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Abstract The dynamic capacity theorem characterizes the reliable communication rates of a quantum
channel when combined with the noiseless resources of classical communication, quantum communication,
and entanglement. In prior work, we proved the converse part of this theorem by making contact with
many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with
an “ab initio” approach, using only the most basic tools in the quantum information theorist’s toolkit:
the Alicki-Fannes’ inequality, the chain rule for quantum mutual information, elementary properties of
quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the
theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature.
We also demonstrate that the “quantum dynamic capacity formula” characterizes the Pareto optimal
trade-off surface for the full dynamic capacity region. Additivity of this formula simplifies the computation
of the trade-off surface, and we prove that its additivity holds for the quantum Hadamard channels and
the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity
region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure
channel.

PACS 03.67.Hk · 03.67.Pp

1 Introduction

Quantum Shannon theory is the study of the transmission capabilities of a noisy resource when a large
number of independent and identically distributed (IID) copies of the resource are available.1 An im-
portant task in this area of study is to determine how noiseless resources interact with a noisy quantum
channel. That is, we would like to know the reliable communication rates if a sender can use noiseless
resources in addition to a quantum channel to generate other noiseless resources. In prior work, we
have studied one such setting, where a sender and receiver generate or consume classical communication,
quantum communication, and entanglement along with the consumption of a noisy quantum channel [16,
15,17]. The result of these efforts was a characterization of the “dynamic capacity region” of a noisy
quantum channel.2

One of the shortcomings of the characterization of the dynamic capacity region in Refs. [16,15,
17] is that its computation for a general quantum channel requires regularized formulas (which are
over an infinite number of channel uses). Though, later, Brádler et al. demonstrated that the quantum
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1 The first few chapters of Yard’s thesis provide an introductory and accessible overview of the subject [27].
2 “Dynamic” in this context and throughout this paper refers to the fact that a noisy channel is a dynamic resource, as

opposed to a “static” resource such as a shared bipartite state.
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Hadamard channels [18] are a natural class of channels for which the computation of one octant of the
region simplifies [9] because the structure of these channels appears to be “just right” for this to hold.
The proof considers special quadrants of the dynamic capacity region and employs several reductio ad
absurdum arguments to characterize one octant of the full region. The work of Brádler et al. showed that
we can claim a complete understanding of the abilities of an entanglement-assisted quantum Hadamard
channel for the transmission of classical and quantum information.

The aim of the present work is two-fold: 1) to simplify the proof of the converse part of the dynamic
capacity theorem in Ref. [17] and 2) to show that there is one important formula to consider for any
task involving noiseless classical communication, noiseless quantum communication, noiseless entangle-
ment, and many uses of a noisy quantum channel. Our previous proof of the converse in Ref. [17] relies
extensively on prior literature in quantum Shannon theory, perhaps making our ideas inaccessible to an
audience unfamiliar with this increasingly “tangled web.” Here, we apply an “ab initio” approach to the
proof, using only four tools from quantum information theory: the Alicki-Fannes’ inequality [1], the chain
rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data
processing inequality [23]. As such, the proof here should be more accessible to a broader audience and
more streamlined because it is “disentangled” from the complex web that the quantum Shannon theory
literature has become.

We also propose a new formula that characterizes any task involving classical communication, quan-
tum communication, and entanglement in dynamic quantum Shannon theory.3 For this reason, we call
this formula the “quantum dynamic capacity formula.” In particular, additivity of this formula implies a
complete understanding of any task in dynamic quantum Shannon theory involving the three fundamen-
tal noiseless resources. We find a simplified, direct proof that additivity holds for the Hadamard class of
channels and for a quantum erasure channel. The additivity proof for the quantum erasure channel is
different from that of the Hadamard channel—it exploits the particular structure of the quantum erasure
channel.

We structure this work as follows. The next section reviews the minimal tools from quantum informa-
tion theory necessary to understand the rest of the paper. Section 3 outlines the information processing
task considered in this paper, defines what it means for a rate triple to be achievable, and provides a
definition of the dynamic capacity region of a quantum channel. Section 4 states the dynamic capacity
theorem, and Section 5 contains a brief review of the proof of the achievability part of the theorem. The
main protocol for proving this part is the “classically-enhanced father protocol,” whose detailed proof
we gave in Ref. [16]. Section 6 contains the converse proof, where we proceed with the minimal tools
stated above. We then show in Section 7 how the quantum dynamic capacity formula characterizes the
optimization task for computing the Pareto optimal trade-off surface for the dynamic capacity region.
Section 8 proves that the quantum dynamic capacity formula is additive for the Hadamard class of chan-
nels, and in Section 9, we directly compute and plot the region for a qubit dephasing channel, which is a
channel that falls within the Hadamard class. Section 10 then shows that the quantum dynamic capacity
is additive for the quantum erasure channel, and we compute and plot the region for this channel also.
Finally, we conclude with a brief discussion.

2 Definitions and notation

We first establish some definitions and notation that we employ throughout the paper and review a few
important properties of quantum entropy. Let ΦAB denote the maximally entangled state shared between
two parties:

|Φ〉AB ≡ 1√
D

D∑
i=1

|i〉A |i〉B .

An ebit corresponds to the special case where D = 2. Let Φ
MAMB

denote the maximally correlated state
shared between two parties:

Φ
MAMB ≡ 1

D

D∑
i=1

|i〉 〈i|MA ⊗ |i〉 〈i|MB .

3 “Dynamic quantum Shannon theory” refers to the setting in which a sender and a receiver have access to many uses
of a quantum channel connecting them.
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A common randomness bit corresponds to the special case where D = 2.
A completely-positive trace-preserving (CPTP) map NA′→B is the most general map we consider

that maps from a quantum system A′ to another quantum system B [22]. It acts as follows on any density
operator ρ:

NA′→B (ρ) =
∑
k

AkρA
†
k,

where the operators Ak satisfy the condition
∑
k A
†
kAk = I. A quantum channel admits an isometric

extension UA
′→BE
N , which is a unitary embedding into a larger Hilbert space. One recovers the original

channel by taking a partial trace over the “environment” system E.
We consider a three-dimensional capacity region throughout this work (as in Ref. [17]), whose points

(C,Q,E) correspond to rates of classical communication, quantum communication, and entanglement
generation/consumption, respectively. For example, the teleportation protocol consumes two classical
bits and an ebit to generate a noiseless qubit [3]. Thus, we write it as the following rate triple:

(−2, 1,−1) ,

where we indicate consumption of a resource with a negative sign and generation of a resource with a
positive sign. Also, the super-dense coding protocol consumes a noiseless qubit channel and an ebit to
generate two classical bits [6]. It corresponds to the rate triple:

(2,−1,−1) .

Another protocol that we exploit is entanglement distribution. It uses a noiseless qubit channel to estab-
lish a noiseless ebit and corresponds to

(0,−1, 1) .

The entropy H (A)ρ of a density operator ρA on some quantum system A is as follows [22]:

H (A)ρ ≡ −Tr
{
ρA log ρA

}
,

where the logarithm is base two. The entropy can never exceed the logarithm of the dimension of A. The
quantum mutual information I (A;B)σ of a bipartite state σAB is as follows:

I (A;B)σ ≡ H (A)σ +H (B)σ −H (AB)σ .

Observe that the quantum mutual information I (MA;MB) of the state Φ
MAMB

is equal to logD bits,
and the quantum mutual information I (A;B) of the state ΦAB is equal to 2 logD qubits. If one system is
classical, then the quantum mutual information can never be greater than the logarithm of the dimension
of the classical system. If both systems are quantum, then the quantum mutual information can never
be greater than twice the minimum of the logarithms of the dimensions of the two quantum systems.
The quantum mutual information vanishes if the bipartite state σAB is a product state. The conditional
quantum mutual information for three quantum systems A, B, and C is as follows:

I (A;B|C) ≡ H (AC) +H (BC)−H (C)−H (ABC) ,

and is always non-negative due to strong subadditivity [20]. The coherent information I (A〉B)σ of a
state σAB is as follows [23]:

I (A〉B)σ ≡ H (B)σ −H (AB)σ .

Observe that the coherent information I (A〉B) of the state ΦAB is equal to logD qubits. The chain rule
for quantum mutual information gives the following relation for any three quantum systems A, B, and
C:

I (AB;C) = I (B;C) + I (A;C|B) (1)

= I (A;C) + I (B;C|A) .

A classical-quantum state σXABE of the following form plays an important role throughout this
paper:

σXABE ≡
∑
x

pX (x) |x〉 〈x|X ⊗ UA′→BEN (φAA
′

x ),
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where the states φAA
′

x are pure bipartite states and UA
′→BE
N is the isometric extension of some noisy

channel NA′→B . Applying the above chain rule gives the following relation:

I (AX;B)σ = I (X;B)σ + I (A;B|X)σ . (2)

Additionally, one can readily check that the following relation holds for a state of the above form:

I (A〉BX)σ =
1

2
I (A;B|X)σ −

1

2
I (A;E|X)σ . (3)

The Alicki-Fannes’ inequality is a statement of the continuity of coherent information [1], and a simple
variant of it gives continuity of quantum mutual information. First, suppose that two bipartite states
ρAB and σAB are ε-close in trace norm: ∥∥ρAB − σAB∥∥

1
≤ ε.

