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Controlled teleportation via photonic Faraday rotations in low-Q cavities

W. P. Bastos, W. B. Cardosoa, A. T. Avelar, N. G. de Almeida and B. Baseia
Instituto de Fı́sica, Universidade Federal de Goiás, 74.001-970, Goiânia - GO, Brazil

This paper presents feasible experimental schemes to realize controlled teleportation protocols via photonic
Faraday rotations in low-Q cavities. The schemes deal with controlled teleportation of superposition states
and two-particle entanglement of atomic states. The information is encoded in three-level atoms in a lambda
configuration trapped inside coupled cavities by optical fibers. Also, we estimate the success probability and
the current feasibility of the schemes.

PACS numbers: 03.67.-a, 03.67.Bg, 03.67.Hk

I. INTRODUCTION

The quantum teleportation was firstly suggested by Bennettet al. [1] and its experimental realizations reported from 1997
onwards [2, 3]. On the other hand, teleportation remains a challenge in some contexts, such as in trapped wave fields inside
high-Q microwave cavities [4–7, 15], in atomic state via cavity decay [8–12], in a the single-mode thermal state of light fields
[13], in trapped field states inside a single bimodal cavity [14, 16], in schemes without the Bell-state measurement [17–22], in
the angular spectrum of a single-photon field [23], among others.

Since the pioneering work by Bennettet al. [1], several schemes for teleportation that differ from this original protocol have
appeared in the literature. As examples, in the experiment of Ref. [2], Boschi et al. explored both the polarization and the
state of the photon via two distinct paths to demonstrate teleportation; in Ref. [24], Popescu substituted the nonlocal channel
by the mixed Werner states. Entanglements of mixed states asnonlocal channels were further considered in Ref. [25]. In Ref.
[26], Vaidman proposed a “cross measurement” method to achievea two-way teleportation using a spin state and a system with
continuous variable. Related to this topic, Moussa showed in [27] how to implement teleportation withidentity interchangeof
quantum states, a kind of “cross measurement” in the contextof QED cavity. In Ref. [28], de Almeidaet al. used Greenberger-
Horne-Zeilinger (GHZ) states as the nonlocal channel instead of the standard Einstein-Podolsky-Rosen (EPR) states, and in
Ref. [29] Agrawal and Pati showed how to achieve perfect teleportation and superdense code using W states as the nonlocal
channel. The generation of W states and clusters states in QED cavity are discussed in [30]. In Ref. [17], Zheng refers to the
approximated teleportation without Bell states measurements of the superposition of zero- and one-photon states fromone high-
Q cavity to another, with fidelity near99% [31]. In Ref. [32], Karlsson and Bourennane, also using a GHZ channel, showedhow
to accomplish teleportation controlled by a third party. Controlled teleportations involving many agents were considered in Ref.
[33]. Since then, controlled operations have found important applications, as for example, quantum secret sharing, introduced
by Hillery et al. in Ref. [34], and experimentally reported in [35].

Quantum secret sharing was considered further by a number ofauthors [36], including a version of controlled quantum secret
[37]. Another important application of controlled operation by a third part is given by partial optimal teleportation, introduced in
Ref. [38] by Filip, considered further in Ref. [39], and experimentally reported in Ref. [40]. More recently, our group introduced
the concept of controlled partial teleportation (CPT) and presented a feasible scheme for its implementation in the trapped ions
domain [41].

In this paper, motivated by growing applications found by controlled operations [32–40], we propose several schemes to
experimentally realize controlled teleportation (CT) as well as CPT in the context of lossy optical cavities connectedby optical
fibers, taking advantage of the so called photonic Faraday rotations [42]. The main idea is to make use of the Faraday rotation
produced by single-photon-pulse input and output process with regard to low-Q cavities [43]. In view of our applications, we
revisited the input-output relation for a cavity coherently interacting with a trapped three-level atom, recently considered in Ref.
[12, 42]. We consider a three-level atom interacting with two degenerate cavity-modes of a low-Q cavity pumped by photonic
emission of a single photon source via optical fibers. Fig.1 shows the atomic levels of each atom trapped inside one of the
cavities. Each transition is governed by the Jaynes-Cummings model.

The paper is organized as follows: in Sec. II we present the theoretical model, in Sec. III we present several schemes for
realizing CPT and CP, and in Sec. IV we present our conclusions.
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II. THEORETICAL MODEL

The Hamiltonian that describes the system of a three-level atom (Fig. 1) interacting with a single mode of a low-Q cavity is
given by [44]

H = H0 + ~λ(a†LσL− + aLσL+) + ~λ(a†RσR− + aRσR−) +HR, (1)

with

H0 =
~ω0

2
(σLz + σRz) + ~ωc(a

†
LaL + a†RaR), (2)

and

HR = HR0 + i~





∫ ∞

−∞
dω

∑

j=L,R

α(ω)
(

b†j(ω)aj + bj(ω)a
†
j

)

+

∫ ∞

−∞
dω

∑

j=L,R

α(ω)
(

c†j(ω)σj− + cj(ω)σj+

)



 , (3)

whereλ is the atom-field coupling constant,a†j (aj) is the creation (annihilation) operator of the field-mode into the cavity with
j = L,R,ω0 (ωc) is the atomic (field) frequency, andσL− andσL+ (σR− andσR+) are the lowering and raising operators of the
transition L (R), respectively. The L and R transitions are shown in Fig.1. HR0 is the Hamiltonian of the free reservoirs, such
that, the field and atomic reservoirs are given byHRc = ~

∫∞
−∞ dωωb†jbj andHRA = ~

∫∞
−∞ dωωc†jcj (j=L,R), respectively.

