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Optimal correction of concatenated fault-tolerant quantum codes
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We present a method of concatenated quantum error correction in which improved classical pro-
cessing is used with existing quantum codes and fault-tolerant circuits to more reliably correct errors.
Rather than correcting each level of a concatenated code independently, our method uses informa-
tion about the likelihood of errors having occurred at lower levels to maximize the probability of
correctly interpreting error syndromes. Results of simulations of our method applied to the [[4,1,2]]
subsystem code indicate that it can correct a number of discrete errors up to half of the distance of
the concatenated code, which is optimal.

PACS numbers: 03.67.Lx, 03.67.Pp

I. INTRODUCTION

The expectation that quantum computers will, one
day, outperform classical computers is founded on quan-
tum error correction, which will be necessary to mitigate
environmental decoherence and errors that arise from
imprecise quantum control. Various methods for error
correction are now known—for example, topological er-
ror correction [1, 2]—but the first and most prominent
method involves concatenating [3] small quantum codes
such as the Shor code [4] and the Steane code [5].

Quantum codes work by redundantly encoding the
state of a single physical qubit in the combined state of
a few qubits, whereafter errors in the states of some sub-
set of these qubits can be diagnosed and corrected using
a circuit that is designed to obtain the error syndrome
whilst limiting the propagation of errors [6]. However,
because this circuit is inevitably formed from a number
of error-prone physical locations, such as quantum gates
and quantum measurements, there are more places from
which errors can arise than before. This tradeoff implies
that the error rate of an encoded qubit will only be lower
than the error rate of a physical qubit if the error rate of
the physical locations is below a certain threshold [7–11].

A single level of encoding and error correction can only
reduce the error rate by so much. A greater reduction can
be achieved by encoding a single physical qubit in the
state of a few qubits, as before, and then encoding each
of those qubits in the state of more qubits, and so on.
This forms a concatenated quantum code, which allows,
in theory, an arbitrarily long and large universal quantum
computation to be undertaken reliably. However, as the
number of qubits required increases exponentially with
the number of concatenation levels, it is likely that only
a few levels will be practical. It is important, therefore, to
make each level of error correction as effective as possible.

Typically, each level of a concatenated code is cor-
rected independently of all other levels with the implicit
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assumption that errors are equally likely on all qubits.
For l levels of a distance-d code, this method results in a
concatenated code that can fail if there are ⌈d/2⌉l errors.
However, as the total distance of the concatenated code
is dl, one might expect that a more sophisticated cor-
rection method may exist, one that will never fail with
fewer than ⌈dl/2⌉ errors. Such a method is known in
the case where the error syndrome can be obtained per-
fectly [12] but not in the more general case where the
error syndrome is unreliable.
Following our previous work improving the correction

method for two levels of a specific code [13], here we
present a more general correctionmethod that is designed
to reliably correct up to ⌈dl/2⌉ errors. Our method works
with existing CSS stabilizer codes [14, 15] and with ex-
isting fault-tolerant circuits, and takes advantage of the
fact that the process of error correcting an encoded qubit
yields information that can be used to estimate the prob-
ability of that encoded qubit having an error. For exam-
ple, whenever we observe a non-zero syndrome we know
that at least one error has occurred, and so our confidence
in the relevant encoded qubit should be decreased. Here
we use this information to determine the most likely sets
of errors that could give rise to the syndromes we observe
at each level of encoding.
We describe our method in general and also applied

to the [[4,1,2]] subsystem code [16]. To test our method
we perform Monte Carlo simulations of up to four levels
of error correction and find that it performs as expected.
Our method has also been used in a study of the threshold
for fault-tolerant quantum computation on a linear array
of qubits with only nearest-neighbor interactions [17].
It remains to be proven that our method works for an
arbitrary number of levels of error correction.

