factor Q up to 10°. The tight confinement of the cavity field in a small volume
(see below) yields very large field per photon ¢, and strong coupling (vacuum Rabi
frequency) nge = (p01/h)ecu(r) ~ 2w x 50 MHz between the cavity field and the
qubit located at position r near the field antinode where the cavity mode function
u(r) < 1. In the frame rotating with the cavity field frequency w,, the Hamiltonian
has the form

Hye = h83c66~ — hing (6¢+¢767), M

where 8, = w10 — w, is the externally controlled (via B ) detuning, 6~ (61)is the
qubit lowering (rising) operator, and ¢ (¢") is the cavity photon annihilation (creation)
operator.

One can incorporate many SC qubits in the same CPW cavity, each qubit located
near the cavity field antinode (Fig. 1a). The cavity can then mediate long-range con-
trolled interactions between pairs of resonant qubits [25,48-50,4], realizing, e.g.,
the two-qubit /SWAP gate, which together with the single qubit rotations form the
universal set of logic gates in such a quantum computer. However, due to rapid dephas-
ing and relaxation, neither SC qubits nor the cavity mode can carry out reliable long
term storage of QI. In what follows, we show that this task can be accomplished by
dynamical control of the QI transfer to the quantum memory ensemble positioned

(b)
1> s>
Aac
N
,,,,,,,, MNac
Age
10> 18>

Fig.1 aCPW cavity with strip-line length L and electrode distance w. SC qubits are placed at the antinodes
of the standing wave field and ensembles of ultracold atoms or NV centers are placed near the CPW surface.
b SC qubit (left) and ensemble qubit (right) can couple to a common mode of the CPW cavity
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near or at the surface of an integrated chip that incorporates the CPW cavity and SC
qubits.

As we will show in Sect. 6, to achieve high fidelity gates using CPW interface it
is crucial to suppress the cavity temperature corresponding to less than 0.01 thermal
photons.

3 Optimized transfer by dynamical control

We use dynamical control to optimize a reliable transfer of a quantum state from the
fragile (noisy) SC qubit to the robust (quiet) memory qubit via the cavity. We choose to
focus on the case of rwo resonant qubits with temporally controlled coupling strength
as an example, since it is simple enough to be solvable analytically yet still holds
surprising results. However, the same method can be numerically applied to more
complex systems. Our goal here is to devise the best solution when the transfer is
limited by the homogeneous broadening (decoherence) of the SC qubit and the cav-
ity, rather than by the inhomogeneous broadening of the memory (to be discussed in
Sect. 4).
The free Hamiltonian of a system of two qubits with controlled coupling is

H(t) =Hs(t) + H + Hpg
~ wo (. ~
As(t) =5 (610 +612) + Heto, (22)

H.(t) =V()eV @62,

Here Hp is the Hamiltonian for the environment (bath), H; is the coupling operator
between the system and the environment and ﬁc (1) is the Hamiltonian (or effective
Hamiltonian in some cases) for the controlled interaction between the qubits, V (¢),
describing the adjustable amplitude of the interaction (see Fig. 2 for examples of how
such adjustable coupling amplitudes can be achieved in practice). Since our goal is to
study a system with decoherence only in the noisy qubit 1, the system-bath interaction
Hamiltonian Hj is taken to be

A=5eb=5s"gh (2b)

where B is a bath operator. There is no restriction on the choice of either B or Hp.
This model represents a single noise source of proper dephasing in the source qubit 1
due to the bath operator B, whereas the target qubit 2 is robust against decoherence.
This model can be generalized to any degree of asymmetry between the decoherence
properties of the two qubits.

The accumulated phase

t
¢ (1) =/V(t/)dt' 3
0
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(a) (b)

|e2) A(t) \ Je2)
j [ =

lex)

lg1) lg2)

e AN /

Fig. 2 Schemes of dynamically controllable coupling between “noisy” source qubit 1 and quiet target
qubit 2: a 2-photon transfer off-resonantly through |i) gives effective (7)3 ® a)% coupling with a controllable
strength V(1) = %, where €2 (¢) is the Rabi frequency of an external laser field. This allows for a smooth
control, but limits the coupling to V (1) < «/10. b Controlled detuning of the source qubit from the target
qubit A(z). This is limited to an “on/oft” control, but allows a coupling of up to V() = «k, where « is the

natural (non-controlled) coupling between the qubits

is our control function. In the ideal case, without decoherence or leakage, the state
transfer from qubit 1 to qubit 2 can be perfectly realized if at the final time, # 7, the
phase ¢ (¢) satisfies ¢ (1) = %, whence any initial state of qubit 1 is mapped onto that
of qubit 2 (initially in the ground state)

(alg1) + Ble1)) lg2) — lg1) (alg2) —iBle2)) , 4

for any normalized «, 8. Here the states |g1) (|g2)) and |e1) (Jez)) are respectively the
ground and the excited states of the source qubit 1 and the target qubit 2.

There are two conflicting noise (error) considerations for the transfer, each affecting
a different subsystem: (i) In the presence of interaction between the source qubit 1
and the bath, the longer the information stays in qubit 1 the lower the fidelity of the
transfer. (ii) On the other hand, if we make the transfer extremely fast, it may result
in population from |g1) |g2) leaking into |e;) |e2), thus lowering the fidelity of trans-
fer. Such leakage [54—60] signifies the violation of the rotating wave approximation
(RWA). Namely, fast modulation V (¢#) may incur unwanted, off-resonant, transitions
if the transfer rate is comparable to the energy difference (level distance) of the qubits,
).