The reservoirs couple with field and atomic systems independently, at different values of frequencyω, with coupling amplitudes
α =

√

κ/2π andα =
√

γ/2π, respectively.κ andγ are the cavity-field and atomic damping rates,bj andcj (b†j andc†j) are the
annihilation (creation) operators of the reservoirs.

Next, due to the fact of the presence of a pumping field into thecavity by a optical fiber one can change, in a convenient way,
to a rotating frame with respect the pumping field frequencyωp using the following transformation:

Heff = U †HU −
[

~ωp(a
†
LaL + a†RaR) +

~ωp

2
(σLz + σRz)

]

, (4)

whereU = exp{−i∑j=L,R[ωp(a
†
jaj + b†jbj + c†jcj) +

ωp

2
σjz ]}. In this point, using the Heisenberg equations for the operators

aj andσj− (consequently fora†j andσj+), with j=L, R, one can get

ȧj(t) = −[i(ωc − ωp) +
κ

2
]aj(t)− λσj−(t)−

√
κain,j(t), (5)

σ̇j−(t) = −[i(ω0 − ωp) +
γ

2
]σj−(t)− λσjz(t)aj(t) +

√
γσz(t)bin,j(t). (6)

The relation between the input and output fields readsaout,j(t) = ain,j(t) +
√
κaj , j =L,R. Here we work with a reservoir

at zero temperature such thatbin,j ≃ 0. Now, an adiabatic approximation on the above evolution equations lead us in a single
relation between the input and output field states in the form[12, 42]

r(ωp) =
[i(ωc − ωp)− κ

2
][i(ω0 − ωp) +

γ
2
] + λ2

[i(ωc − ωp) +
κ
2
][i(ω0 − ωp) +

γ
2
] + λ2

, (7)

wherer(ωp) ≡ aout,j(t)/ain,j(t) is the reflection coefficient of the atom-cavity system. On the other hand, considering the case
of λ = 0 and an empty cavity we have [44]

r0(ωp) =
i(ωc − ωp)− κ

2

i(ωc − ωp) +
κ
2

. (8)

According to [12, 42] the transitions|e〉 ↔ |0〉 and|e〉 ↔ |1〉 are due to the coupling to two degenerate cavity modesaL and
aR with left (L) and right (R) circular polarization, respectively. For the atom initially prepared in|0〉, the transition|0〉 → |e〉
will occur only if the L circularly polarized single-photonpulse|L〉 enters the cavity. Hence Eq. (7) leads the input pulse to the
output one as|Ψout〉L = r(ωp)|L〉 ≈ eiφ|L〉 with φ the corresponding phase shift being determined by the parameter values.
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L R

|1|0
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FIG. 1. Atomic configuration of the three-level atom trappedin each one of the low-Q cavities. States|0〉 and|1〉 couple with a left (L) and
rigth (R) polarized photon, respectively.

Note that an input R circularly polarized single-photon pulse |R〉 would only sense the empty cavity; as a consequence the
corresponding output governed by Eq. (8) is |Ψout〉R = r0(ωp)|R〉 = eiφ0 |R〉 with φ0 a phase shift different fromφ. Therefore,
for an input linearly polarized photon pulse|Ψin〉 = 1√

2
(|L〉+ |R〉), the output pulse is

|Ψout〉− =
1√
2
(eiφ|L〉+ eiφ0 |R〉). (9)

This also implies that the polarization direction of the reflected photon rotates an angleΘ−
F = (φ0 − φ)/2 with respect to that

of the input one, called Faraday rotation [43]. If the atom is initially prepared in|1〉, then only theR circularly polarized photon
could sense the atom, whereas theL circularly polarized photon only interacts with the empty cavity. So we have,

|Ψout〉+ =
1√
2
(eiφ0 |L〉+ eiφ|R〉), (10)

where the Faraday rotation isΘ+
F = (φ − φ0)/2.

III. CONTROLLED TELEPORTATION

In this Section we present three cases of CT. Firstly we will consider CT of superposition states. Secondly, we present CPT
of entangled states and finally we present CT of entangled states.