Then the Alicki-Fannes’ inequality states that their respective coherent informations are close:

|I(A〉B)ρ − I(A〉B)σ| ≤ 4ε log |A|+ 2H2(ε),

where |A| is the dimension of the system A and H2 is the binary entropy function. A simple “tweak” of
the above inequality shows that the quantum mutual informations are close [16]:

|I(A;B)ρ − I(A;B)σ| ≤ 5ε log |A|+ 3H2(ε).

The quantum data processing inequality states that quantum correlations can never increase under
the application of a noisy map [23,22]. There are two important manifestations of it. Suppose that Alice
possesses two quantum systems A and A′ in her lab. She sends A′ through a noisy quantum channel
to Bob and he receives it in some system B. Then the following inequality applies to the coherent
information:

I (A〉A′) ≥ I (A〉B) ,

demonstrating that quantum correlations, as measured by the coherent information, can only decrease
under noisy processing. The following inequality also applies to the quantum mutual information:

I (A;A′) ≥ I (A;B) ,

demonstrating a similar notion for the quantum mutual information. Now suppose that Alice sends A to
Christabelle and she receives it in some system C. Then the following inequality applies as well:

I (A;A′) ≥ I (C;A′) ≥ I (C;B) ,

but a similar inequality does not hold for the coherent information, due to its asymmetry. We make
extensive use of quantum data processing in our proofs.

3 The information processing task

We are interested in the most general protocol that generates classical communication, quantum commu-
nication, and entanglement by consuming many uses of a noisy quantum channel NA′→B and the same
respective resources (see Figure 1). We say that such a protocol is “catalytic” because we are allowing
it to consume the same resources that it generates, though we are keeping track of the net rates of
consumption or generation.

The protocol begins with Alice possessing two classical registers (each labeled by M and of dimension
2nC̄), a quantum register A1 of dimension 2nQ̄ entangled with a reference system R, and another quantum

register TA of dimension 2nẼ that contains her half of the shared entanglement with Bob:

ωMMRA1TATB ≡ ΦMM ⊗ ΦRA1 ⊗ ΦTATB .

She passes one of the classical registers and the registers A1 and TA into a CPTP encoding map
EMA1TA→A′nSALA2 that outputs a quantum register SA of dimension 2nĒ and a quantum register A2 of

dimension 2nQ̃, a classical register L of dimension 2nC̃ , and many quantum systems A′n for input to the
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Fig. 1 (Color online) The most general protocol for generating classical communication, quantum communication, and
entanglement with the help of the same respective resources and many uses of a noisy quantum channel. Alice begins with
her classical register M , her quantum register A1, and her half of the shared entanglement in register TA. She encodes
according to some CPTP map E that outputs a quantum register SA, many registers A′n, a quantum register A2, and
a classical register L. She inputs A′n to many uses of the noisy channel N and transmits A2 over a noiseless quantum
channel and L over a noiseless classical channel. Bob receives the channel outputs Bn, the quantum register A2, and the
classical register L and performs a decoding D that recovers the quantum information and classical message. The decoding
also generates entanglement with system SA. Many protocols are a special case of the above one. For example, the protocol
is entanglement-assisted communication of classical and quantum information [16] if the registers L, SA, SB , and A2 are
null.

channel. The register SA is for creating entanglement with Bob. The state after the encoding map E is
as follows:

ωMA′nSALA2RTB ≡ EMA1TA→A′nSALA2(ωMMRA1TATB ).

She sends the systems A′n through many uses NA′n→Bn of the noisy channel NA′→B , transmits L over
a noiseless classical channel, and transmits A2 over a noiseless quantum channel, producing the following
state:

ωMBnSALA2RTB ≡ NA′n→Bn(ωMA′nSALA2RTB ).

The above state is a state of the form in (15) with A ≡ RTBA2SA and X ≡ML. Bob then applies a map

DBnA2TBL→B1SBM̂ that outputs a quantum system B1, a quantum system SB , and a classical register
M̂ . Let ω′ denote the final state. The following condition holds for a good protocol:∥∥∥∥ΦMM̂ ⊗ ΦRB1 ⊗ ΦSASB − (ω′)

MB1SBM̂SAR

∥∥∥∥
1

≤ ε, (4)

implying that Alice and Bob establish maximal classical correlations in M and M̂ and maximal entangle-
ment between SA and SB . The above condition also implies that the coding scheme preserves the entangle-

ment with the reference systemR. The net rate triple for the protocol is as follows:
(
C̄ − C̃, Q̄− Q̃, Ē − Ẽ

)
.
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The protocol generates a resource if its corresponding rate is positive, and it consumes a resource if its
corresponding rate is negative. Such a protocol defines an (n,C,Q,E, ε) code with

C = C̄ − C̃, (5)

Q = Q̄− Q̃, (6)

E = Ē − Ẽ. (7)

Definition 1 (Achievability) A rate triple (C,Q,E) is achievable if there exists an (n,C,Q,E, ε) code
with error (as defined in (4)) smaller than ε for all ε > 0 and sufficiently large n.

Definition 2 (Dynamic Capacity Region) The dynamic capacity region CCQE (N ) of a noisy quan-

tum channel NA′→B is a three-dimensional region in the (C,Q,E) space defined by the closure of the
set of all achievable rate triples (C,Q,E).

4 The dynamic capacity theorem

The dynamic capacity theorem gives bounds on the reliable communication rates of a noisy quantum
channel when combined with the noiseless resources of classical communication, quantum communica-
tion, and shared entanglement [17]. The theorem applies regardless of whether a protocol consumes the
noiseless resources or generates them.

Theorem 1 (Dynamic Capacity) The dynamic capacity region CCQE(N ) of a quantum channel N is
equal to the following expression:

CCQE(N ) =

∞⋃
k=1

1

k
C(1)

CQE(N⊗k), (8)

where the overbar indicates the closure of a set. The “one-shot” region C(1)
CQE(N ) is the union of the

“one-shot, one-state” regions C(1)
CQE,σ(N ):

C(1)
CQE(N ) ≡

⋃
σ

C(1)
CQE,σ(N ).

The “one-shot, one-state” region C(1)
CQE,σ(N ) is the set of all rates C, Q, and E, such that

C + 2Q ≤ I(AX;B)σ, (9)

Q+ E ≤ I(A〉BX)σ, (10)

C +Q+ E ≤ I(X;B)σ + I(A〉BX)σ. (11)

The above entropic quantities are with respect to a classical-quantum state σXAB where

σXAB ≡
∑
x

p(x) |x〉 〈x|X ⊗NA′→B(φAA
′

x ), (12)

and the states φAA
′

x are pure. It is implicit that one should consider states on A′k instead of A′ when
taking the regularization in (8).

The above theorem is a “multi-letter” capacity theorem because of the regularization in (8). Though,
we show in Sections 8 and 10 that the regularization is not necessary for the Hadamard class of channels
or the quantum erasure channels, respectively. We prove the above theorem in two parts:

1. The direct coding theorem below shows that combining the “classically-enhanced father protocol”
with teleportation, super-dense coding, and entanglement distribution achieves the above region.

2. The converse theorem demonstrates that any coding scheme cannot do better than the regulariza-
tion in (8), in the sense that a scheme with vanishing error should have its rates below the above
amounts. We prove the converse theorem directly in “one fell swoop,” by employing a catalytic,
information-theoretic approach. The converse proof is different from our earlier one [17] because we
employ straightforward information-theoretic arguments instead of making contact with prior quan-
tum Shannon theoretic literature.
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5 Dynamic achievable rate region

The unit resource achievable region is what Alice and Bob can achieve with the protocols entanglement
distribution, teleportation, and super-dense coding [17]. It is the cone of the rate triples corresponding
to these protocols:

{α (0,−1, 1) + β (2,−1,−1) + γ (−2, 1,−1) : α, β, γ ≥ 0} .

We can also write any rate triple (C,Q,E) in the unit resource capacity region with a matrix equation:

CQ
E

 =

 0 2 −2
−1 −1 1
1 −1 −1

αβ
γ

 . (13)

The inverse of the above matrix is as follows:− 1
2 −1 0

0 − 1
2 − 1

2
− 1

2 − 1
2 − 1

2

 ,
and gives the following set of inequalities for the unit resource achievable region:

C + 2Q ≤ 0,

Q+ E ≤ 0,

C +Q+ E ≤ 0,

by inverting the matrix equation in (13) and applying the constraints α, β, γ ≥ 0.