We here focus on bath-related errors (i), assuming that the RWA is valid, i.e., there
is no leakage because of the RWA violation. This may be the case if the transfer time
is much slower than the energy separation wg. The control Hamiltonian H,(¢) then
has the RWA form [61-65]:

He(t) =V(OHe; He = leiga)(giea] + lgiea){ergal )

The average fidelity of the transfer has an involved dependence on the modulation
V(t) and the transfer time ¢ . The problem at hand is to find the optimal transfer that
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Controlling quantum information processing 1043

minimizes the average error at time 77, 1 — F(ty), F being the fidelity averaged over
all possible initial states of qubit 1, with equal distribution over the Bloch sphere.

Obviously, zero error is obtainable for infinitely fast (zero-time) transfer, if we
allow infinitely strong control field. Since this is unphysical, we add a constraint on
the total energy E of the field that causes the transfer process

Iy tr

2
/dt(V(t))2 = /dt (d‘flit)) =E. (6)
0 0

Although other constraints may be considered, this constraint is both simple and phys-
ical: if we use the scheme described in Fig. 2a the energy constraint translates to a limit
on the average laser intensity. In addition, using this constraint can prevent leakage
to levels out of the operational qubit subspace [54—60]. The constraint defines the

minimum possible time for the transfer 7y, = %. Choosing an exact value of the
energy might seem arbitrary since one usually has some freedom as to the amount of
energy the system can handle. However, the exact value we choose would only matter
if a small change in the energy could result in a large change in the fidelity. Yet, we
have shown numerically and analytically that the error and optimal modulation change
smoothly with the energy constraint and are nearly linear in the characteristic transfer
time E~!. Hence, the chosen energy constraint is simply a typical value allowed for
the process.

Consider in what follows a typical non-Markovian Lorentzian bath spectrum,
i.e., the correlation function ®(¢) of the bath operator B is exponentially decaying
®(t) = Le7I"/% 1, being the correlation (memory) time. One might expect that for
such a 51mple bath the best strategy is the fastest possible transfer under the energy
constraint, i.e. when the modulation is given by V(0 < ¢ < tyin) = 2E /7. Surpris-
ingly, a slower transfer (fy > fmin) under an appropriate modulation ¢ (7) (detailed
below) can improve the average fidelity even for a purely Markovian bath, with neg-
ligible correlation (memory) time f./tmin — 0, and more so for baths with memory
times longer than the transfer time, ¢, 2 #min-

a. Markovian limit— When the bath is memoryless, i.e., Markovian, this improve-
ment is limited, as shown in Fig. 4, to about 12%. By comparing the “best” solution
to the “fastest” one (Fig. 3), one can see the the “best” solution starts off faster and
then slows down, being overtaken by the “fastest” solution only at # &~ 0.9%y,. This
illustrates what we believe to be the source of the Markovian-noise error reduction:
the “best” solution starts off faster, so as to transfer more of the information while it
is still nearly untainted by the bath. Obviously, towards the end it must slow down so
as to comply with the energy constraint, thus resulting in total transfer time ¢ that is
longer than the fastest time #i, for the given energy.

This system is analytically solvable in the Markovian limit, under the assumption
that the effect of the bath is weak during the entire transfer. In the frame rotating with
Hg(t), and using the RWA from Eq. (5), the Lindblad master equation of the system
is [66]
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(a) Markovian bath: t./tmm =0
T ‘ T ‘

<L
[
g — tf = tmin
© — tf = 2.5tmin
0
(b) Non-Markovian bath: t./tmi, = 10
o ‘ T ‘ T ‘ T
[
g — tf = tmin
< ) —— 1y = 1.3tmin (1° plateaux)
/ ty = 3.5tmin (2" plateaux)
! ! !
0 1 2 3

t / tmin

Fig. 3 The transfer phase ¢ (¢) versus ¢/tyiy. The fastest modulation (black, dotted) with the Markovian
optimal modulation (red, solid) and the non-Markovian optimal modulation (green, dashed), in Markovian
(a) and non-Markovian (b) baths. In the Markovian bath the optimal modulation transfer starts off faster
than the “fastest” transfer (when the information is still “fresh”), and slows down subsequently. For the
non-Markovian bath, optimal modulation achieves full transfer (¢ (f) = 7 /2) well within the modulation,
but then “overshoots” (¢ (t) > 7/2), and eventually returns to ¢ (1) = m /2 (Color figure online)

p(t) =y[2S()p1)S(H)—S(HSH)pt)—p(H)S1)S(1)]
S(t) =M ey gr)(e1ga] e et %)

[0 e1g2) = cos plerga) +15in b [g12)]

where ¢ (1) = fol V (t))dt’ is the accumulated action on the system and y = Tr (BBpg)
is the Markovian decoherence rate.