A. Superposition states

Here, we consider the CT of superposition states with one, two, or more controls.
i) One control: in this scheme we deal with three atoms each one trapped inside three low-Q cavities (A, B, andC), respec-

tively. The atoms are previously prepared in specific states, such that,|ψA〉 = 1√
2
(|0〉A + |1〉A), |ψB〉 = 1√

2
(|0〉B + |1〉B),

|ψC〉 = α|0〉C + β|1〉C , whereα andβ are unknown coefficients that obey|α|2 + |β|2 = 1, and the subindex represents the
atom trapped in the cavity. Also, we consider a linearly polarized photon in the state|ψp〉 = 1√

2
(|L〉 + |R〉), where|L〉 (|R〉)

represents the state with left (right) direction of polarization. The experimental scheme is displayed in Fig.2.
The nonlocal channel is created after the interaction of thephoton with the atom trapped inside the cavity A. Due to the

low quality of the cavity the photon is lost, escaping through an optical fiber directed to the cavity B. This interaction causes a
Faraday rotation in the photonic state (see Eqs. (9) and (10)) leading the entire atom-photon state to

|φ1〉 =
1

2
(eiφ|L0〉A + eiφ0 |L1〉A + eiφ0 |R0〉A + eiφ|R1〉A), (11)

where the phasesφ andφ0 are obtained by the reflection coefficients in Eqs. (7) and (8).
After the photon has interacted with the atom trapped insidethe cavity B and considering the adjustmentsωp = ωc − κ/2,

g = κ/2 andω0 = ωc (consisting inφ = π andφ0 = π/2), we have

|φ2〉 =
1

2
√
2

(

|0〉B
[

|L〉|0〉A − i|L〉|1〉A − |R〉|0〉A − i|R〉|1〉A
]

+

|1〉B
[

− i|L〉|0〉A − |L〉|1〉A − i|R〉|0〉A + |R〉|1〉A
]

)

. (12)
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MAPS CS TR AO

|L0〉FC |0〉B α|0〉A − β|1〉A σz

|L1〉FC |0〉B α|0〉A + β|1〉A I

|R0〉FC |0〉B α|1〉A + β|0〉A σx

|R1〉FC |0〉B α|1〉A − β|0〉A σzσx

|L0〉FC |1〉B α|1〉A + β|0〉A σx

|L1〉FC |1〉B α|1〉A − β|0〉A σzσx

|R0〉FC |1〉B α|0〉A − β|1〉A σz

|R1〉FC |1〉B α|0〉A + β|1〉A I

TABLE I. Possible results and rotations for completing the controlled teleportation procedure for the casei). The first column shows the
possible results of measurements on the atomC and photonF states. Second and third columns do the same for the control state (CS) and
for the teleported (TR). Fourth column shows the corresponding Pauli matrices representing unitary operations upon the atomic state (AO)
required to complete the teleportation process.
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ΑΒ

PS

C

PD

QWP1

FIG. 2. Scheme for teleporting the superposed atomic stateC using one controlB. PS stands for the photon source,A, B, andC represent
the atoms trapped inside the corresponding cavities.QWP1 andPD are quarter wave plate and polarization photodetector, respectively.

In the following, the photon interacts with the atom trappedinside the cavity C leading the whole state as

|φ3〉 =
1

2
√
2

(

|0〉B
[

− α(|L〉+ i|R〉)|0〉A|0〉C + iα(|L〉 − i|R〉)|1〉A|0〉C

+ iβ(|L〉 − i|R〉)|0〉A|1〉C + β(|L〉+ i|R〉)|1〉A|1〉C
]

+ |1〉B
[

iα(|L〉 − i|R〉)|0〉A|0〉C + α(|L〉+ i|R〉)|1〉A|0〉C
+ β(|L〉+ i|R〉)|0〉A|1〉C − iβ(|L〉 − i|R〉)|1〉A|1〉C

]

)

(13)

Next, the photon goes through a quarter wave plate (QWP1 in Fig. 2), suffering a rotation in the polarization state (Hadamard
operation) such that

(|L〉+ i|R〉)
√
2 → |L〉, (14a)

(|L〉 − i|R〉)
√
2 → |R〉. (14b)

Besides, including a Hadamard operation in the state of the atom C, the system evolves to

|φ4〉 =
1

2
√
2

(

|0〉B
[

− |L0〉C(α|0〉A − β|1〉A)− |L1〉C(α|0〉A + β|1〉A)

+ i|R0〉C(α|1〉A + β|0〉A) + i|R1〉C(α|1〉A − β|0〉A)
]

+

|1〉B
[

|L0〉C(α|1〉A + β|0〉A) + |L1〉C(α|1〉A − β|0〉A)+

i|R0〉C(α|0〉A − β|1〉A) + i|R1〉C(α|0〉A + β|1〉A)
])

(15)

Then, by measuring the photon polarization state plus the state of the atoms trapped inside the cavities B and C it is possible the
reconstruction of the teleported state via appropriated atomic rotations, as summarized in TableI. Note that the teleportation is
concluded if and only if the result of the state of the atom trapped inside the cavity B is known in terminal A. So, this atom is
here treated as an agent that control the teleportation scheme.

ii) Two controls: This scheme is similar to those shown above. Here, an atom, which will work as a new control, is added to
the new cavity (B1). One atom is previously prepared in the state|ψB1

〉 = 1√
2
(|0〉B1

+ |1〉B1
) while the others are as before.
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The experimental setup is displayed in Fig.3. After the photon to interact with the atoms trapped inside cavitiesA andB,
respectively, using the same adjustments considered in theprevious Section, the state of the system results as that in Eq. (12).
The next step consists in the interaction of the photon, outgoing the cavityB, with the atom trapped in the cavityB1. So, after
the photonic Faraday rotation the state of the system is given by

|φ3〉 =
1

4

(

|00〉BB1

(

− |L0〉A + i|L1〉A − i|R0〉A + |R1〉A
)

+ |01〉BB1

(

i|L0〉A + |L1〉A + |R0〉A + i|R1〉A
)