II. CORRECTION METHOD

It is useful to begin by outlining the general structure
of a quantum circuit that is protected by a concatenated
fault-tolerant quantum code. First, all of the qubits in
the circuit are replaced by encoded qubits. Then, all
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of the locations in the circuit—such as quantum gates,
quantum measurements, and quantum memory—are re-
placed by encoded locations, which perform the corre-
sponding operations on encoded qubits. Interspersed
between encoded locations are error-correction cycles,
which involve performing a fault-tolerant circuit to ob-
tain an error syndrome and then using a classical algo-
rithm to determine what, if any, correction should be
applied to the relevant encoded qubit. This correction is
applied to one or more of the physical qubits that make
up the encoded qubit. As described, the original circuit
is now an encoded circuit protected by one level of error
correction. Concatenation involves repeating this proce-
dure, so that all of the physical locations—that is, all
of the physical locations that make up the encoded lo-
cations and the error-correction circuits—are themselves
replaced by encoded locations and error-correction cy-
cles. This introduces a second level of error correction
and now corrections may be applied to encoded qubits
as well as physical qubits.
In this context, our correction method replaces the

classical algorithm that is used in each error correction
cycle. Our algorithm is general, meaning it is the same
for each error correction cycle at each level. We assume
a discrete error model whereby the probability of error
at each physical location, p, is constant and independent
of the other locations. We also assume that the quantum
computer will be operating in the low-p limit, thus the
value of the smallest exponent of p is sufficient to describe
probabilities. It may be possible to improve the method
by relaxing these assumptions.

A. Flags

For each location in the syndrome circuit we determine
what effect a discrete X or Z error occurring at that lo-
cation would have at the end of the circuit. The error
may affect one or more of the data qubits that make up
the encoded qubit, one or more of the ancilla qubits that
are measured to obtain the syndrome, or some combina-
tion of these. Taking into account that some errors are
equivalent to other errors, we assign a flag to each unique
error. In other words, there is a flag for each effect that
can be caused by a single error. A flag represents the
possibility of a single error. The probability that a flag
represents an actual error is described by the weight of

the flag such that Pr(error) = O(pweight). Since we as-
sume that errors occur independently at each location,
the probability of a set of flags representing a set of ac-

tual errors is O(p
∑

weight), where the sum is over the
set of flags. Errors and flags in the X basis are separate
from those in the Z basis.
An error on a data qubit will eventually have its effect

transferred to one or more ancilla qubits. The location
of the error determines which ancilla qubits will be af-
fected. But, an error that affects a data qubit after it has
interacted with the ancilla qubits cannot be detected un-

til the next error-correction cycle. Flags that represent
such errors are called transitive flags. Transitive flags
are put aside until the current error-correction cycle is
complete, after which each transitive flag is converted to
its corresponding non-transitive flag for use in the next
error-correction cycle.
Initially, all flags can be thought of as having infinite

weight, as there cannot be any errors before any oper-
ations have been done. When a circuit location is exe-
cuted, the weight of the flag corresponding to an error
at that location is updated to be the minimum of its
current value and a confidence rating reported by that
location. At the physical level, the confidence rating re-
ported by each location is one, reflecting our assumption
that physical locations fail with probability p. The confi-
dence rating reported by each encoded location is deter-
mined during the error-correction cycle that follows that
location, based on the syndrome and the weights of the
flags associated with that location (see §2.2). Detecting
errors at the physical level will lower the confidence rat-
ing reported by locations all the way up to the highest
level of encoding.
Two-qubit locations are special in that errors may be

shared by both qubits. For example, an error occurring
before a cnot may be copied and an error occurring dur-
ing a cnot may affect both the control and the target
qubits. However, each encoded qubit has its own set of
flag weights representing the possibility of errors on the
data qubits that make up that encoded qubit. Therefore,
during a two-qubit location that copies errors, flags be-
longing to the encoded qubit from which errors may be
copied are used to update the corresponding flags belong-
ing to the encoded qubit to which errors may be copied.
Also, confidence ratings are used to update flags that
correspond to correlated errors (or, equivalently, errors
that are copied by two-qubit locations). Specifically, the
weight of the flag corresponding to the correlated error
associated with a two-qubit location is updated to be the
maximum of the confidence ratings reported by the two
error-correction cycles following that location. The max-
imum of the two confidence ratings is appropriate since a
correlated error involves errors affecting both qubits. The
sum of the two confidence ratings would correspond to
two uncorrelated errors. Again, the weight of each flag
is updated only if its value would be lowered from its
current value. The flags corresponding to uncorrelated
errors are updated as usual.