We assume that the effect of the bath is weak and that in the frame rotating with
Hg(t) the density matrix p(z) does not change much during the transfer p(t) = po.
We can then find an expression for the fidelity of the system f(¢) at time ¢ given an

initial state of [Yo) = « |e1g2) + B 1g182), (po = Vo) (Yol ):

t

p(t) = po+ / p@"dt
0

J @) = (ol p(t) [¥o)
~ (Yol po [Yo)
1

+)’/ dt’ (Yol 28(t")poS(1") 1) ®)

0

@ Springer



Controlling quantum information processing 1045

13
—V/ dt' (Yol S)S(") potpoS(t)S (") [¥o)
0

t
— 14 Zy/dt/ (|oz|4 cos* ¢ (1) — |a|? cos? ¢(ﬂ))
0

This is the fidelity for a specific initial state « |e) 4+ B |g). By averaging this result
over the entire Bloch sphere (all initial states) we find the average fidelity:

t
T ~1+2y /dr’(Wcos“ Bt~ laP cos” 91

0
t
/ 1 4 / 1 2 1
=1+2y/dt (gcos (;S(t)—zcos o(t )) )
0

t

=1—y/dt’(; cos* ¢(z)+ sin 2¢ (1 ))
0

We can use the Euler-Lagrange variational method to find an analytical solution for
the optimal modulation phase ¢ (¢), given a Markovian (¢, — 0) bath, at long transfer
times fy — oo. The energy constraint gives

—=—2“ ) 10
/(¢(t)) t:>3¢() o(1) (10)

The error (1 — f(zy)) we wish to minimize can be expressed, for 7y — o0, as:

0 5 4
errorN%/ (sm ¢ )) +2cos (¢(t))) P
0

2 3
(11)
d(error) cos> (¢ (1)) sin(¢ (1))
= 30 (0) 2 (sm(4¢(t)) +8 3 )

With the Euler-Lagrange equation (using —2X/y as Lagrange multiplier), we obtain

E . 2A d(error)

a¢>(r> Ty 800
2A d(error) .

8¢<t>¢’()__7 3¢ (1) 0
2 4
d o d (sin’Qe() | cost((1)
@) —Adt( S ) (12)
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G0 =2 (sin2(2¢(r>) +zcos‘*(qb(r»)
2 3
t
102 1 4 /
o = [ ar[IELD et
0

where we used the condition that ¢(f) —— /2 and zi:(t) ——> 0 to find the
11— 00 11— 00

integration constant.
For A = 1, the Markovian phase ¢37 (x) as a function of the dimensionless argument
x satisfies

dou(x) _ \/ Sin® Qi (1)) o5t (g () a3
dx 2 3

with ¢, (0) = 0. Equation (13) can be solved numerically to determine the shape of
¢y (x) and its energy ey = fooo |¢;w(x)|2dx = 1.038... (where both x and ¢y, are
dimensionless). By rescalling ¢/ (x) we find the general Markovian optimal modu-
lation at infitite time for any energy E, ¢ (t) = qu(%t), with an error (1—fidelity)

of %eﬁ,[ = %1.077 ..., y being the dephasing rate of the source qubit 1. The fastest

modulation with energy E has an error of %%2 = %£1.233.... This means that the
optimal modulation has about 12% less error than the fastest modulation for the same
energy.

This improvement is not large: using this optimal solution will increase the fidelity
from, e.g., 0.9 to 0.912. Yet this is for a Markovian, memoryless, bath, where using
current dynamical decoupling methods [56—60,67—71] no improvement was possible.
For non-Markovian baths that cause the noisy-qubit decoherence the decrease in error
(and hence increase in fidelity) can be much more significant, as shown below.

b. Non-Markovian bath effects— When the memory-time ¢, of the bath is comparable
to or larger than the characteristic transfer time ¢, 2 #min, @ much larger improvement
can be achieved (see Fig. 4). Remarkably, the best solution actually performs a full
transfer, ¢ (1) = /2, well within the modulation time, but rather than stopping at
¢ = m/2 it then “overshoots” the transfer, so that ¢ () > /2, and then returns
slowly to 7t /2 (see Fig. 3). This can explain the source of the noise reduction—when
“overshooting”, the information partially returns from the target (storage) qubit to
the source (noisy) qubit, but with a negative sign. Hence, similarly to the “echo”
method, the noise now operates in the reverse direction, correcting itself, i.e., the non-
Markovian bath effect is undone. This requires transfer times significantly larger
than the minimal transfer time #j,, ranging from 3fyiy to 10fni, or more, yet the
fidelity increases substantially (up to 50% in Fig. 4).

Two kinds of non-Markovian baths may play a role in the noisy SC qubit decoher-
ence: (a) noisy controls with slow drift (memory) time [61-65]; (b) qubit relaxation
in a cavity whose memory time is determined by its Q-factor [72].
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= 0.9 k 7
‘( N N e e e e e e e e e e e e
I 08 7
< L ]

"/E tc/tmin =0
:‘F L N tc/tmin =1 ]
= [ tc/tmin =10 )
0.6 - 7

0.5 : : ‘ :

1 2 3 4 5 6

tf/tmin

Fig. 4 Dependence of the lowest achievable average error (1 — fidelity) (averaged over all possible initial
states of the source qubit) on the transfer time 7y normalized to the error of the fastest transfer (over time
min) at a given transfer energy (Eq. 6). This function is plotted for various bath memory times: (black,
solid) t. = 0 (Markovian);(red, dash) t; = tmin; (green, dash-dot) t = 10tyi,. Even for Markovian
baths (70 < fmin) the best solution is not the fastest one. For non-Markovian baths (fc 2 fmin) two plateaux
(regions of insensitivity to 7 ¢) can be seen. The first plateau is independent of the memory time, and matches
the Markovian plateau. The second plateau is lower the longer the memory of the bath (Color figure online)

4 Optimizing storage and transfer fidelities by spectral filtering of
inhomogeneous spin ensembles

When the coupling of a single spin or atom to the cavity field is weak, we have to
encode a qubitin collective states of an ensemble of spins whose ground state is |Yg) =
lg1, &2, - .., gn) and the fully symmetrized, collective, single-excitation (Dicke) state
is |Yp) = N—1/2 Zj |j), where |j) = [g1, g2,...,¢j,..., gn) denotes a state with
only spin j excited. If all the spins had the same resonant frequency wy, the single-
excitation state would evolve at time t = 7 > 0 to |y (7)) = N~1/2 Zj e~ie0T | j)
and coherence is preserved if the position of the spins stays fixed.