+ |10〉BB1

(

i|L0〉A + |L1〉A + |R0〉A + i|R1〉A
)

− |11〉BB1

(

− |L0〉A + i|L1〉A − i|R0〉A + |R1〉A
)

)

. (16)

Then, this photon is left to interact with the atom trapped inside the cavityC, in a way such that the whole state of the system
takes the form

|φ′

3〉 =
1

4

(

|00〉BB1

[

α
(

|L〉+ |R〉
)

|0〉A|0〉C − iα
(

|L〉 − |R〉
)

|1〉A|0〉C − iβ
(

|L〉 − |R〉
)

|0〉A|1〉C − β(|L〉+ |R〉)|1〉A|1〉C
]

+ |01〉BB1

[

− iα
(

|L〉 − |R〉
)

|0〉A|0〉C − α
(

|L〉+ |R〉
)

|1〉A|0〉C − β
(

|L〉+ |R〉
)

|0〉A|1〉C + iβ
(

|L〉 − |R〉
)

|1〉A|1〉C
]

+ |10〉BB1

[

− iα
(

|L〉 − |R〉
)

|0〉A|0〉C − α
(

|L〉+ |R〉
)

|1〉A|0〉C − β
(

|L〉+ |R〉
)

|0〉A|1〉C + iβ
(

|L〉 − |R〉
)

|1〉A|1〉C
]

− |11〉BB1

[

α
(

|L〉+ |R〉
)

|0〉A|0〉C − iα
(

|L〉 − |R〉
)

|1〉A|0〉C − iβ
(

|L〉 − |R〉
)

|0〉A|1〉C − β
(

|L〉+ |R〉
)

|1〉A|1〉C
])

.

(17)

Next, the photon that leaves the cavity C crosses a quarter wave plate (QWP2 in Fig. 3) and its state results in

(|L〉+ |R〉)
√
2 → |L〉, (18a)

(|L〉 − |R〉)
√
2 → |R〉. (18b)

A Hadamard operation in the atomic state of the C, we have

|φ4〉 =
1

4

(

|00〉BB1

[

|L0〉FC(α|0〉A − β|1〉A) + |L1〉(α|0〉A + β|1〉A)

− i|R0〉FC(α|1〉A + β|0〉A)− i|R1〉FC(α|1〉A − β|0〉A)
]

+ |01〉BB1

[

− |L0〉FC(α|1〉A + β|0〉A)− |L1〉FC(α|1〉A − β|0〉A)

− i|R0〉FC(α|0〉A + β|1〉A)− i|R1〉FC(α|0〉A − β|1〉A)
]

+ |10〉BB1

[

− |L0〉FC(α|1〉A + β|0〉A)− |L1〉FC(α|1〉A − β|0〉A)

− i|R0〉FC(α|0〉A + β|1〉A)− i|R1〉FC(α|0〉A − β|1〉A)
]

+ |11〉BB1

[

− |L0〉FC(α|0〉A − β|1〉A)− |L1〉FC(α|0〉A + β|1〉A)

+ i|R0〉FC(α|1〉A + β|0〉A) + i|R1〉FC(α|1〉A − β|0〉A)
])

. (19)

The appropriate operations influenced by the measurement onthe control systems for the teleported state are summarizedin the
TableII .

iii) Generalization: A procedure to generalize the number of controls in the scheme of controlled teleportation of superposition
states can be done by the adding of atoms trapped in additional cavities and using specific quarter wave plates after the last cavity.
In this way, if the number of controls is odd, a QWP1 is required with rotations given by Eqs. (14a) and (14b) is necessary; if the
control number is even one request a QWP2 with the rotations given by Eqs. (18a) and (18b). So, with appropriated rotations
we can recover the teleported state with the knowledge of thecontrol results.

B. Controlled partial teleportation of entangled states

In our scheme for CPT [41], an entangled state of particleA, given to Alice, and particleB, given to Bob, is to be partially
teleported. Meanwhile, a quantum channel composed by an entanglement of three particles is shared by Alice (A′), Ben (B′),
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MAPS TR TR AO

|L0〉FC |00〉BB1
α|0〉A − β|1〉A σz

|L1〉FC |00〉BB1
α|0〉A + β|1〉A I

|R0〉FC |00〉BB1
α|1〉A + β|0〉A σx

|R1〉FC |00〉BB1
α|1〉A − β|0〉A σzσx

|L0〉FC |01〉BB1
α|1〉A + β|0〉A σx

|L1〉FC |01〉BB1
α|1〉A − β|0〉A σzσx

|R0〉FC |01〉BB1
α|0〉A + β|1〉A I

|R1〉FC |01〉BB1
α|0〉A − β|1〉A σz

MAPS TR TR AO

|L0〉FC |10〉BB1
α|1〉A + β|0〉A σx

|L1〉FC |10〉BB1
α|1〉A − β|0〉A σzσx

|R0〉FC |10〉BB1
α|0〉A + β|1〉A I

|R1〉FC |10〉BB1
α|0〉A − β|1〉A σz

|L0〉FC |11〉BB1
α|0〉A − β|1〉A σz

|L1〉FC |11〉BB1
α|0〉A + β|1〉A I

|R0〉FC |11〉BB1
α|1〉A + β|0〉A σx

|R1〉FC |11〉BB1
α|1〉A − β|0〉A σzσx

TABLE II. Possible results and rotations to complete the controlled teleportation procedure for the caseii ). The first column shows the possible
results of measurements on the atomC and photonF states. Second and third columns do the same for the two control states (CS) and for the
teleported (TR). Fourth column shows the corresponding Pauli matrices representing unitary operations on the atomic state (AO) required to
complete the teleportation process.
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FIG. 3. Schematic representation to teleport a superposed atomic state with two controls.PS is the photon source,A, B,B1, andC represents
the atoms trapped in the cavities,QWP2 is a quarter wave plate, andPD is the photodetector of polarization.