Now, let us include the classically-enhanced father protocol [16]. Ref. [16] proved that we can achieve
the following rate triple by channel coding over a noisy quantum channel NA′→B :

(
I (X;B)σ ,

1

2
I (A;B|X)σ ,−

1

2
I (A;E|X)σ

)
,

for any state σXABE of the form:

σXABE ≡
∑
x

pX (x) |x〉 〈x|X ⊗ UA′→BEN (φAA
′

x ), (14)

where UA
′→BE
N is an isometric extension of the quantum channel NA′→B . Specifically, we showed in

Ref. [16] that one can achieve the above rates with vanishing error in the limit of large blocklength. Thus
the achievable rate region is the following translation of the unit resource achievable region in (13):

CQ
E

 =

 0 2 −2
−1 −1 1
1 −1 −1

αβ
γ

+

 I (X;B)σ
1
2I (A;B|X)σ
− 1

2I (A;E|X)σ

 .
We can now determine bounds on an achievable rate region that employs the above coding strategy. We
apply the inverse of the matrix in (13) to the LHS and RHS. Then using (2), (3), and the constraints
α, β, γ ≥ 0, we obtain the inequalities in (9-11), corresponding exactly to the one-shot, one-state region
in Theorem 1. Taking the union over all possible states σ in (14) and taking the regularization gives the
full dynamic achievable rate region.
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6 Catalytic and information theoretic converse proof

This section begins one of the main contributions of this work. We provide a catalytic, information theo-
retic converse proof of the dynamic capacity region, showing that (8) gives a multi-letter characterization
of it. The catalytic approach means that we are considering the most general protocol that consumes
and generates classical communication, quantum communication, and entanglement in addition to the
uses of the noisy quantum channel. This approach has the advantage that we can prove the converse
theorem in “one fell swoop” rather than considering one octant of the (C,Q,E) space at a time as we did
in Ref. [17]. Additionally, we do not need to make contact with prior work in quantum Shannon theory.
We employ the Alicki-Fannes’ inequality, the chain rule for quantum mutual information, elementary
properties of quantum entropy, and the quantum data processing inequality to prove the converse.

There are some subtleties in our proof for the converse theorem. We prove that the bounds in (9-
11) hold for common randomness generation instead of classical communication because a capacity for
generating common randomness can only be better than that for generating classical communication
(classical communication can generate common randomness). We also consider a protocol that pre-
serves entanglement with a reference system instead of one that generates quantum communication.
Barnum et al. showed that this task is equivalent to the transmission of quantum information [2].

We prove that the converse theorem holds for a state of the following form

σXAB ≡
∑
x

p(x) |x〉 〈x|X ⊗NA′→B(ρAA
′

x ), (15)

where the states ρAA
′

x are mixed, rather than proving it for a state of the form in (14). Then we show in
Section 6.1 that it is not necessary to consider an ensemble of mixed states—i.e., we can do just as well
with an ensemble of pure states, giving the statement of Theorem 1.

We begin by proving the first bound in (9). All system labels are as given in Section 3, and we consider
the most general protocol as outlined in that section. Consider the following chain of inequalities:

n
(
C̄ + 2Q̄

)
= I(M ; M̂)Φ + I (R;B1)Φ

≤ I(M ; M̂)ω′ + I (R;B1)ω′ + nδ′

≤ I (M ;BnA2LTB)ω + I (R;BnA2LTB)ω
≤ I (M ;BnA2LTB)ω + I (R;BnA2LTBM)ω
= I (M ;BnA2LTB)ω + I (R;BnA2LTB |M)ω + I (R;M)ω .

The first equality holds by evaluating the quantum mutual informations on the respective states Φ
MM̂

and ΦRB1 . The first inequality follows from the condition in (4) and an application of the Alicki-Fannes’
inequality where δ′ vanishes as ε → 0. We suppress this term in the rest of the inequalities for conve-
nience. The second inequality follows from quantum data processing, and the third follows from another
application of quantum data processing. The second equality follows by applying the mutual information
chain rule in (1). We continue below:

= I (M ;BnA2LTB)ω + I (R;BnA2LTB |M)ω
= I (M ;BnA2LTB)ω + I (RA2LTB ;Bn|M)ω + I (R;A2LTB |M)ω − I (Bn;A2LTB |M)ω
= I (M ;Bn)ω + I (M ;A2LTB |Bn)ω + I (RA2LTB ;Bn|M)ω + I (R;A2LTB |M)ω − I (Bn;A2LTB |M)ω
= I (RA2LMTB ;Bn)ω + I (M ;A2LTB |Bn)ω + I (R;A2LTB |M)ω − I (Bn;A2LTB |M)ω
≤ I (RA2TBSALM ;Bn)ω + I (M ;A2LTB |Bn)ω + I (R;A2LTB |M)ω − I (Bn;A2LTB |M)ω
= I (AX;Bn)ω + I (M ;A2LTB |Bn)ω + I (R;A2LTB |M)ω − I (Bn;A2LTB |M)ω .

The first equality follows because I (R;M)ω = 0 for this protocol. The second equality follows from
applying the chain rule for quantum mutual information to the term I (R;BnA2LTB |M)ω, and the third
is another application of the chain rule to the term I (M ;BnA2LTB)ω. The fourth equality follows by
combining I (M ;Bn)ω and I (RA2LTB ;Bn|M)ω with the chain rule. The inequality follows from an
application of quantum data processing. The final equality follows from the definitions A ≡ RTBA2SA
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and X ≡ML. We now focus on the term I (M ;A2LTB |Bn)ω + I (R;A2LTB |M)ω − I (Bn;A2LTB |M)ω

and show that it is less than n
(
C̃ + 2Q̃

)
:

I (M ;A2LTB |Bn)ω + I (R;A2LTB |M)ω − I (Bn;A2LTB |M)ω
= I (M ;A2LTBB

n)ω + I (R;A2LTBM)ω − I (Bn;A2LTBM)ω − I (R;M)ω
= I (M ;A2LTBB

n)ω + I (R;A2LTBM)ω − I (Bn;A2LTBM)ω
= H (A2LTBB

n)ω +H (R)ω −H (RA2LTB |M)ω −H (Bn)ω
= H (A2LTBB

n)ω −H (A2LTB |MR)ω −H (Bn)ω
= H (A2LTB |Bn)ω −H (A2LTB |MR)ω .

The first equality follows by applying the chain rule for quantum mutual information. The second equality
follows because I (R;M)ω = 0 for this protocol. The third equality follows by expanding the quantum
mutual informations. The next two inequalities follow from straightforward entropic manipulations and
that H (R)ω = H (R|M)ω for this protocol. We continue below:

= H (A2L|Bn)ω +H (TB |BnA2L)ω −H (TB |MR)ω −H (A2L|TBMR)ω
= H (A2L|Bn)ω +H (TB |BnA2L)ω −H (TB)ω −H (A2L|TBMR)ω
= H (A2L|Bn)ω − I (TB ;BnA2L)ω −H (A2L|TBMR)

≤ H (A2L)ω −H (A2L|TBMR)ω
= I (A2L;TBMR)ω
= I (L;TBMR)ω + I (A2;TBMR|L)ω

≤ n
(
C̃ + 2Q̃

)
.

The first two equalities follow from the chain rule for entropy and the second exploits that H (TB |MR) =
H (TB) for this protocol. The third equality follows from the definition of quantum mutual information.
The inequality follows from subadditivity of entropy and that I (TB ;BnA2L)ω ≥ 0. The fourth equality
follows from the definition of quantum mutual information and the next equality follows from the chain
rule. The final inequality follows because the quantum mutual information I (L;TBMR)ω can never be
larger than the logarithm of the dimension of the classical register L and because the quantum mutual
information I (A2;TBMR|L)ω can never be larger than twice the logarithm of the dimension of the
quantum register A2. Thus the following inequality applies

n
(
C̄ + 2Q̄

)
≤ I (AX;Bn)ω + n

(
C̃ + 2Q̃

)
+ nδ′,

demonstrating that (9) holds for the net rates.
We now prove the second bound in (10). Consider the following chain of inequalities:

n
(
Q̄+ Ē

)
= I (R〉B1)Φ + I (SA〉SB)Φ
= I (RSA〉B1SB)Φ⊗Φ

≤ I (RSA〉B1SB)ω′ + nδ′

≤ I (RSA〉B1SBM)ω′

≤ I (RSA〉BnA2TBLM)ω
= H (BnA2TB |LM)ω −H (RSAB

nA2TB |LM)ω
≤ H (Bn|LM)ω +H (A2|LM)ω +H (TB |LM)ω −H (RSAB

nA2TB |LM)ω

≤ I (RSAA2TB〉BnLM)ω + n
(
Q̃+ Ẽ

)
= I (A〉BnX)ω + n

(
Q̃+ Ẽ

)
.