In general spins in a solid state environment have different resonant frequencies w
which results in inhomogeneous broadening. Then, even if the symmetric state |iq)
is prepared at t = 0, it would evolve into |1Z1(r)> = N"1/2 Zj e~iiT | j), while
the ground (or vacuum) state |yo) remains unchanged. We thus define the “storage
fidelity” as the squared overlap at time t of state |y; (7)) with its inhomogeneously-
broadened counterpart:

2

- 2 |1 4
F(r) = (lﬁl(f)ll/fl(f))‘ = ‘N/n(w)e_’(“’_“"’”dw , (14)

where n(w) is the spectral density normalized to the total number of atoms, [n(w)dw =
N.

Our goal is to modify the spectrum n(w) of the atomic (spin) ensemble so as to
maximize the fidelity of transfer, storage and retrieval. To this end, we employ a third
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1
0.8
= L
]
.=
=
= 061
=
V] , : : \
gj H Optimal pulse (approx.) N
> — Optimal pulse (exact)]
= 0.4+ - - - Square pulse —
> ) 4
< ~2
S F Ne-. 1
021 N |
F . R B
O'Af/T 0.6 0.8
0 ~ZT I I

t/t .

Fig. 5 Inset a atomic level scheme. Main panel: Rabi oscillations of a single excitation between the cavity
and the atomic ensemble for the optimal pulse (exact solution: black solid line; approximate analytical
solution: red dotted line), and the square pulse (blue dashed line). Inset b the corresponding /F (t) for
preparation time 7' = 10¢#; (Color figure online)

(auxiliary), long-lived state |x), outside the spin—% space of the ground |g) and excited
le) states used for QI storage (see Fig. 5a). The preparation of the ensemble proceeds
in three steps: (1) Starting with the entire ensemble in the ground state |g), apply an
external pulse of Rabi frequency €2 () exciting the atoms to the state |e). The duration
T of the pulse should be long enough in order to select only the atoms with transition
frequencies w within a desired range of § ~ 2/ T around wq, while the shape of the
pulse €2(#) is designed to optimize the resulting frequency spectrum (see below). (2)
Transfer all those atoms remaining in state |g) to the auxiliary, long lived state |x) by
another strong pulse, using, e.g., an adiabatic sweep across the |g) — |x) transition
[73,74]. (3) Return the atoms selected in stage (i) from |e) to |g) by, e.g., the adiabatic
transfer.

The chosen subensemble is now ready to use. Its spectrum is n(w) P (w — wp), where

. 2
P(w— o) = |(e] Ty e~ Jo HOdE )] (15)

with H(t) = %(a) — wo)o; + Q(t)oy. Equation (15) is the probability for the prepa-
ration pulse with frequency wg and envelope €2(¢) in step 1) to excite an atom (spin)
with resonant frequency w.

If P(w) is much narrower than the initial spectrum of the atoms n(w), we may
replace n(w) — n(wp), obtaining

2

T
/dtQ(t+r)S2(t) , (16)

0

472n% (wp)
Flo)~ = 0
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where N = 2mn(wg) fOT dt Q%(1). Hence, for T > T the fidelity vanishes and one
cannot store the QI for a time longer than the preparation time.

To determine the optimal preparation pulse-shape €2 (¢), we use the Euler-Lagrange
method to maximize the fidelity (Eq. 16) for a specific storage time t, while fixing the
number of atoms N and the preparation time 7.

For v <« T we find

Q(t) = Qosin(wt/T), N = nn(a)o)Q(z)T. (17)
The resulting storage fidelity of the atomic ensemble is given by

(T —t)cos(mwt/T) n sin(wt/T) 2 ~l— w22

F@ = T - 72

(18)

Hence, using the preparation pulse of Eq. (17), the fidelity loss for small times T << T
becomes quadratic in 7, which should be contrasted with linear fidelity loss for the
square preparation pulse (Fig. 5b). This can greatly improve the ensemble coherence
time. We illustrate these results for NV-centers in Sect. 5.2

5 Magnetic coupling of the cavity field to spin ensembles

The magnetic dipole coupling to a microwave field is much weaker than the elec-
tric dipole coupling to optical-fields. Nevertheless one can achieve strong coupling to
collective states of spin ensembles with currently available coplanar waveguide reso-
nators (CPWR) due to their highly localized magnetic field. The high concentration of
field energy near the surface results from a dramatic reduction of the effective volume
Vetr ~ %Alz of the CPWR mode, where [ is the decay length of the field which is of
the order of the gap between the central conductor and the ground wire of the CPWR.
For example, for the 8Rb microwave transition at 6.83 GHz (wavelength A ~ 3 cm)
and a typical decay length [ ~ 3uum one expects an enhancement of the atom-photon
coupling strength of (A/1) ~ 10, 000. A full calculation of the local electromagnetic
field [9] normalized to a single photon results in the field shown in Fig. 6b—d. We
obtain at a distance of 1um above the surface a field of >40 uG for a single photon,
which confirms the simple estimate given above.