and a third part, say Chris (C). If Alice performs a Bell measurement on the states of particleA andA′, and Chris performs a
measurement on the state of particleC, then when both inform Bob their results, the following interesting result emerges, after
the usual rotation performed by Bob: particleB′ takes exactly the role of particleA in the previous entanglement shared by
Alice and Bob. As the entanglement between the particlesA andB is broken and a new entanglement between the particles
B andB′ is created in a different place, depending on the collaboration of both Alice and Chris, this characterizes a controlled
partial teleportation.

Next, we describe some schemes for CPT with different numberof controls taking into account the low Q cavities scenario
combined with Faraday rotations.

i) One control: To perform CPT, four cavities are required as displayed in Fig. 4. Cavities A and B are previously prepared in
the superposed states while the cavities C and D are previously prepared in the entangled state that we want to teleport, given by

|ψ〉CD = α|01〉CD + β|10〉CD. (20)

Here we will follow the same procedure of the CT-schemes usedin 3.1: the photon, previously prepared in a superposed
polarization state, enters in the cavity A and interacts with the atom. Next, this photon is sent to interact with the atomtrapped in
the cavity B. After that, the photon interacts with the atom Cin the presence of the same Faraday rotation discussed in Section
A. Before the Faraday rotations, the state of the system is written as

|δ1〉 =
1

2
√
2

(

|0〉B
[

− α|0〉A|01〉CD

(

|L〉+ i|R〉
)

+ iα|1〉A|01〉CD

(

|L〉 − i|R〉
)

+ iβ|0〉A|10〉CD

(

|L〉 − i|R〉
)

+ β|1〉A|10〉CD

(

|L〉+ i|R〉
)

]

+ |1〉B
[

iα|0〉A|01〉CD

(

|L〉 − i|R〉
)

+ α|1〉A|01〉CD

(

|L〉+ i|R〉
)

+ β|0〉A|10〉CD

(

|L〉+ i|R〉
)

− iβ|1〉A|10〉CD

(

|L〉 − i|R〉
)

]

)

. (21)

After the Faraday rotation in the atom in cavity C as well as inthe photon state through the QWP1, the state in Eq. 21 goes to
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FIG. 4. Schematic representation for partial teleportation of entangled atomic states with one control.PS stands for the photon source,A, B,
C, andD represents the atoms trapped inside the cavities,QWP1 stands for a quarter wave plate, andPD is the photodetector of polarization.

MAPS FP ESR AO

|L0〉FC |0〉B α|01〉AD − β|10〉AD σz ⊗ I

|L1〉FC |0〉B α|01〉AD + β|10〉AD I⊗ I

|R0〉FC |0〉B α|11〉AD + β|00〉AD σx ⊗ I

|R1〉FC |0〉B α|11〉AD − β|00〉AD σzσx ⊗ I

|L0〉FC |1〉B α|11〉AD + β|00〉AD σx ⊗ I

|L1〉FC |1〉B α|11〉AD − β|00〉AD σzσx ⊗ I

|R0〉FC |1〉B α|01〉AD − β|10〉AD σz ⊗ I

|R1〉FC |1〉B α|01〉AD + β|10〉AD I⊗ I

TABLE III. Possible results and rotations to complete the controlled partial teleportation procedure for the casei). The first column shows the
possible results of measurements on the atomC and photonF states. Second and third columns do the same for the control state (CS) and for
the teleported state (TR). Fourth column shows the corresponding Pauli matrices representing unitary operations upon the atomic state (AO)
required to complete the teleportation process.

|δ2〉 =
1

2
√
2

(

|0〉B
[

− |L0〉C(α|01〉AD − β|10〉AD)− |L1〉C(α|01〉AD + β|10〉AD)

− i|R0〉C(α|11〉AD + β|00〉AD) + i|R1〉C(α|11〉AD − β|00〉AD)
]

+

|1〉B
[

|L0〉C(α|11〉AD + β|00〉AD) + |L1〉C(α|11〉AD − β|00〉AD)

+ i|R0〉C(α|01〉AD − β|10〉AD) + i|R1〉C(α|01〉AD + β|10〉AD)
]

)

, (22)

Then, the controlled teleportation is concluded after the operations described in the TableIII . Note that the knowledge of the
atom state controlling the teleportation is essential to complete the process.