The first equality follows by evaluating the coherent informations of the respective states ΦRB1 and
ΦSASB . The second equality follows because ΦRB1 ⊗ ΦTATB is a product state. The first inequality
follows from the condition in (4) and an application of the Alicki-Fannes’ inequality with δ′ vanishing
when ε → 0. We suppress the term nδ′ in the following lines. The next two inequalities follow from
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quantum data processing. The third equality follows from the definition of coherent information. The
fourth inequality follows from subadditivity of entropy. The fifth inequality follows from the definition
of coherent information and the fact that the entropy can never be larger than the logarithm of the
dimension of the corresponding system. The final equality follows from the definitions A ≡ RTBA2SA
and X ≡ML. Thus the following inequality applies

n
(
Q̄+ Ē

)
≤ I (A〉BnX) + n

(
Q̃+ Ẽ

)
,

demonstrating that (10) holds for the net rates.
We prove the last bound in (11). Consider the following chain of inequalities:

n
(
C̄ + Q̄+ Ē

)
= I(M ; M̂)Φ + I (RSA〉B1SB)Φ⊗Φ

≤ I(M ; M̂)ω′ + I (RSA〉B1SB)ω′ + nδ′

≤ I(M ;BnA2TBL)ω + I (RSA〉BnA2TBLM)ω
= I (ML;BnA2TB)ω + I (M ;L)ω − I (A2B

nTB ;L)ω
+H (Bn|LM) +H (A2TB |BnLM)ω −H (RSAA2TBB

n|LM)ω
= I (ML;Bn)ω + I (ML;A2TB |Bn)ω + I (M ;L)ω − I (A2B

nTB ;L)ω
+H (A2TB |BnLM)ω + I (RSAA2TB〉BnLM)ω .

The first equality follows from evaluating the mutual information of the state Φ
MM̂

and the coherent
information of the product state ΦRB1 ⊗ ΦSASB . The first inequality follows from the condition in (4)
and an application of the Alicki-Fannes’ inequality with δ′ vanishing when ε → 0. We suppress the
term nδ′ in the following lines. The second inequality follows from quantum data processing. The second
equality follows from applying the chain rule for quantum mutual information to I(M ;BnA2TBL)ω and
by expanding the coherent information I (RSA〉BnA2TBLM)ω. The third equality follows from applying
the chain rule for quantum mutual information to I (ML;BnA2TB)ω and from the definition of coherent
information. We continue below:

= I (ML;Bn)ω + I (RSAA2TB〉BnLM)ω
+ I (ML;A2TB |Bn)ω + I (M ;L)ω − I (A2B

nTB ;L)ω +H (A2TB |BnLM)ω
= I (ML;Bn)ω + I (RSAA2TB〉BnLM)ω

+H (A2TB |Bn)ω + I (M ;L)ω − I (A2B
nTB ;L)ω

≤ I (ML;Bn)ω + I (RSAA2TB〉BnLM)ω + n
(
C̃ + Q̃+ Ẽ

)
= I (X;Bn)ω + I (A〉BnX)ω + n

(
C̃ + Q̃+ Ẽ

)
.

The first equality follows by rearranging terms. The second equality follows by canceling terms. The in-
equality follows from subadditivity of the entropyH (A2TB |Bn)ω, the fact that the entropyH (A2TB |Bn)ω
can never be larger than the logarithm of the dimension of the systems A2TB , that the mutual infor-
mation I (M ;L)ω can never be larger than the logarithm of the dimension of the classical register L,
and because I (A2B

nTB ;L)ω ≥ 0. The last equality follows from the definitions A ≡ RTBA2SA and
X ≡ML. Thus the following inequality holds

n
(
C̄ + Q̄+ Ē

)
≤ I (X;Bn)ω + I (A〉BnX)ω + n

(
C̃ + Q̃+ Ẽ

)
+ nδ′,

demonstrating that the inequality in (11) applies to the net rates. This concludes the catalytic proof of
the converse theorem.

6.1 Pure state ensembles are sufficient

We prove that it is sufficient to consider an ensemble of pure states as in the statement of Theorem 1 rather
than an ensemble of mixed states as in (15) in the proof of our converse theorem. Our argument relies on
a classic trick exploited in quantum Shannon theory [11]. We first determine a spectral decomposition of
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the mixed state ensemble, model the index of the pure states in the decomposition as a classical variable
Y , and then place this classical variable Y in a classical register. It follows that the communication rates
can only improve, and it is sufficient to consider an ensemble of pure states.

Consider that each mixed state in the ensemble in (15) admits a spectral decomposition of the
following form:

ρAA
′

x =
∑
y

p (y|x)ψAA
′

x,y .

We can thus represent the ensemble as follows:

ρXAB ≡
∑
x,y

p(x)p (y|x) |x〉 〈x|X ⊗NA′→B(ψAA
′

x,y ). (16)

The inequalities in (9-11) for the dynamic capacity region involve the mutual information I(AX;B)ρ,
the Holevo information I(X;B)ρ, and the coherent information I(A〉BX)ρ. As we show below, each of
these entropic quantities can only improve in each case if make the variable y be part of the classical
variable. This improvement then implies that it is only necessary to consider pure states in the dynamic
capacity theorem.

Let θXYAB denote an augmented state of the following form:

θXYAB ≡
∑
x

p(x)p (y|x) |x〉 〈x|X ⊗ |y〉 〈y|Y ⊗NA′→B(ψAA
′

x,y ). (17)

This state is actually a state of the form in (12) if we subsume the classical variables X and Y into one
classical variable. The following three inequalities each follow from an application of the quantum data
processing inequality:

I(X;B)ρ = I(X;B)θ ≤ I(XY ;B)θ, (18)

I(AX;B)ρ = I(AX;B)θ ≤ I(AXY ;B)θ (19)

I(A〉BX)ρ = I(A〉BX)θ ≤ I(A〉BXY )θ. (20)

Each of these inequalities proves the desired result for the respective Holevo information, mutual infor-
mation, and coherent information, and it suffices to consider an ensemble of pure states in Theorem 1.

7 The quantum dynamic capacity formula

We introduce the quantum dynamic capacity formula and show how additivity of it implies that the
computation of the Pareto optimal trade-off surface of the capacity region requires just a single channel
use, rather than an infinite number of them (as in regularized formulas). The Pareto optimal trade-off
surface consists of all points in the capacity region that are Pareto optimal, in the sense that it is not
possible to make improvements in one resource without offsetting another resource (these are essentially
the boundary points of the region in our case). We then show how several important capacity formulas
in the quantum Shannon theory literature are special cases of the quantum dynamic capacity formula.

Definition 3 (Quantum Dynamic Capacity Formula) The quantum dynamic capacity formula of
a quantum channel N is as follows:

Dλ,µ (N ) ≡ max
σ

I (AX;B)σ + λI (A〉BX)σ + µ (I (X;B)σ + I (A〉BX)σ) , (21)

where λ, µ ≥ 0.

Definition 4 The regularized quantum dynamic capacity formula is as follows:

Dreg
λ,µ (N ) ≡ lim

n→∞

1

n
Dλ,µ

(
N⊗n

)
.

11



Lemma 1 Suppose the quantum dynamic capacity formula is additive for any two channels N and M:

Dλ,µ (N ⊗M) = Dλ,µ (N ) +Dλ,µ (M) .

Then the regularized quantum dynamic capacity formula for N is equal to the quantum dynamic capacity
formula for N :

Dreg
λ,µ (N ) = Dλ,µ (N ) .

In this sense, the regularized formula “single-letterizes” and it is not necessary to take the limit.

Proof We prove the result using induction on n. The base case for n = 1 is trivial. Suppose the result
holds for n: Dλ,µ(N⊗n) = nDλ,µ(N ). Then the following chain of equalities proves the inductive step:

Dλ,µ(N⊗n+1) = Dλ,µ(N ⊗N⊗n)

= Dλ,µ(N ) +Dλ,µ(N⊗n)

= Dλ,µ(N ) + nDλ,µ(N ).

The first equality follows by expanding the tensor product. The second critical equality follows from the
assumption that the formula is additive. The final equality follows from the induction hypothesis.

Theorem 2 Single-letterization of the quantum dynamic capacity formula implies that the computation
of the Pareto optimal trade-off surface of the quantum dynamic capacity region requires an optimization
over a single channel use.

Proof We employ ideas from Ref. [7] for the proof. We would like to characterize all the points in the
capacity region that are Pareto optimal. Such a task is standard vector optimization in the theory of
Pareto trade-off analysis (see Section 4.7 of Ref. [7]). We can phrase the optimization task as the following
scalarization of the vector optimization task:

max
C,Q,E,p(x),φx

wCC + wQQ+ wEE (22)

subject to

C + 2Q ≤ I(AX;Bn)σ, (23)

Q+ E ≤ I(A〉BnX)σ, (24)

C +Q+ E ≤ I(X;Bn)σ + I(A〉BnX)σ, (25)

where the maximization is over all C, Q, and E and over probability distributions pX (x) and bipartite
states φAA

′n

x . The geometric interpretation of the scalarization task is that we are trying to find a
supporting plane of the dynamic capacity region where the weight vector (wC , wQ, wE) is the normal
vector of the plane and the value of its inner product with (C,Q,E) characterizes the offset of the plane.