Below we will illustrate two different implementations of magnetic coupling to spin
ensembles: (i) trapped ultracold atoms [9] and (ii) electron spins in diamond [36-38].

5.1 Implementation in an atomic ensemble.

Atom chips [75-77] are capable of trapping, positioning and manipulating large
ensembles of ultracold atomic ensembles a few um above a gap [78,79]. The advan-
tage of atoms is that they do not have inhomogeneous broadening. Their disadvantage
is that they are difficult to handle in a mK environment and cannot attain very large
numbers N: their \/N enhancement is currently limited to ~103.
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Fig. 6 a Schematic of the CPWR including a solid-state qubit and a cloud of ultracold atoms trapped above
one of the gaps. b The magnetic field strength of a single photon as a function of lateral distance 1 xm from
the chip surface and ¢ as a function of distance to the chip surface at the gap (full line) and at the central
conductor (dashed line). d Vector plot of the magnetic field in the resonator

We envision [9] placing an ensemble of 10° ultracold 8’Rb atoms with the ground
state hyperfine splitting w,, /2w = 6.83 GHz between [FF = 1) = |g) and |F =
2) = |s) in the near field zone of the superconducting CPW cavity. Currently we are
building up such an experiment [80,81].

Let us choose the frequency of the CPW cavity to be near-resonant with that of the
atomic transition |g) < |s) (Fig. 1b). When the atomic ensemble is near the field
antinode, with the spacial dimension of the cloud being small compared to the mode
wavelength, all the atoms couple symmetrically to the cavity field. The corresponding
Hamiltonian can be expressed as

Hye = 11840878 4+ hnae (578 ¢ + ¢787%), (19)

where 8, = wgg — w, is the detuning and 74 = i (05¢/h)ecu(r) is the coupling rate
between the cavity field and a (single) atom at positionr. Since |F = 1) < |F =2)1is
amagnetic dipole transition, the corresponding matrix element is small, g, >~ %aaoe
with @ = 1/137, which yields n,. ~ 27 x 40 Hz [for u(r) < 1] [9]. The operators
g (") and § (57) annihilate (create) an atom in the corresponding state |g) and |s);
these essentially bosonic operators live in a space of completely symmetrized states
|ng, ng) with n, atoms in state |g) and ny atoms in state |s), while ng +n, = N.
With 10° trapped ultracold 3’Rb atoms and a CPWR with a quality factor Q ~ 10°
one can achieve strong coupling between a microwave photon in the CPWR and a
collective hyperfine qubit state in the atomic ensemble with gefr/2m ~ 40 kHz larger
than the cavity line width of k /2 ~ 7 kHz [9]. This will allow to perform magnetic
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Fig.7 Response of the atom—cavity system as illustrated by its complex impedance Z: a the real part of Z is
related to the spectrum and b the phase of Z directly illustrates the phase shift of the transmitted microwave
radiation. The calculations are for Q= 10, N=10° and N=10° and plotted versus incident field detuning
from the resonance frequency

coupling cavity QED experiments with MW photons and collective state qubits stored
in the atomic ensemble (see Fig. 7).

The most direct approach to state transfer from the SC qubit to the atomic ensem-
ble would be to prepare all the atoms in state |g), the cavity field in vacuum |0.),
and choose the frequencies of the cavity mode and the atomic hyperfine transition
to be the same, 3,, = 0. Then, by tuning the SC qubit frequency to resonance with
the cavity, d;c = 0, during time 7, such that 254,74 = 7, an arbitrary quantum
state |¢¥) = « |0) + B|1) will be transferred from the SC qubit to the CPW cavity
field (cf. Eq. 1). Next, it follows from Eq. (19) that the collective coupling rate of
the cavity field and the atomic ensemble via the transition |ng = N,ng = 0; 1) —
[ng = N —1,n; = 1;0.) is given by ﬁnac ~ 2w x 40 KHz. Thus, during time
Tyg = 7/ (2v/Nnae) ~ 6 us, corresponding to half a Rabi cycle, the cavity photon
will be absorbed by the atoms and we will have achieved our goal. The time T is,
however, comparable to the photon lifetime in the CPW cavity, k = = Q/w, ~ 22 us.
Thus the photon will be lost with probability Pioss ~ kTs¢ ~ 0.27 before being coher-
ently absorbed by the atoms. It is therefore necessary to improve the CPW cavity by
increasing its quality factor Q and thereby decreasing the photon decay rate «.

In an alternative setup, the SC qubit and the atoms are tuned to be resonant with
each other, §,¢,qc > &, but detuned from the cavity mode frequency. For large detuning
8 > ngc, the adiabatic elimination of the cavity mode yields an effective photon decay
rate Keff = /cngc /52, while the corresponding second-order interaction Hamiltonian,

Vq(g) = e (5T 6~ +61575), with negr = NgcNac/8, describes an effective swap of
an excitation between the SC qubit and atomic ensemble with the rate «/ N nefr, medi-

ated by virtual photon exchange in the cavity. Thus the effective coupling is reduced
by a factor of /14, while the decoherence rate caused by the cavity is reduced by

a factor of (8/nqc)2. For § = 105, we then have «/ﬁneff ~ 2w x 4KHz while
Kkett = 2 x 100 Hz, which yields a low probability of photon decay during the exci-
tation swap, Ploss X KeffTT/ (Zﬁ netf) = 0.04.
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Recall, however, that the SC qubit decoherence (dephasing) y, < I MHz is much
larger than /N nesr, hampering the detuned scheme above. In turn, ¥4 1s much smaller
than the coupling 7., hence this decoherence does not pose a problem during the reso-
nant excitation exchange between the SC qubit and CPW cavity. This rapid stage may
therefore be accomplished with high fidelity, as opposed to the much slower stage of
excitation transfer from the cavity to the atoms with weak magnetic dipole transition.