B. Flag matching, error correction, and confidence
reporting

During each error-correction cycle the ancilla qubits
are measured to obtain a syndrome. Each possible syn-
drome is consistent with a finite number of sets of errors
and each set of errors has a corresponding set of flags.
Each set of flags that matches the syndrome is called a
flag match. The most likely cause of the syndrome is
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the set of errors that is represented by the flag match
with the lowest weight. With this flag match identified,
we apply corrections to whichever data qubits would be
affected by this set of errors.
Different flag matches will imply different corrections.

In particular, there will always be a match which implies
a complementary set of corrections to that of the match
with the lowest weight—that is, the corrections of both
matches combine to form an encoded operator. If we
correct based on one flag match but the true set of errors
is represented by its complement match then the result
is an encoded error. To determine the confidence of the
encoded location we consider the probability that our
choice of correction will result in an encoded error,

Pr(fail|syndrome ∩ flags) =
Pr(fail ∩ syndrome|flags)

Pr(syndrome|flags)
.

(1)
Pr(fail|syndrome∩flags) is the probability of an encoded
error given the current syndrome and set of flags.
Pr(syndrome|flags) is the probability of the current syn-
drome occurring given the current set of flags, regard-
less of success or failure. Pr(fail∩syndrome|flags) is the
probability of the current syndrome occurring and er-
ror correction resulting in an encoded error. In the
low-p limit these probabilities are dominated by the
leading-order terms and the coefficients are not impor-
tant. Since our method applies corrections based on
the most likely cause of the syndrome, to leading order
Pr(syndrome)=Pr(success∩syndrome). This implies

Pr(fail ∩ syndrome|flags)

Pr(success ∩ syndrome|flags)
≈ py−x, (2)

where x is the weight of the flag match with the low-
est weight and y is the weight of its complement match.
Therefore,

CEN = y − x (3)

is the confidence rating determined during this error-
correction cycle. The confidence rating represents the
probability of an encoded error, O(pCEN ).
There is also a possibility that errors, and consequent

corrections, will result in a state that is outside of the
code space, so that it is neither the correct state nor
the state affected by an encoded error. Just as we use
the complement match to determine the probability of an
encoded error, we can determine the probability of errors
on the individual data qubits by considering other flag
matches. For large codes there will also be probabilities
of sets of correlated data errors that we can determine.
Let E represent a particular set of errors after an error-
correction cycle. Then

Pr(E|syndrome ∩ flags) =
Pr(E ∩ syndrome|flags)

Pr(syndrome|flags)
. (4)

The weight of the flag corresponding to this set of er-
rors should, therefore, be updated to be the minimum

of its current weight and the weight of each set of flags
that match this outcome, taking into account any cor-
rections that have been applied, minus the weight of the
minimum-weight flag match. (See §3.1 for an example.)
Through the careful consideration of how errors prop-

agate in error-correction circuits, we can identify every
possible cause of every syndrome and thus accurately cal-
culate confidence ratings for every qubit at every level of
encoding. This allows us to always correct based on the
most likely set of errors and makes each level of error cor-
rection as effective as possible at reducing the encoded
error rate.