The Lagrangian of the above optimization problem is

L
(
C,Q,E, pX (x) , φAA

′n

x , λ1, λ2, λ3

)
≡ wCC + wQQ+ wEE + λ1 (I (AX;Bn)σ − (C + 2Q))

+ λ2 (I (A〉BnX)σ − (Q+ E))

+ λ3 (I (X;Bn)σ + I (A〉BnX)σ − (C +Q+ E)) ,

and the Lagrange dual function g [7] is

g (λ1, λ2, λ3) ≡ sup
C,Q,E,p(x),φAA′nx

L
(
C,Q,E, pX (x) , φAA

′n

x , λ1, λ2, λ3

)
,

12



where λ1, λ2, λ3 ≥ 0. The optimization task simplifies if the Lagrange dual function does. Thus, we
rewrite the Lagrange dual function as follows:

g (λ1, λ2, λ3) = sup
C,Q,E,p(x),φAA′nx

wCC + wQQ+ wEE + λ1 (I (AX;Bn)σ − (C + 2Q))

+ λ2 (I (A〉BnX)σ − (Q+ E))

+ λ3 (I (X;Bn)σ + I (A〉BnX)σ − (C +Q+ E))

= sup
C,Q,E,p(x),φAA′nx

(wC − λ1 − λ3)C + (wQ − 2λ1 − λ2 − λ3)Q+ (wE − λ2 − λ3)E

+ λ1

(
I (AX;Bn)σ +

λ2

λ1
I (A〉BnX)σ +

λ3

λ1
(I (X;Bn)σ + I (A〉BnX)σ)

)
= sup
C,Q,E

(wC − λ1 − λ3)C + (wQ − 2λ1 − λ2 − λ3)Q+ (wE − λ2 − λ3)E

+ λ1

(
max

p(x),φAA′nx

I (AX;Bn)σ +
λ2

λ1
I (A〉BnX)σ +

λ3

λ1
(I (X;Bn)σ + I (A〉BnX)σ)

)
.

The first equality follows by definition. The second equality follows from some algebra, and the last
follows because the Lagrange dual function factors into two separate optimization tasks: one over C, Q,
and E and another that is equivalent to the quantum dynamic capacity formula with λ = λ2/λ1 and
µ = λ3/λ1. Thus, the computation of the Pareto optimal trade-off surface requires just a single use of
the channel if the quantum dynamic capacity formula in (21) single-letterizes.

7.1 Special cases of the quantum dynamic capacity formula

We now show how several capacity formulas of a quantum channel, including the entanglement-assisted
classical capacity [5], the Lloyd-Shor-Devetak (LSD) formula for the quantum capacity [21,25,10], and
the Holevo-Schumacher-Westmoreland (HSW) formula for the classical capacity [14,24] are special cases
of the quantum dynamic capacity formula.

We first give a geometric interpretation of these special cases before proceeding to the proofs. Recall
that the dynamic capacity region has the simple interpretation as a translation of the three-faced unit
resource capacity region along the classically-enhanced father trade-off curve (see Figure 2 for the example
of the region of the dephasing channel). Any particular weight vector (wC , wQ, wE) in (22) gives a set
of parallel planes that slice through the (C,Q,E) space, and the goal of the scalar optimization task is
to find one of these planes that is a supporting plane, intersecting a point (or a set of points) on the
trade-off surface of the dynamic capacity region. We consider three special planes:

1. The first corresponds to the plane containing the vectors of super-dense coding and teleportation.
The normal vector of this plane is (1, 2, 0), and suppose that we set the weight vector in (22) to
be this vector. Then the optimization program finds the set of points on the trade-off surface such
that a plane with this normal vector is a supporting plane for the region. The optimization program
singles out (23), and we can think of this as being equivalent to setting λ2, λ3 = 0 in the Lagrange
dual function. We show below that the optimization program becomes equivalent to finding the
entanglement-assisted capacity [5], in the sense that the quantum dynamic capacity formula becomes
the entanglement-assisted capacity formula.

2. The next plane contains the vectors of teleportation and entanglement distribution. The normal vector
of this plane is (0, 1, 1). Setting the weight vector in (22) to be this vector makes the optimization
program single out (24), and we can think of this as being equivalent to setting λ1, λ3 = 0 in the
Lagrange dual function. We show below that the optimization program becomes equivalent to finding
the quantum capacity [21,25,10], in the sense that the quantum dynamic capacity formula becomes
the LSD formula for the quantum capacity.

3. A third plane contains the vectors of super-dense coding and entanglement distribution. The normal
vector of this plane is (1, 1, 1). Setting the weight vector in (22) to be this vector makes the optimiza-
tion program single out (25), and we can think of this as being equivalent to setting λ1, λ2 = 0 in
the Lagrange dual function. We show below that the optimization becomes equivalent to finding the
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classical capacity [21,25,10], in the sense that the quantum dynamic capacity formula becomes the
HSW formula for the classical capacity.

Corollary 1 The quantum dynamic capacity formula is equivalent to the entanglement-assisted classical
capacity formula when λ, µ = 0, in the sense that

max
σ

I (AX;B) = max
φAA′

I (A;B) .

Proof The inequality maxσ I (AX;B) ≥ maxφAA′ I (A;B) follows because the state σ is of the form in

(14) and we can always choose pX (x) = δx,x0
and φAA

′

x0
to be the state that maximizes I (A;B).

We now show the other inequality maxσ I (AX;B) ≤ maxφAA′ I (A;B). First, consider that the

following chain of equalities holds for any state φABE resulting from the isometric extension of the
channel:

I (A;B) = H (B) +H (A)−H (AB)

= H (B) +H (BE)−H (E)

= H (B) +H (B|E) .

In this way, we see that the mutual information is purely a function of the channel input density operator

TrA

{
φAA

′
}

. Then consider any state σ of the form in (14). The following chain of inequalities holds

I (AX;B)σ = H (A|X)σ +H (B)σ −H (E|X)σ
= H (BE|X)σ +H (B)σ −H (E|X)σ
= H (B|EX)σ +H (B)σ
≤ H (B|E)σ +H (B)σ
≤ max

φAA′
I (A;B) .

The first equality follows by expanding the mutual information. The second equality follows because the
state on ABE is pure when conditioned on X. The third equality follows from the entropy chain rule.
The first inequality follows from strong subadditivity, and the last follows because the state after tracing
out systems X and A is a particular state that arises from the channel and cannot be larger than the
maximum.

Corollary 2 The quantum dynamic capacity formula is equivalent to the LSD quantum capacity formula
in the limit where λ→∞ and µ is fixed, in the sense that

max
σ

I (A〉BX) = max
φAA′

I (A〉B) .

Proof The inequality maxσ I (A〉BX) ≥ maxφAA′ I (A〉B) follows because the state σ is of the form in

(14) and we can always choose pX (x) = δx,x0
and φAA

′

x0
to be the state that maximizes I (A〉B).

The inequality maxσ I (A〉BX) ≤ maxφAA′ I (A〉B) follows because I (A〉BX) =
∑
x pX (x) I (A〉B)φx

and the maximum is always greater than the average.

Corollary 3 The quantum dynamic capacity formula is equivalent to the HSW classical capacity formula
in the limit where µ→∞ and λ is fixed, in the sense that

max
σ

I (A〉BX)σ + I (X;B)σ = max
{pX(x),ψx}

I (X;B) .

The inequality maxσ I (A〉BX)σ + I (X;B)σ ≥ max{pX(x),ψx} I (X;B) follows by choosing σ to be
the pure ensemble that maximizes I (X;B) and noting that I (A〉BX)σ vanishes for a pure ensemble.
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We now prove the inequality maxσ I (A〉BX)σ+I (X;B)σ ≤ max{pX(x),ψx} I (X;B). Consider a state
ωXYBE obtained by performing a von Neumann measurement on the A system of the state σXABE . Then

I (A〉BX)σ + I (X;B)σ = H (B)σ −H (E|X)σ
= H (B)ω −H (E|X)ω
≤ H (B)ω −H (E|XY )ω
= H (B)ω −H (B|XY )ω
= I (XY ;B)ω
≤ max
{pX(x),ψx}

I (X;B) .

The first equality follows by expanding the conditional coherent information and the Holevo information.
The second equality follows because the measured A system is not involved in the entropies. The first
inequality follows because conditioning does not increase entropy. The third equality follows because the
state ω is pure when conditioned on X and Y . The fourth equality follows by definition, and the last
inequality follows for clear reasons.

8 Single-letter dynamic capacity region for the quantum Hadamard channels

Below we show that the regularization in (8) is not necessary if the quantum channel is a Hadamard
channel. This result holds because a Hadamard channel has a special structure. The development of the
proof is similar to that in Ref. [9], but simplified because we obtain the single-letter result more directly.

Theorem 3 The dynamic capacity region CCQE(NH) of a quantum Hadamard channel NH is equal to

its one-shot region C(1)
CQE(NH).

The proof of the above theorem follows in two parts: 1) the below lemma shows the quantum dynamic
capacity formula is additive when one of the channels is Hadamard and 2) the induction argument in
Lemma 1 that proves single-letterization.

Lemma 2 The following additivity relation holds for a Hadamard channel NH and any other channel
N :

Dλ,µ(NH ⊗N ) = Dλ,µ(NH) +Dλ,µ(N ).