The dynamical control by modulation discussed in Sect. 3 can be used to sup-
press the SC qubit decoherence effects. It should be possible to improve both off- and
on-resonant transfer fidelity, i.e., reduce the error by 50% (Fig. 4).

5.2 Implementation in a NV center ensemble

Magnetic coupling cavity QED can also be implemented using an ensemble of elec-
tron spins in diamond [36-38]. The ground |g), excited |e) and auxiliary |x) states
of the NV color center in diamond correspond, respectively, to the m = 0, m = —1
and m = 1 Zeeman sublevels of the ground electronic (spin-triplet) state of the NV.
The |g) — |e), |x) transition frequencies are around 2.88 GHz. The quantization
axis of the electron spin orientation is given by the orientation in the crystal. A static
magnetic field does not (to first order) change the orientation but can be used to tune
the transition |g) — |e) in and out of resonance with the CPWR mode (see Fig. 8c).
With a magnetic moment of 2. p the resulting coupling is similar to the coupling of
the Rb ground state spins, but the ensemble shows strong inhomogeneous broadening
of a few MHz.

In a typical experimental setup, Fig. 8a [38], a diamond is glued or pressed on top
of the SC resonator chip. By placing the diamond sample at the center of the A/2

a b
(@) ®) 7
2.72
¥
g 271
5 2.7
3 -
< 3.0| fuy g 269
2 | -
->
© 28 LRER 10 21| (dB) —70
o [
8 26
“ 0o 5 10 15 0 5 10 15
B (mT) B (mT)

Fig. 8 a A (001) diamond sample with a high NV center density is placed on top of a SC-CPW res-
onator where the oscillating magnetic field possesses an anti-node. b NV center transition frequencies
lg) = | —1)(lg) — |+ 1)) as a function of an externally applied magnetic field. Since the resonance
frequency of the CPWR is not changed by a magnetic field in the plane of the resonator, a static magnetic
field can be used to tune the NV ensemble into resonance with the cavity. ¢ Measured MW transmission
|S21 12 versus applied magnetic field. A large Rabi splitting of 2 x 8.7 MHz is observed when ensemble and
resonator are brought into resonance, an indication for strong magnetic coupling
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cavity one ensures that a large fraction of the magnetic mode volume is occupied by
spins. A high concentration of NV centers can for example be obtained by irradiating a
high-temperature high-pressure diamond of an initial nitrogen impurity concentration
2100 ppm with neutrons and finally annealing the sample at 900 °C.

An estimation of the coupling strength for N & 10'> NV center spins uniformly
coupled to the same electromagnetic field mode results in v/N7gc/2w ~ 10 MHz.
Figure 8b shows the experimentally observed avoided crossing originating from the
magnetic spin-cavity coupling. In this measurement the cavity transmission is probed
with a vector network analyzer while an external magnetic field is used to tune the
spin ensemble. When both, NV center spins and cavity, have the same frequency, a
large Rabi splitting of 2 x 8.7 MHz is observed.

Apart from coupling to electron spin ensembles, the hyperfine interaction between
the NV centers electron spin and a nuclear spin in a neighboring lattice site can medi-
ate the coupling to a nuclear spin ensemble. A demonstration of the coupling to 13C
nuclear spins in diamond with / = % was shown in [38]. Although strong coupling
was not yet observed, this is a first step towards a nuclear spin memory.

We will now illustrate the results of the optimized filtering discussed in Sect. 4
for the case of the in-homogeneously broadened NV ensembles. The degeneracy of
levels |e) and |x) are lifted by stress in the crystal. The transitions |g) — |e), |x) can
be selectively addressed by the external o4 -polarized microwave fields. We assume
the inhomogeneous spectrum of the ensemble of NV centers has the total width of
A/2x ~ 7 MHz, composed of three partially overlapping Lorentzians of widths
~ 2.6 MHz split by ~ 2.2 MHz due to the hyperfine coupling to the / = 1 nuclear
spin of the '*N atom.

For an ensemble—cavity coupling strength / N 17_2 ~ 2w x 13 MHz, the excita-

tion transfer time is tx = w/(y/ N 71_2) ~ 40 ns. As an example, assume that one

can achieve a CPWR with a quality factor of Q = 10°. The photon lifetime in the
cavity, k! A 55 us, is much longer than the transfer time. This allows a prepa-
ration that reduces the ensemble spectral width A, and the number of active atoms
N, by 5 - 10, almost 4 orders of magnitude, while still keeping the transfer time
ty 2 2.8 us = 0.05¢ 1 « k1, well within the cavity lifetime. The new ensemble,
created by the optimal preparation pulse 2(¢) of 7 = 0.7 ms duration, has the stor-
age fidelity F(t) ~ 1 — (£/0.22 ms)?. This ensemble hardly loses any fidelity during
the transfer. Furthermore, it allows us to store QI for ¢+ >~ 50 us with 95% fidelity,
compared to 3 ns storage with the original ensemble and 2.8 us storage in the cavity.
Hence, we can outperform cavity storage even when Q is high (10°).