ii) Two controls: Now, we will describe CPT of entangled states using two controls. This scheme is similar to that using one
control as shown above. Let B1 be the new control as shown in Fig.5. The atoms C and D share a previously prepared entangled
state to be teleported, while B and B1 are the two controls. At the end of this scheme for CPT the partner C of the entangled state
composed by C and D will be teleported to A, with A and D becoming the entangled state. To better explaining the procedure we
take advantage of the previous scheme in Subsectionii ). Assume the atoms C and D in the state given by Eq. (20). The photon,
previously prepared in a superposed polarization state, enters the cavity A and interacts with the atom. Next, the photon is sent
to interact with the atoms trapped in the cavity B and B1, respectively. After interacting with the atom in cavity C,a Hadamard
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FIG. 5. Schematic representation for controlled partial teleportation of entangled atomic states with two controls.PS stands for photon
source,A, B, B1, C, andD represent the atoms trapped inside the cavities,QWP2 is for quarter wave plate, andPD is for polarization
photodetector.

operation is applied to the atom C and the photon passes through a QWP2. Thus,

|δ3〉 =
1

4

{

|00〉BB1

[

|L0〉FC (α|01〉AD − β|10〉AD) + |L1〉FC (α|01〉AD + β|10〉AD)

− i|R0〉FC(α|11〉AD + β|00〉AD)− i|R1〉FC(α|11〉AD − β|00〉AD)
]

+ |01〉BB1

[

− |L0〉FC (α|11〉AD + β|00〉AD)− |L1〉FC (α|11〉AD − β|00〉AD)

− i|R0〉FC(α|01〉AD − β|10〉AD)− i|R1〉FC(α|01〉AD + β|10〉AD)
]

+ |10〉BB1

[

− |L0〉FC (α|11〉AD + β|00〉AD)− |L1〉FC (α|11〉AD − β|00〉AD)

− i|R0〉FC(α|01〉AD − β|10〉AD)− i|R1〉FC(α|01〉AD + β|10〉AD)
]

− |11〉BB1

[

|L0〉FC (α|01〉AD − β|10〉AD) + |L1〉FC (α|01〉AD + β|10〉AD)

− i|R0〉FC(α|11〉AD + β|00〉AD)− i|R1〉FC(α|11〉AD − β|00〉AD)
]

}

. (23)

To conclude the controlled partial teleportation of entangled states it is necessary a measurement in the state of the photon and
the atom trapped in cavity C. Moreover, the state of the controls B and B1 must be known by Bob. To recover a successful
teleportation Bob also needs to perform the rotations givenby TableIV.

iii) Generalization: To generalize the number of controls in thescheme one can insert the QWP after the last control as follows:
QWP1 for odd controls and QWP2 for even controls.

C. Controlled teleportation of entangled states

Here we present a scheme for controlled teleportation (CT) of entangled atomic states. The difference between the present
scheme and that in Subsection B above, is that now the teleportation is total,i.e., the teleportation scheme works for the whole
entanglements of two or more particles. In this scheme the state of one of two entangled atom is rightly teleported by another
atom while the atomic state remaining is teleported aided bycontrols. Fig.5 displays the scheme of the CPT of entangled states,
which is detailed below.

i) One control: in this case we deal with two photons1 and2 that enters into the cavities D and A, respectively. As shown
in Fig. 6, a QWP is placed after the cavity E. The atom trapped inside the cavity B plays the role of control while the trapped
atoms trapped inside the cavities C and E share the entangledstate given by

|ψ〉CE = α|01〉CE + β|10〉CE. (24)

The other atoms and photons of the scheme are all previously prepared in a superposition of|0〉 and|1〉 or |L〉 and|R〉, respec-
tively. The scheme also requires a QWP1 after the cavity C.

Firstly we consider the photon in the inferior branch of Fig.6. It crosses the cavities A, B and C, with the same phase. At this
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MAPS CFS ESR AO

|L0〉FC |00〉BB1
α|01〉AD − β|10〉AD σz ⊗ I

|L1〉FC |00〉BB1
α|01〉AD + β|10〉AD I⊗ I

|R0〉FC |00〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|R1〉FC |00〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|L0〉FC |01〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|L1〉FC |01〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|R0〉FC |01〉BB1
α|01〉AD − β|10〉AD σz ⊗ I

|R1〉FC |01〉BB1
α|01〉AD + β|10〉AD I⊗ I

|L0〉FC |10〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|L1〉FC |10〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|R0〉FC |10〉BB1
α|01〉AD − β|10〉AD σz ⊗ I

|R1〉FC |10〉BB1
α|01〉AD + β|10〉AD I⊗ I

|L0〉FC |11〉BB1
α|01〉AD − β|10〉AD σz ⊗ I

|L1〉FC |11〉BB1
α|01〉AD + β|10〉AD I⊗ I

|R0〉FC |11〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|R1〉FC |11〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

TABLE IV. Possible results and rotations for completing thecontrolled partial teleportation procedure for the caseii ). The first column shows
the possible results of measurements on the atomC and photonF states.CFS andESR columns do the same for the control state (BB1)
and for the teleported state (AD). The fourth column (AO) shows the corresponding Pauli matrices representing unitary operations upon the
atomic state required to complete the teleportation process.
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FIG. 6. Schematic representation for controlled teleportation of entangled atomic states with two controls.PS is for photon source,A, B, C,
D, andE represent the atoms trapped in the cavities,QWP1 andQWP2 are for quarter wave plates, andPD represents the polarization
photodetector.F1 andF2 are for the two photonic channels.