Proof We first note that the inequality Dλ,µ(NH⊗N ) ≥ Dλ,µ(NH)+Dλ,µ(N ) holds for any two channels
simply by selecting the state σ in the maximization to be a tensor product of the ones that individually
maximize Dλ,µ(NH) and Dλ,µ(N ).

So we prove that the non-trivial inequality Dλ,µ(NH⊗N ) ≤ Dλ,µ(NH)+Dλ,µ(N ) holds when the first
channel is a Hadamard channel. Since the first channel is Hadamard, it is degradable and its degrading
map has a particular structure: there are maps DB1→Y

1 and DY→E1
2 where Y is a classical register and

such that the degrading map is DY→E1
2 ◦ DB1→Y

1 [9,18]. Suppose the state we are considering to input
to the tensor product channel is

ρXAA
′
1A
′
2 ≡

∑
x

pX (x) |x〉 〈x|X ⊗ φAA
′
1A
′
2

x ,

and this state is the one that maximizes Dλ,µ(NH ⊗N ). Suppose that the output of the first channel is

θXAB1E1A
′
2 ≡ UA

′
1→B1E1

NH (ρXAA
′
1A
′
2),

and the output of the second channel is

ωXAB1E1B2E2 ≡ UA
′
2→B2E2

N (θXAB1E1A
′
2).

Finally, we define the following state as the result of applying the first part of the Hadamard degrading
map (a von Neumann measurement) to ω:

σXYAE1B2E2 ≡ DB1→Y
1 (ωXAB1E1B2E2).
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In particular, the state σ on systems AE1B2E2 is pure when conditioned on X and Y . Then the following
chain of inequalities holds:

Dλ,µ (NH ⊗N ) = I (AX;B1B2)ω + λI (A〉B1B2X)ω + µ (I (X;B1B2)ω + I (A〉B1B2X)ω)

= H (B1B2E1E2|X)ω + λH (B1B2|X)ω + (µ+ 1)H (B1B2)ω − (λ+ µ+ 1)H (E1E2|X)ω
= H (B1E1|X)ω + λH (B1|X)ω + (µ+ 1)H (B1)ω − (λ+ µ+ 1)H (E1|X)ω +

H (B2E2|B1E1X)ω + λH (B2|B1X)ω + (µ+ 1)H (B2|B1)ω − (λ+ µ+ 1)H (E2|E1X)ω
≤ H (B1E1|X)θ + λH (B1|X)θ + (µ+ 1)H (B1)θ − (λ+ µ+ 1)H (E1|X)θ +

H (B2E2|Y X)σ + λH (B2|Y X)σ + (µ+ 1)H (B2)σ − (λ+ µ+ 1)H (E2|Y X)σ
= I (AA′2X;B1)θ + λI (AA′2〉B1X)θ + µ (I (X;B1)θ + I (AA′2〉B1X)θ) +

I (AE1Y X;B2)σ + λI (AE1〉B2Y X)σ + µ (I (Y X;B2)σ + I (AE1〉B2Y X)σ)

≤ Dλ,µ (NH) +Dλ,µ (N ) .

The first equality follows by evaluating the quantum dynamic capacity formula Dλ,µ (NH ⊗N ) on the
state ρ. The next two equalities follow by rearranging entropies and because the state ω on systems
AB1E1B2E2 is pure when conditioned on X. The inequality in the middle is the crucial one and follows
from the Hadamard structure of the channel: we exploit monotonicity of conditional entropy under
quantum operations so that H (B2|B1X)ω ≤ H (B2|Y X)σ and H (E2|Y X)σ ≤ H (E2|E1X)ω. The next
equality follows by rearranging entropies and the final one follows because θ is a state of the form (14)
for the first channel while σ is a state of the form (14) for the second channel.

9 The dynamic capacity region of a dephasing channel

The below theorem shows that the full dynamic capacity region admits a particularly simple form when
the noisy quantum channel is a qubit dephasing channel ∆p where

∆p (ρ) ≡ (1− p) ρ+ p∆ (ρ) ,

∆ (ρ) ≡ 〈0 |ρ| 0〉 |0〉 〈0|+ 〈1 |ρ| 1〉 |1〉 〈1| .

A dephasing channel is an example of a quantum Hadamard channel [9].4 Figure 2 plots this region for
the case of a dephasing channel with dephasing parameter p = 0.2. The proof of the following theorem
exploits the same techniques as in Ref. [9].

Theorem 4 The dynamic capacity region CCQE(∆p) of a dephasing channel with dephasing parameter
p is the set of all C, Q, and E such that

C + 2Q ≤ 1 +H2 (ν)−H2(γ (ν, p)), (26)

Q+ E ≤ H2 (ν)−H2(γ (ν, p)), (27)

C +Q+ E ≤ 1−H2(γ (ν, p)), (28)

where ν ∈ [0, 1/2], H2 is the binary entropy function, and

γ (ν, p) ≡ 1

2
+

1

2

√
1− 16 · p

2

(
1− p

2

)
ν(1− ν).

Proof We first notice that it suffices to consider an ensemble of pure states whose reductions to A′ are
diagonal in the dephasing basis (as in Lemma 11 of Ref. [9]). Next we prove below that it is sufficient to
consider an ensemble of the following form to characterize the boundary points of the region:

1

2
|0〉 〈0|X ⊗ ψAA′0 +

1

2
|1〉 〈1|X ⊗ ψAA′1 , (29)

4 Brádler showed that cloning channels and an Unruh channel are also in the Hadamard class [8].
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Fig. 2 (Color online) A plot of the dynamic capacity region for a qubit dephasing channel with dephasing parameter
p = 0.2. The plot shows that the classically-enhanced father (CEF) trade-off curve lies along the boundary of the dynamic
capacity region. The rest of the region is simply the combination of the CEF points with the unit protocols teleportation
(TP), super-dense coding (SD), and entanglement distribution (ED).

where ψAA
′

0 and ψAA
′

1 are pure states, defined as follows for ν ∈ [0, 1/2]:

TrA

{
ψAA

′

0

}
= ν |0〉 〈0|A

′
+ (1− ν) |1〉 〈1|A

′
, (30)

TrA

{
ψAA

′

1

}
= (1− ν) |0〉 〈0|A

′
+ ν |1〉 〈1|A

′
. (31)

We now prove the above claim. We assume without loss of generality that the dephasing basis is the
computational basis. Consider a classical-quantum state with a finite number N of conditional density
operators φAA

′

x whose reduction to A′ is diagonal:

ρXAA
′ ≡

N−1∑
x=0

pX (x) |x〉〈x|X ⊗ φAA′x .

We can form a new classical-quantum state with double the number of conditional density operators by
“bit-flipping” the original conditional density operators:

σXAA
′ ≡ 1

2

N−1∑
x=0

pX (x)
(
|x〉〈x|X ⊗ φAA′x + |x+N〉〈x+N |X ⊗XA′φAA

′

x XA′
)
,

where X is the σX “bit-flip” Pauli operator. Consider the following chain of inequalities that holds for
all λ, µ ≥ 0:

I (AX;B)ρ + λI (A〉BX)ρ + µ
(
I (X;B)ρ + I (A〉BX)ρ

)
= H (A|X)ρ + (µ+ 1)H (B)ρ + λH (B|X)ρ − (λ+ µ+ 1)H (E|X)ρ

≤ (µ+ 1)H (B)σ +H (A|X)σ + λH (B|X)σ − (λ+ µ+ 1)H (E|X)σ
= (µ+ 1) +H (A|X)σ + λH (B|X)σ − (λ+ µ+ 1)H (E|X)σ

= (µ+ 1) +
∑
x

pX (x)
[
H (A)φx + λH (B)φx − (λ+ µ+ 1)H (E)φx

]
≤ (µ+ 1) + max

x

[
H (A)φx + λH (B)φx − (λ+ µ+ 1)H (E)φx

]
= (µ+ 1) +H (A)φ∗x + λH (B)φ∗x − (λ+ µ+ 1)H (E)φ∗x .
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The first equality follows by standard entropic manipulations. The second equality follows because the
conditional entropy H (B|X) is invariant under a bit-flipping unitary on the input state that commutes
with the channel: H(B)XρBxX = H(B)ρBx . Furthermore, a bit flip on the input state does not change
the eigenvalues for the output of the dephasing channel’s complementary channel: H(E)N c(XρA′x X) =

H(E)N c(ρA′x ). The first inequality follows because entropy is concave, i.e., the local state σB is a mixed ver-

sion of ρB . The third equality follows becauseH(B)σB = H
(∑

x
1
2pX (x) (ρBx +XρBxX)

)
= H

(
1
2

∑
x pX (x) I

)
=

1. The fourth equality follows because the system X is classical. The second inequality follows because the
maximum value of a realization of a random variable is not less than its expectation. The final equality
simply follows by defining φ∗x to be the conditional density operator on systems A, B, and E that arises

from sending through the channel a state whose reduction to A′ is of the form ν |0〉 〈0|A
′
+(1− ν) |1〉 〈1|A

′
.