III. APPLICATION TO THE [[4,1,2]]
SUBSYSTEM CODE

Here we apply our correction method to the [[4,1,2]]
subsystem code [16]. The stabilizer group of this code is
generated by the operators

X1X2X3X4,
Z1Z2Z3Z4,

(5)

where Xi and Zi respectively represent the Pauli opera-
tors σX and σZ applied to the ith qubit. Tensor products
and identity operators are implicitly present. The gauge
group of this code is generated by the operators

X1X2,
X3X4,
Z1Z3,
Z2Z4.

(6)

The encoded X and Z operators are

XL = X1X3,
ZL = Z1Z2,

(7)

or equivalently any operators that are formed by com-
bining (7) and (6).
The syndrome circuit that we have chosen to use, along

with the flags that will be used in our correction method,
is shown in Fig. 1 [18]. The circuit measures the gauge
operators, two at a time. Since the stabilizers are prod-
ucts of gauge operators, the combined parity of each pair
of measurement results is effectively the result of measur-
ing of a stabilizer. Individually, each measurement tells
us nothing about the syndrome.

A. Correction method

The syndrome of the code consists of a single bit for
each basis. A syndrome of zero indicates that no error
was detected; one indicates that an error was detected
but provides no information about which qubits were af-
fected by the error. When the syndrome of one is mea-
sured, in the absence of any additional information we
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FIG. 1: Syndrome circuit for the [[4,1,2]] code, with X flag mapping shown. The error syndromes in the X and Z bases
are obtained by performing operator measurements of the gauge operators in (6). The parity of the two X gauge operator
measurements gives the Z error syndrome, and vice versa. The letters on the circuit mark out regions associated with each of
the X flags. The confidence rating of each circuit location is associated with the flag that is labeled to the left of that location.
(See Table 1 for the flag labels). For example, an X error that occurs in the region marked AG1 will affect one of the qubits
involved in the first X gauge operator and the effect will be seen on the ancilla used to perform the operator measurement. An
X error that occurs in the region marked A will flip the parity of the ancilla but will not affect the data at all. An X error
that occurs in the N region will have no effect on the data or the observed syndrome. The flag regions shown here are for X

flags only but the Z flag map is similar.

must simply guess which data qubit was affected by the
error. Each data qubit has a partner qubit in each basis
for which errors are equivalent. For example, an X error
on the first qubit is the same as an X error on the second
qubit up to the application of the X1X2 gauge operator.
Such an error can, therefore, be corrected by the applica-
tion of an X operator on either the first or second qubit.
To simplify the analysis of errors, we refer to errors by
which gauge operator they are a part of, rather than by
which data qubit they affect. An X error on the first or
second qubit is said to be an error on the first gauge in
the X basis, a Z error on the second or fourth qubit is
said to be an error on the second gauge in the Z basis,
and so on. When there is an error on one gauge and the
syndrome is misinterpreted so that the correction opera-
tion is applied to the other gauge the result is always an
encoded error.

In order to reliably correct errors using the [[4,1,2]]
code, extra information is required to distinguish between
errors affecting the first and second gauges. One method
for obtaining this information is to pass classical mes-
sages describing the relative probabilities of errors from
lower levels of error correction to higher levels. Previ-
ously, it was shown that a scheme such as this could in-
crease the minimum number of errors that cause failure
to a number that scales according to the Fibonacci series
with the number of levels of error correction, l [19, 20].
In contrast, the optimal scaling is given by 2l−1.

For the [[4,1,2]] code, using the circuits we have chosen,
there are five unique effects that can result from a single
error. Therefore there are five flags that we are required
to track for each encoded qubit at each level of encoding.
These flags are defined in Table 1. Note that two of the
flags are transitive. The set of error locations belonging
to each flag are shown in Fig. 1.