By contrast, had we used the square preparation pulse, the new ensemble would
have had a storage fidelity of F(¢) ~ 1 —¢/0.17 ms, which can store QI for r >~ 8.5 us
with 95% fidelity—more than 5 times worse than with the optimal preparation.

6 Atom—cavity electric-dipole coupling via Rydberg states

Very strong atom—cavity field coupling can be achieved at microwave frequencies for
electric-dipole transitions between highly-excited Rydberg states [26,27]. This allows
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Ig>

Fig. 9 a Atomic Rydberg states |i) and |r) and relevant couplings for the excitation transfer from the
CPW cavity to the atomic storage state |s). b Propagation geometry of the corresponding optical fields and
the beam-stop and metallic mirrors on top of the SC electrodes of the CPW cavity

the atoms to be placed much further away from the chip surface, and still achieve strong
collective coupling. We would like to note here that we use the Rydberg states to medi-
ate the coupling between the MW photons and the stored collective spin state of the
atomic ensemble. Since the qubits give single MW photons at a time, we do not have
to employ Rydberg blockade [82] to ensure the writing of single quantum states.

Let us select a pair of Rydberg states |i) and |r) such that the frequency w;;
of transition |i) <> |r) is close to the cavity mode frequency w,, the corresponding
detuning being 8,; = w,; —w.. We envision a level scheme sketched in Fig. 9(a), where
the transition |g) <> |i) is driven by an external optical field with Rabi frequency €2g;
and detuning 6;,. The Hamiltonian reads

Hue = h8igi i 4 1i(8ig + 8,1)7 17
—h(Qi 17§ 4 nae i ¢+ Hee), (20)

where n,. = (ir /h)ecu(r) is the atom-cavity field coupling rate, g;, being the cor-
responding dipole matrix element, while operators i (fT) and 7 (;“L) annihilate (create)
an atom in state |i) and |r), respectively.

We set the detunings as §,; ~ —J;; = 8. Then, given a photon in the cavity, the
external field £2,; and the cavity field induce a two-photon transition from the ground
state |g) to the Rydberg state |r) via non-resonant intermediate Rydberg state |i).
If 6 > nge, \/ﬁ 2, state |i) is never populated, and we obtain an effective interac-
tion Hamiltonian va(? = hineg(FT g ¢ + ¢7gTF), with negr = Qginac/8. Thus, starting
from the initial state of the system |[ng = N, n; s = 0; 1), by pulsing ,; for time
T =1/ (2v/Nefp), the cavity photon will be coherently absorbed and a single atom
from the ensemble will be excited to the Rydberg state |r). Next, another (bichro-
matic) external field with Rabi frequency €2, pulsed for a time 7,; = 7/(2€2,,) can
resonantly transfer the single collective Rydberg excitation of the atomic ensemble to
the storage state |s): this process is described by H,s = —hQ,, §'7 + H.c. At a later
time, when required, the reverse process can add a single photon in the cavity while all
the atoms will end up in state |g). This single photonic excitation can then be quickly
transferred to the SC qubit, as described above.
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In what follows, we survey the relevant experimental parameters. An elongated
trapping volume V, ~ d x d x [, withd ~ 5 pum and / ~ 1 mm, contains N ~ 10°
atoms at density p, ~ 4 x 10'3 cm—3. The atomic lower states |g) and |s) correspond
tothe |F =1, M = —1) and |F = 2, Mr = 1) sublevels of the ground electronic
state 5s1,2 of 87Rb. We choose the Rydberg states |i) = [np1pp, F =2, Mp = —1)
and |r) = |(n + 1)s1y2, F = 1, Mg = 0) with n = 68 the principal quantum num-
ber. The quantum defects for the 51/, and p1,2 Rydberg states of Rb are 6, = 3.131
and §, = 2.6545 [26], with which the corresponding transition frequency is w,; =
27 x 12.2 GHz. Calculation of the relevant transition dipole matrix element involving
the radial and angular parts gives g;, >~ 1520agpe.

With the strip-line length L ~ 1 cm and effective dielectric constant €, ~ 6, the
frequency of the mth standing-wave mode of the cavity is w. = wmc/L /€, (Fig. 1a).
The grounded SC electrodes at distance w =~ 10 wm confine the cavity field within
the effective volume V, = fd3r|u(r)|2 o~ %w2L yielding &, = hw:/2¢pV, 2
0.5 V/m. Taking the full-wavelength (m = 2) linearly polarized cavity mode with
we/2r >~ 12.16 GHz, we estimate [9] that at the position of atomic cloud about
10 um above the CPW surface the mode function u(r) ~ ¢! which yields the vac-
uum Rabi frequency 1, = (9ir/h)ecu(r) >~ 2w x 3.85 MHz and appropriately large
detuning §,; >~ 10n,.