Thus, an ensemble of the kind in (29) is sufficient to attain a point on the boundary of the region.
Evaluating the entropic quantities in Theorem 1 on a state of the above form then gives the expression

for the region in Theorem 4.

10 Single-letter dynamic capacity region for the quantum erasure channels

Below we show that the regularization in (8) is not necessary if the quantum channel is a quantum erasure
channel. The quantum erasure channel also has a special structure, but the proof proceeds differently
from that for a quantum Hadamard channel.

A quantum erasure channel with erasure parameter ε is the following map [13]:

Nε (ρ) ≡ (1− ε) ρ+ ε |e〉 〈e| .

Notice that the receiver can perform a measurement {|0〉 〈0|+ |1〉 〈1| , |e〉 〈e|} and can learn whether the
channel erased the state. The receiver can do this without disturbing the state in any way. An isometric

extension UA
′→BE
Nε of it acts as follows on a purification |ψ〉AA

′
of the state ρA

′
:

UA
′→BE
Nε |ψ〉AA

′
=
√

1− ε |ψ〉AB |e〉E +
√
ε |ψ〉AE |e〉B .

In the above representation, we see that the erasure channel has the interpretation that it hands the
input to Bob with probability 1− ε while giving an erasure flag |e〉 to Eve, and it hands the input to Eve
with probability ε while giving the erasure flag to Bob.

Theorem 5 The dynamic capacity region CCQE(Nε) of a quantum erasure channel Nε is the set of all
C, Q, and E such that

C + 2Q ≤ (1− ε) (1 +H2 (p)) ,

Q+ E ≤ (1− 2ε)H2 (p) ,

C +Q+ E ≤ 1− ε− εH2 (p) ,

where p ∈ [0, 1/2].

Figure 3 plots the dynamic capacity region of a quantum erasure channel with erasure parameter
ε = 1/4. It turns out that time-sharing is the optimal strategy here, and there is not an interesting
trade-off curve for the quantum erasure channel.

We in fact proved Theorem 5 in Ref. [17] by employing a reductio ad absurdum argument reminiscent
of the earliest arguments for proving capacities of quantum erasure channels [4]. This approach gives the
correct answer, but suffers from two shortcomings:

1. We do not learn much about how to exploit the structure of the quantum erasure channel with the
reductio ad absurdum approach. As an example, Smith and Yard exploited the simple structure of the
quantum erasure channel and discovered far reaching consequences [26]. In particular, they discovered
that the quantum capacity (and for that matter, any future proposed quantum capacity formula) can
never be generally additive, by combining the erasure channel with another one.

2. The reductio ad absurdum argument rests on the assumption that several known capacity formulas
are continuous as a function of channels. Leung and Smith later showed that the known formulas are
indeed continuous [19], redeeming the original argument in Ref. [4].
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Fig. 3 (Color online) A plot of the dynamic capacity region for a qubit erasure channel with erasure parameter ε = 1/4.
The plot shows that the classically-enhanced father (CEF) trade-off curve lies along the boundary of the dynamic capacity
region and it is not actually a curve but rather a line because time-sharing is optimal. The rest of the region is simply the
combination of the CEF points with the unit protocols teleportation (TP), super-dense coding (SD), and entanglement
distribution (ED).

Here, we prove Theorem 5 above by carefully studying the structure of the quantum erasure channel
and its additivity properties for the full dynamic capacity region. We prove the theorem in a few steps.
First, we prove that the classical capacity of the quantum erasure channel admits a single-letter formula.5

We then simplify the quantum dynamic capacity formula in (21) for the case of a quantum erasure channel
and find that it is only necessary to consider certain values of the parameters µ and λ when we optimize.
The proof of Lemma 7 exploits these conditions to show that the quantum dynamic capacity formula is
additive for the case of two quantum erasure channels. It then follows by a trivial induction step (the
same as in Lemma 1) that the full dynamic region single-letterizes and is of the form in Theorem 5.

Lemma 3 (Bennett et al. [4]) The Holevo information of a quantum erasure channel is equal to 1−ε:

χ (Nε) ≡ max
σXB

I (X;B) = 1− ε

Proof We begin with an input ensemble of the following form:

ρXA
′ ≡

∑
x

pX (x) |x〉 〈x|X ⊗ φA′x ,

where the states φA
′

x are pure (it suffices to consider pure state ensembles for classical capacity).
Feeding the A′ system into the quantum erasure channel leads to a classical-quantum state σXB =∑
x pX (x) |x〉 〈x|X ⊗ NA′→B

ε (φA
′

x ). Bob can then measure his system B to learn whether the channel
erases the qubit. Let XE denote a classical register where Bob places the result of the measurement so
that we then have the state σXBXE . It holds that any entropy evaluated on system B is equal to the
joint entropy of B and XE because this measurement does not disturb the state in any way. Consider
the following chain of inequalities:

I (X;B)σ = H (B)σ −H (B|X)σ
= H (BXE)σ −H (BXE |X)σ
= H (B|XE)σ −H (B|XEX)σ
= (1− ε)H (A′)ρ − (1− ε)H (A′|X)ρ

= (1− ε) I (X;A′)ρ

≤ (1− ε) .
5 The proof already appears in Ref. [4], but it again suffers from the aforementioned shortcomings.
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The first equality follows by expanding the mutual information and the second equality follows from
the above fact regarding the joint entropy of B and XE . The third equality follows by expanding and
canceling terms. The fourth equality follows by conditioning on the classical erasure flag register XE and
realizing that the entropy of Bob’s system B is the entropy of the input state with probability 1− ε and
otherwise is the entropy of the erasure state |e〉 (this latter entropy vanishes because this state is pure).
Thus, the above sequence of steps reduces an optimization problem on the output of the channel to a
simple optimization over the input ensemble. The Holevo information is then 1− ε because the quantity
I (X;A′)ρ can never be larger than unity for the case of a qubit erasure channel (it reaches unity for an
ensemble of two orthogonal pure states chosen with equal probability).

Lemma 4 The following additivity lemma holds for a quantum erasure channel Nε:
χ (Nε ⊗Nε) = χ (Nε) + χ (Nε) = 2 (1− ε) .

Proof It suffices to prove the inequality χ (Nε ⊗Nε) ≤ χ (Nε)+χ (Nε) because the other inequality holds
trivially. We define the following ensemble of states for the tensor product channel Nε ⊗Nε:

ρXA
′
1A
′
2 ≡

∑
x

pX (x) |x〉 〈x|X ⊗ φA
′
1A
′
2

x . (32)

We can also define the following augmented ensemble based on the above one:

σXIJA
′
1A
′
2 ≡ 1

16

∑
x,i,j

pX (x) |x〉 〈x|X ⊗ |i〉 〈i|I ⊗ |j〉 〈j|J ⊗ (σ
A′1
i ⊗ σ

A′2
j )φ

A′1A
′
2

x (σ
A′1
i ⊗ σ

A′2
j ), (33)

where σ0 ≡ I, σ1 ≡ σX , σ2 ≡ σY , and σ3 ≡ σZ . In particular, note that we obtain the maximally
mixed state when tracing over classical registers I and J . Let ωXB1B2 and θXIJB1B2 denote the states
obtained by sending systems A′1 and A′2 of the respective states ρXA

′
1A
′
2 and σXIJA

′
1A
′
2 through two

uses of the quantum erasure channel. Let XE,1 and XE,2 denote the classical variables Bob obtains by
determining whether the channel erased his states (they also denote the registers where he places the
results). Consider the following chain of inequalities that holds for any state ωXB1B2 :

I (X;B1B2)ω = H (B1B2)ω −H (B1B2|X)ω
= H (B1B2|XE,1XE ,2)ω −H (B1B2|XE,1XE ,2X)ω

= (1− ε)2
H (A′1A

′
2)ρ + (1− ε) ε

(
H (A′1)ρ +H (A′2)ρ

)
− (1− ε)2

H (A′1A
′
2|X)ρ − (1− ε) ε

(
H (A′1|X)ρ +H (A′2|X)ρ

)
≤ 2 (1− ε)− (1− ε)2

H (A′1A
′
2|XIJ)σ − (1− ε) ε (H (A′1|XIJ)σ +H (A′2|XIJ)σ)

≤ 2 (1− ε) .
The first equality holds by expanding the mutual information. The next equality holds because an
“erasure measurement” does not change entropy. The third equality follows by exploiting the properties
of the erasure channels. The first inequality holds because the unconditional entropies of the A′ systems
on the state ρ are always less than those for the state σ. The final inequality follows because the entropies
in the previous line are non-negative. The statement of the theorem then follows.

Lemma 5 The quantum dynamic capacity formula in (21) simplifies as follows for a quantum erasure
channel Nε:

Dλ,µ (Nε) ≡ max
p∈[0,1/2]

(1− ε) (1 +H2 (p)) + λ (1− 2ε)H2 (p) + µ ((1− ε)− εH2 (p)) . (34)

Thus, the “one-letter” dynamic capacity region of a quantum erasure channel is as Theorem 5 states.