The errors represented by the flag match with the low-
est weight are identified as being the most likely cause of

flag effect

AG1 first gauge and ancilla

AG2 second gauge and ancilla

A ancilla only

G1 first gauge only (transitive)

G2 second gauge only (transitive)

TABLE I: Names assigned to the flags of the [[4,1,2]] code.
There are five flags for each basis. First gauge refers to an
error on either of the two qubits involved in the first gauge
operator of the appropriate basis in (6), similarly for second
gauge. Ancilla refers to an error which flips the parity of the
two gauge operator measurements—that is, an error which
changes the outcome of the syndrome measurement. Flags
G1 and G2 become AG1 and AG2 respectively at the end of
the error-correction cycle as they will be seen on the ancilla
of the following error-correction cycle.

the observed syndrome. Corrections are applied to any
data qubits marked by the flag match, then flags are up-
dated accordingly. Table 2 shows a list of all possible
flag matches along with the various confidence ratings
that would result from each of them being acted on.

As an example, let us assume that the X basis syn-
drome is measured to be one. This could be because of
an error affecting the first gauge, an error affecting the
second gauge, an error affecting the ancilla, or the combi-
nation of all of the above. These cases are represented by
rows 5-8 of Table 2. First, we determine which of these
is most likely by considering the weights of the relevant
flags, AG1, AG2, and A. Let us assume that the weight
of AG2 is lower than the weights of both AG1 and A and
thus an error affecting the second gauge is most likely.
This case is described by the sixth row of Table 2. Ac-
cording to the third column, as the flag match indicates
that an error has affected the second gauge, a correc-
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synd. flag match corr. CG1 CG2 CEN

0

no flags none AG1 + A AG2 + A AG1 +AG2

AG1 +A N/A

AG2 +A N/A

AG1 + AG2 N/A

1

AG1 G1 A− AG1 AG2 + A AG2−AG1

AG2 G2 AG1 + A A− AG2 AG1−AG2

A none AG1− A AG2− A AG1 +AG2

AG1 +AG2 +A N/A

TABLE II: For each of the two syndromes (column 1) there are four possible flag matches (column 2). Corrections (column
3) and flag updates (columns 4-6) depend on which flag match has the lowest weight. The flag matches marked with N/A
always have a weight equal to or higher than other matches and so will never be acted on. CG1 and CG2 are confidence ratings
for the transitive flags G1 and G2 at the current level of error correction. CEN is the confidence rating for the next-highest
level of error correction. In the expressions for evaluating the weights of the flags matches (column 2) and for calculating the
confidence ratings (columns 4-6) the symbols A, AG1, and AG2 represent the weights of those flags.

tion should be applied to the second gauge—that is, an
X correction should be applied to either qubit three or
qubit four. Then, the confidence ratings for the tran-
sitive flags should be calculated. These transitive flags
represent the probabilities of errors on the outgoing data
qubits and will be used in the next error-correction cycle.
Since the observed syndrome is one and we have applied
a correction to the second gauge, for only the outgoing
first gauge to be affected by an error there would have
to have originally been errors affecting both gauges and
the ancilla. The probability of this is described by the
weight AG1+AG2+A. According to the fourth column,
the confidence rating for the first gauge is equal to the
conditional probability of this occurring, or the weight
AG1+AG2+A−AG2 = AG1+A. For only the outgo-
ing second gauge to be affected by an error there would
have to have originally been an error affecting the an-
cilla. The probability of this is described by the weight
A. This means there was no error affecting the second
gauge in the first place, but one has been added by our
correction. According to the fifth column, the confidence
rating for the second gauge is the weight A − AG2. Fi-
nally, we need to determine the conditional probability of
an encoded error, which is an error affecting both gauges.
Since our correction is applied to the second gauge, the
complement match is an error affecting the first gauge.
The probability of this is described by the weight AG1.
According to column six, the confidence rating for the en-
coded qubit is the weight AG1 − AG2. This confidence
is then reported by the preceding encoded location and
used in the next-highest level of error correction.