point, the system can be written as

|ψ2〉 =
1

2
√
2

{

|0〉B
[

− α|0〉A|0〉C |1〉E
(

|L〉2 + i|R〉2
)

+ iα|1〉A|0〉C |1〉E
(

|L〉2 − i|R〉2
)

+ iβ|0〉A|1〉C |0〉E
(

|L〉2 − i|R〉2
)

+ β|1〉A|1〉C |0〉E
(

|L〉2 + i|R〉2
)

]

+

|1〉B
[

iα|0〉A|0〉C |1〉E
(

|L〉2 − i|R〉2
)

+ α|1〉A|0〉C |1〉E
(

|L〉2 + i|R〉2
)

+ β|0〉A|1〉C |0〉E
(

|L〉2 + i|R〉2
)

− iβ|1〉A|1〉C |0〉E
(

|L〉2 − i|R〉2
)

]}

(25)

Now, if we consider the superior branch, the photon F1 passesthrough the cavities D and E, respectively. Inserting this fact
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in the last equation, we have

|ψ2〉 =
1

4
√
2

{

|0〉B
[

− α|0〉A|0〉C |1〉E
(

|L〉2 + i|R〉2
)[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

+ iα|1〉A|0〉C |1〉E
(

|L〉2 − i|R〉2
)[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

+ iβ|0〉A|1〉C |0〉E
(

|L〉2 − i|R〉2
)[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

+ β|1〉A|1〉C |0〉E
(

|L〉2 + i|R〉2
)[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

]

+

|1〉B
[

iα|0〉A|0〉C |1〉E
(

|L〉2 − i|R〉2
)[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

+ α|1〉A|0〉C |1〉E
(

|L〉2 + i|R〉2
)[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

+ β|0〉A|1〉C |0〉E
(

|L〉2 + i|R〉2
)[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

− iβ|1〉A|1〉C |0〉E
(

|L〉2 − i|R〉2
)[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

]}

(26)

After, the photons F1 and F2 suffer a Hadamard operation by the plates QWP2 and QWP1, respectively. Besides, other
Hadamard operations in the atoms E and C lead the system to

|ψ3〉 =
√
2

4

{

|0〉B
[

|R0〉2C |L0〉1E
(

α|10〉AD + β|01〉AD

)

+ |R1〉2C |L0〉1E
(

α|10〉AD − β|01〉AD

)

− |R0〉2C |L1〉1E
(

α|10〉AD − β|01〉AD

)

− |R1〉2C |L1〉1E
(

α|10〉AD + β|01〉AD

)

− i|R0〉2C |R0〉1E
(

α|11〉AD − β|00〉AD

)

+ i|R0〉2C |R1〉1E
(

α|11〉AD + β|00〉AD

)

− i|R1〉2C |R0〉1E
(

α|11〉AD + β|00〉AD

)

+ i|R1〉2C |R1〉1E
(

α|11〉AD − β|00〉AD

)

+ i|L0〉2C|L0〉1E
(

α|00〉AD − β|11〉AD

)

− i|L0〉2C |L1〉1E
(

α|00〉AD + β|11〉AD

)

+ i|L1〉2C|L0〉1E
(

α|00〉AD + β|11〉AD

)

− i|L1〉2C |L1〉1E
(

α|00〉AD − β|11〉AD

)

+ |L0〉2C |R0〉1E
(

α|01〉AD + β|10〉AD

)

− |L0〉2C |R1〉1E
(

α|01〉AD − β|10〉AD

)

+ |L1〉2C |R0〉1E
(

α|01〉AD − β|10〉AD

)

− |L1〉2C |R1〉1E
(

α|01〉AD + β|10〉AD

)

]

+

|1〉B
[

|R0〉2C |L0〉1E
(

α|00〉AD − β|11〉AD

)

− |R0〉2C |L1〉1E(α|00〉AD + β|11〉AD)

+ |R1〉2C |L0〉1E
(

α|00〉AD + β|11〉AD

)

− |R1〉2C |L1〉1E
(

α|00〉AD − β|11〉AD

)

− i|R0〉2C |R0〉1E
(

α|01〉AD + β|10〉AD

)

+ i|R0〉2C |R1〉1E
(

α|01〉AD − β|10〉AD

)

− i|R1〉2C |R0〉1E
(

α|01〉AD − β|10〉AD

)

+ i|R1〉2C |R1〉1E
(

α|01〉AD + β|10〉AD

)

− i|L0〉2C|L0〉1E
(

α|10〉AD + β|01〉AD

)

+ i|L0〉2C |L1〉1E
(

α|10〉AD − β|01〉AD

)

− i|L1〉2C|R0〉1E
(

α|10〉AD − β|01〉AD

)

+ i|L1〉2C |R1〉1E
(

α|10〉AD + β|01〉AD

)

− |L0〉2C |R0〉1E
(

α|11〉AD − β|00〉AD

)

+ |L0〉2C |R1〉1E
(

α|11〉AD + β|00〉AD

)

− |L1〉2C |R0〉1E
(

α|11〉AD + β|00〉AD

)

+ |L0〉2C |R1〉1E
(

α|11〉AD − β|00〉AD

)

]}

(27)