Proof We exploit the following classical-quantum states:

ρXAA
′ ≡

∑
x

pX (x) |x〉 〈x|X ⊗ φAA′x ,

σXIAA
′ ≡

∑
x,i

1

4
pX (x) |x〉 〈x|X ⊗ |i〉 〈i|I ⊗ (σA

′

i )φAA
′

x (σA
′

i ),
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and let ρXABE and σXIABE be the states obtained by transmitting the A′ system through the isometric

extension of the erasure channel. Let σA
′

x ≡TrA

{
φAA

′

x

}
. Furthermore, let the eigenvalues of the state

σA
′

x with highest entropy on system A′ be p and 1− p. Consider that the following chain of inequalities
holds for any state ρXABE :

I (AX;B)ρ + λI (A〉BX)ρ + µ
(
I (X;B)ρ + I (A〉BX)ρ

)
= H (A|X)ρ + (µ+ 1)H (B)ρ + λH (B|X)ρ − (λ+ µ+ 1)H (E|X)ρ

= H (A′|X)ρ + (µ+ 1)H (B|XE)ρ + λH (B|XEX)ρ − (λ+ µ+ 1)H (E|XEX)ρ

= H (A′|X)ρ + (µ+ 1) (1− ε)H (A′)ρ + λ (1− ε)H (A′|X)ρ − (λ+ µ+ 1) εH (A′|X)ρ

≤ (µ+ 1) (1− ε) + (1 + λ (1− ε)− (λ+ µ+ 1) ε)H (A′|XI)σ

= (µ+ 1) (1− ε) + (1− ε+ λ (1− 2ε)− µε)
∑
x

pX (x)H (A′)σx

≤ (µ+ 1) (1− ε) + (1− ε+ λ (1− 2ε)− µε)H (A′)σ∗x
= (1− ε) (1 +H2 (p)) + µ (1− ε− εH2 (p)) + λ (1− 2ε)H2 (p) .

The first equality follows by standard entropic manipulations. The second equality follows by incorpo-
rating the classical erasure flag variable. The third equality follows by exploiting the properties of the
quantum erasure channel. The first inequality follows because the unconditional entropy of the state ρ is
always less than that of the state σ. The next equality follows by expanding the conditional entropy. The
second inequality follows because an average is always less than a maximum. The final equality follows
by plugging in the eigenvalues of σ∗x. The form of the quantum dynamic capacity formula then follows
because this chain of inequalities holds for any input ensemble.

Lemma 6 It suffices to consider the set of λ, µ ≥ 0 for which

(1− ε) + λ (1− 2ε) ≥ µε.

Otherwise, we are just maximizing the classical capacity, which we know from Lemma 3 is equal to 1− ε.

Proof Consider rewriting the expression in (34) as follows:

max
p∈[0,1/2]

(1− ε) + µ (1− ε) + [(1− ε) + λ (1− 2ε)− µε]H2 (p) .

Suppose that the expression in square brackets is negative, i.e.,

(1− ε) + λ (1− 2ε) < µε.

Then the maximization over p simply chooses p = 0 so that H2 (p) vanishes and the negative term
disappears. The resulting expression for the quantum dynamic capacity formula is

(1− ε) + µ (1− ε) ,

which corresponds to the following region

C + 2Q ≤ 1− ε,
Q+ E ≤ 0,

C +Q+ E ≤ 1− ε.

The above region is equivalent to a translation of the unit resource capacity region to the classical
capacity rate triple (1− ε, 0, 0). Thus, it suffices to restrict the parameters λ and µ as above for the
quantum erasure channel.

Lemma 7 The following additivity relation holds for two quantum erasure channels Nε with the same
erasure parameter ε:

Dλ,µ(Nε ⊗Nε) = Dλ,µ(Nε) +Dλ,µ(Nε).
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Proof We prove the non-trivial inequality Dλ,µ(Nε⊗Nε) ≤ Dλ,µ(Nε)+Dλ,µ(Nε). We define the following
states:

ρXAA
′
1A
′
2 ≡

∑
x

pX (x) |x〉 〈x|X ⊗ φAA
′
1A
′
2

x ,

ωXAB1E1B2E2 ≡ UA
′
1→B1E1

Nε ⊗ UA
′
2→B2E2

Nε (ρXAA
′
1A
′
2),

and we suppose that ρXAA1A2 is the state that maximizes Dλ,µ(Nε⊗Nε). Consider the following equality:

I (AX;B1B2)ω + λI (A〉B1B2X)ω + µ (I (X;B1B2)ω + I (A〉B1B2X)ω)

= H (A|X)ω +H (B1B2)ω −H (E1E2|X)ω + λ (H (B1B2|X)ω −H (E1E2|X)ω)

+ µ (H (B1B2)ω −H (E1E2|X)ω) .

It follows simply by rewriting entropies. We continue below:

= H (A′1A
′
2|X)ρ + (1− ε)2

H (A′1A
′
2)ρ + ε (1− ε)

(
H (A′1)ρ +H (A′2)ρ

)
−
[
ε2H (A′1A

′
2|X)ρ + ε (1− ε)

(
H (A′1|X)ρ +H (A′2|X)ρ

)]
+ λ

[
(1− ε)2

H (A′1A
′
2|X)ρ + ε (1− ε)

(
H (A′1|X)ρ +H (A′2|X)ρ

)]
− λ

[
ε2H (A′1A

′
2|X)ρ + ε (1− ε)

(
H (A′1|X)ρ +H (A′2|X)ρ

)]
+ µ

[
(1− ε)2

H (A′1A
′
2)ρ + ε (1− ε)

(
H (A′1)ρ +H (A′2)ρ

)]
− µ

[
ε2H (A′1A

′
2|X)ρ + ε (1− ε)

(
H (A′1|X)ρ +H (A′2|X)ρ

)]
.

The above equality follows by exploiting the properties of the quantum erasure channel. Continuing, the
above quantity is less than the following one:

≤ 2 (1− ε) +
(
1− ε2

)
H (A′1A

′
2|XIJ)σ + ε (1− ε) (H (A′1|XIJ)σ +H (A′2|XIJ)σ)

+ λ (1− 2ε)H (A′1A
′
2|XIJ)σ

+ µ
[
2 (1− ε)− ε2H (A′1A

′
2|XIJ)σ − ε (1− ε) (H (A′1|XIJ)σ −H (A′2|XIJ)σ)

]
= 2 (1− ε) + (1− ε) (H (A′1|XIJ)σ +H (A′2|XIJ)σ) + λ (1− 2ε) (H (A′1|XIJ)σ +H (A′2|XIJ)σ)

+ µ [2 (1− ε)− ε (H (A′1|XIJ)σ −H (A′2|XIJ)σ)]

−
[(

1− ε2 + λ (1− 2ε)− µε2
)
I (A′1;A′2|XIJ)σ

]
≤ Dλ,µ (Nε) +Dλ,µ (Nε)−

[(
1− ε2 + λ (1− 2ε)− µε2

)
I (A′1;A′2|XIJ)ρ

]
≤ Dλ,µ (Nε) +Dλ,µ (Nε) .

The first inequality follows from similar proofs we have seen for a state σ of the form in (33). The first
equality follows by rearranging terms. The second inequality follows from the form of Dλ,µ in (34). The
final inequality follows because Lemma 6 states that it is sufficient to consider (1− ε) + λ (1− 2ε) ≥ µε.
Note that this condition implies that

1− ε2 + λ (1− 2ε) ≥ µε2,

and hence that the quantity in square brackets in the line above the last one is positive.

11 Conclusion

We found a purely information theoretic approach to proving the converse part of the dynamic capacity
region. This technique should be simpler to understand for those unfamiliar with the quantum Shannon
theory literature. We also phrased the optimization task for the full dynamic capacity region in terms of
the quantum dynamic capacity formula in (21) and proved its additivity (and hence single-letterization
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of the dynamic capacity region) for the quantum Hadamard channels and quantum erasure channels. We
note some open problems below.

There might be room for improvement in our formulas that characterize the dynamic capacity region
when the channel is not of the Hadamard class or a quantum erasure channel. Though, our characteri-
zation has the simple interpretation as the regularization of what one can achieve with the classically-
enhanced father protocol [16] combined with teleportation, super-dense coding, and entanglement distri-
bution. It is difficult to imagine a simpler characterization than this one, despite its multi-letter nature
for the general case.

We would like to find other channels besides the Hadamard or erasure channels for which the region
single-letterizes. We conjecture that additivity of the quantum dynamic capacity formula in (21) holds
for channels that have hybrid Hadamard-erasure behavior such as the phase erasure channel in Ref. [4].
It would also be interesting to find channels that are not hybrid Hadamard-erasure for which additivity
of (21) holds.

There is also one interesting speculation to muse over that Professor David Avis suggested to us. Do
each of the inequalities in Theorem 1 correspond to some fundamental physical law? This might shed
further connections between information theory and physics that have not been elucidated yet.
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