B. Simulation and results

To test our method we simulate a cnot extended rect-
angle [11] including all physical locations. The correction
method is simulated alongside the error-correction cir-
cuits so that it operates in the same way as it would in a

real quantum computer. The cnot is defined to succeed
only if the measurement results of both logical qubits in
both bases would be correct. The simulations use the
method outlined in [13], which involves keeping track of
discrete errors as they propagate through the circuit. We
assume a stochastic error model, where memory, initial-
ization, readout, single-qubit gate, and two-qubit gate
errors are all equally likely to occur. Errors are randomly
selected one- and two-qubit discrete Pauli errors.

We are primarily interested in the logical failure rate
when the physical error rate, p, is low. Directly simulat-
ing the circuit in the low-p limit requires too many runs
to obtain statistically significant results. Instead, for up
to three levels of error correction, we use the expansion
of logical failure rate with respect to the physical error
rate,

pL =

N
∑

i=0

ri

(

N

i

)

pi(1− p)N−i, (8)

where N is the number of physical locations in the error-
correction circuit, p is the physical error rate, and ri is the
probability of logical failure after error correction given
exactly i errors. To estimate values of ri we simulate the
circuit with exactly i errors placed randomly, repeating
many times for each i. We approximate pL by truncat-
ing the series above i = 29. This approximation breaks
down for values of p for which the probability of hav-
ing more than 29 errors becomes significant. For four
levels of error correction we can only obtain statistically
significant results for relatively high values of p. To do
this we simulate the circuit directly. The failure rate of
the logical cnot as a function of physical error rate is
plotted in Fig. 2 for one, two, three, and four levels of
error-correction.
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FIG. 2: Failure rate of cnot extended rectangle as a function of physical error rate for one, two, three, and four levels of error
correction with the [[4,1,2]] code using our correction method. 2σ of statistical error above and below the mean is shown for
each set of data. As expected, the minimum number of discrete errors that can cause failure is one, two, and four for one, two,
and three levels of error correction respectively. This can be inferred by the gradients of the lines in the low-p region. For four
levels of error correction, the gradient of the series in the region around p = 10−4 cannot be used to estimate the lowest order
of Eq. (8) and hence the minimum number of errors that can cause failure. This is because our data at this physical error rate
is dominated by combinations of 16 or more errors. In our data for four levels of error correction there were no cases that could
have failed due to seven or fewer errors, as expected. Note that the asymptotic threshold appears to be around p = 2× 10−4.
Also, since the first level of the code is unable to reliably correct any number of errors, the logical failure rate with one level of
error correction is always greater than the physical error rate.

IV. FURTHER WORK

As described, our method assumes that each physical
location is equally likely to fail. However, this need not
be the case. Relative probabilities of failure for individ-
ual physical locations are naturally represented in by the
confidences at the physical level. Rather than setting the
confidence of all physical locations to one, we can choose
to assign different confidence ratings to each type of op-
eration or each individual physical device. These confi-
dence ratings could be based on data obtained by char-
acterization of the gates. Alternatively, data collected
during error correction could be fed back to dynamically
update confidence ratings of physical locations in a sim-
ilar way to how our method updates confidence ratings
of encoded locations.
Our method could be applied to a post-selection based

scheme. There are several ways this could be done, since
we are free to choose the confidence threshold which
determines whether ancillary states are accepted or re-
jected. To only accept states that have the maximum
confidence would reduce the scheme to ordinary post-
selection, as a state would be rejected if any errors are de-
tected at any level regardless of whether or not these er-
rors are correctable at higher levels. Accepting all states
that have a confidence greater than one would result in

a high acceptance rate, but would not be optimal with
respect to logical fidelity. In any case, the confidence of
the states that are accepted could be used in higher-level
error correction following post-selection. There may also
be some advantage to using the confidence ratings de-
termined at the highest level of error correction in some
quantum algorithms.

Finally, our method can be applied to higher distance
subsystem codes and to other CSS stabilizer codes. It
would be interesting to investigate the pros and cons of
using different codes with our method and also to rig-
orously establish the specific requirements on codes and
circuits that enable us to achieve optimality with respect
to the minimum number of errors that cause the code to
fail.
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