The transition |g) — i) is driven by linearly m-polarized UV field with wave-
length X;¢ ~ 297 nm and detuning 6;, = —&,;. To optimize the transition rate, its Rabi
frequency is chosen as VN Qg > 1g¢, with which the transfer time is 7, > 0.65 us.
The required UV field intensity at the atomic cloud is I,; = 0.46 W ecm ™2, Next,
|r) — [s) is a two-photon transition via non-resonant intermediate state |5pi/2, F' =
2,Mr = 0) = |e). The wavelengths are A,, >~ 474nm (linearly m-polarized field)
and A, =~ 795nm (circularly o_-polarized field). With the corresponding intensi-
ties I, = 440 Wem™2 and I, = 2.25 mW cm™2 and intermediate detuning S5 =
21 x 25 MHz, the two-photon Rabi frequency is 2,3 = 2w x 250 KHz leading to the
transfer time of 7,; > 1 us. Note that 7, and 7, are short compared to the lifetimes
of cavity photon 1/xk ~ 10 us and Rydberg states 1/yg ~ 100 us [26].

Figure 10 shows the results of numerical integration of the master equation [83,84]
for density operator /() whose evolution is governed by Hamiltonians H., Hyc of
(20) and H,; with the addition of the cavity decay and SC qubit dephasing times
as discussed in Sect. 2. As seen, in the case of {i.(0)) = 0, the state transfer is
nearly ideal, with the small final error probability Pey < 0.04 due to relaxation of
the qubit, the cavity field and the atoms. However, in the case of finite temperature,
(nc(0)) = 0.5, during the transfer, as expected, the cavity field and the collective
atomic state occupation numbers (71.) and (i1, ;) exceed unity, and the resulting error
probability P >~ 0.3 is large. Hence, suppressing the cavity temperature is crucial
for achieving high transfer fidelity.

We have perfomed simulations of the dynamics of the SC qubit—cavity transfer pro-
cess with temperature-dependent initial population (12.(0)) of the CPW cavity photon
field, for typical frequencies of few GHz [4,25,48-50]. We characterize the trans-
fer process for a given initial state |v/), of the SC qubit by the conditional fidelity
Fy =Tr(p |Yr){¥rl), where |1 ) denotes the final state stored in the memory for
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Fig.10 Numerical simulations of the three-step excitation transfer from the SC qubit to the ultracold atomic
ensemble. The cavity is taken to have a Q-factor of 106 and the SC qubit is taken to have a dephasing time
of 1/yq 2 1 us. Top panel illustrates the sequence of (7 -)pulses: first the SQ qubit is brought to resonance
with the CPW cavity, by pulsing d4¢(1) = 0 for time 74c; next, the $2,; (7) field is pulsed for time 7g/;
finally, the Q,4(¢) field is pulsed for time 7,¢. Central and lower panels show the dynamics of occupation
numbers for the qubit exited state (6767, the cavity field (i.) = (¢%8) and the collective atomic states
(hy) = (*T#) and (As) = (§75). Initially, the mean thermal photon number is (i (0)) = 0 in the central
panel, and (7i(0)) = 0.5 in the lower panel

an ideal transfer. The mean transfer fidelity F is obtained by averaging Fy over all
possible [y). The dependence of Fy and F on the CPW cavity temperature 7', or
the mean thermal photon number (i) = (e"®/*8T — 1)~1 is shown in Fig. 11.
Below kT /hiw. >~ 0.2, corresponding to (7.} < 0.01, the transfer fidelity is fairly
high, F > 98%, but then it quickly degrades due to the detrimental effect of even a
small number of thermal photons. For the above parameters this critical temperature
is T ~ 0.1 K necessitating cryogenic conditions. Hence the importance of keeping
the cavity temperature very low (see Sect. 2).

7 Conclusions

We have discussed here two general strategies for quantum state-transfer and storage
optimization within hybrid open systems, and their consequences for experimental
implementation on a SC chip.

A: Our analysis of dynamically controlled transfer from a “noisy” qubit to its “quiet”
counterpart, has revealed an intriguing interplay between the ability to avoid bath-
induced errors that profoundly depend on the bath-memory time and the limitations
imposed by leakage out of the operational subspace. Counterintuitively, under no
circumstances is the fastest transfer optimal (for a given transfer energy).

An important issue that merits discussion in this context is that of cavity relax-
ation effects. The situation studied here pertains to qubits where the main source
of decoherence is dephasing noise. Yet, since the noise suppression attained here
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requires longer transfer time than that of the fastest transfer, one may wonder
whether the (competing) cavity relaxation effects may not increase as well. How-
ever, although the total transfer time is increased, the main part of the transfer takes
actually less time than in the fastest case. Hence, a reduction in cavity relaxation may
occur, similar to the dephasing reduction: this is indeed confirmed by our simulation
results.

B: We have proposed a method that alleviates the shortcomings of the spin-ensem-
ble inhomogeneous broadening, assuming that the cavity lifetime is much longer
than the transfer time. This method allows us to optimize the memory, given the
cavity, the spectral density of the ensemble and their mean coupling strength. This
protocol is compatible with dynamical control [61-65], especially with its optimal
version [54,55,85] which can help mitigate the qubit decoherence, while the cav-
ity temperature effects can be partially tolerated [6,28] or suppressed [86]. When
the spin-ensemble temperature is an issue, dynamical initialization may be useful
[87-89].

Three possible experimental implementations of the above methods have been dis-
cussed: (i) magnetic dipole coupling of CPWR to ultracold atom ensembles; (ii) mag-
netic dipole coupling of CPWR to NV-center ensembles; (iii) electric dipole coupling
to Rydberg atom ensembles.

Overall, we have developed a promising approach for realizing efficient quantum
state transfer between superconducting charge qubits and mesoscopic atomic or spin
ensembles coupled to a microwave coplanar waveguide cavity. Our estimates show
that this hybrid system may allow longer and higher-fidelity storage than even a high-Q
cavity.
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