At this time the measurement can be concluded with a single measurement in the state of the photons 1 and 2 as well as those
of the atoms C and E. The teleportation will be finalized afterthe knowledge of these results plus the results of the atomicstate
of the control (B). The probable results are summarized in the TableV.

ii) Two controls: In this case we consider an additional cavity B1 with the trapped atom working as the new control of the
teleportation procedure. The scheme is illustrated in the Fig. 7. Note that the upper path is not modified. On the other hand, the



11

2C 1E Control AD AO

|R0〉2C |L0〉1E |0〉B α|10〉AD + β|01〉AD σx ⊗ σx

|R1〉2C |L1〉1E |0〉B α|10〉AD − β|01〉AD σzσx ⊗ σx

|R0〉2C |L1〉1E |0〉B α|10〉AD − β|01〉AD σzσx ⊗ σx

|R1〉2C |L1〉1E |0〉B α|10〉AD + β|01〉AD σx ⊗ σx

|R0〉2C |R0〉1E |0〉B α|11〉AD − β|00〉AD σzσx ⊗ I

|R0〉2C |R1〉1E |0〉B α|11〉AD + β|00〉AD σx ⊗ I

|R1〉2C |R0〉1E |0〉B α|11〉AD + β|00〉AD σx ⊗ I

|R1〉2C |R1〉1E |0〉B α|11〉AD − β|00〉AD σzσx ⊗ I

|L0〉2C |L0〉1E |0〉B α|00〉AD − β|11〉AD I ⊗ σxσz

|L0〉2C |L1〉1E |0〉B α|00〉AD + β|11〉AD I⊗ σx

|L1〉2C |L0〉1E |0〉B α|00〉AD + β|11〉AD I⊗ σx

|L1〉2C |L1〉1E |0〉B α|00〉AD − β|11〉AD I ⊗ σxσz

|L0〉2C |R0〉1E |0〉B α|01〉AD + β|10〉AD I⊗ I

|L0〉2C |R1〉1E |0〉B α|01〉AD − β|10〉AD σz ⊗ I

|L1〉2C |R0〉1E |0〉B α|01〉AD − β|10〉AD σz ⊗ I

|L1〉2C |R1〉1E |0〉B α|01〉AD + β|10〉AD I⊗ I

2C 1E Control AD AO

|R0〉2C |L0〉1E |1〉B α|00〉AD − β|11〉AD I⊗ σxσz

|R0〉2C |L1〉1E |1〉B α|00〉AD + β|11〉AD I⊗ σx

|R1〉2C |L0〉1E |1〉B α|00〉AD + β|11〉AD I⊗ σx

|R1〉2C |L1〉1E |1〉B α|00〉AD − β|11〉AD I⊗ σxσz

|R0〉2C |R0〉1E |1〉B α|01〉AD + β|10〉AD I⊗ I

|R0〉2C |R1〉1E |1〉B α|01〉AD − β|10〉AD σz ⊗ I

|R1〉2C |R0〉1E |1〉B α|01〉AD − β|10〉AD σz ⊗ I

|R1〉2C |R1〉1E |1〉B α|01〉AD + β|10〉AD I⊗ I

|L0〉2C |L0〉1D |1〉B α|10〉AD + β|01〉AD σx ⊗ σx

|L0〉2C |L1〉1E |1〉B α|10〉AD − β|01〉AD σzσx ⊗ σx

|L1〉2C |L0〉1C1
|1〉B α|10〉AA1

− β|01〉AA1
σzσx ⊗ σx

|L1〉2C L1〉1E |1〉B α|10〉AD + β|01〉AD σx ⊗ σx

|L0〉2C |R0〉1E |1〉B α|11〉AD − β|00〉AD σzσx ⊗ I

|L0〉2C |R1〉1E |1〉B α|11〉AD + β|00〉AD σx ⊗ I

|L1〉2C |R0〉1E |1〉B α|11〉AD + β|00〉AD σx ⊗ I

|L1〉2C |R1〉1E |1〉B α|11〉AD − β|00〉AD σzσx ⊗ I

TABLE V. Possible results and rotations for completing the controlled teleportation with one control, corresponding to casei). The first column
(2C) shows the possible results of measurements on the states of atomC and photon2. Second colunm refers to the Alice’s possible results
of measurements on photon1 atomE. ColumnControl shows the state of control B.AD column does the the same for the teleported state
(AD). Fourth column (AO) shows the corresponding Pauli matrices representing unitary operations on the atomic state required to complete
the teleportation process.
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FIG. 7. Schematic representation for controlled teleportation of entangled atomic states with two controls.PS is for photon sources,A, B,
B1, C, D, andE represent the atoms trapped in the cavities,QWP2 is for the two identical quarter wave plates, andPD is for polarization
photodetector.F1 andF2 are for the two photonic channels.

state of the subsystem of the lower branch, after the interaction of the photon 2 with the atoms trapped in the cavities A, B, B1,
and C, respectively, is given by
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|φ′

3〉 =
1

4

(

|00〉BB1

[

α
(

|L〉2 + |R〉2
)

|0〉A|01〉CE − iα
(

|L〉2 − |R〉2
)

|1〉A|01〉CE

− iβ
(

|L〉2 − |R〉2
)

|0〉A|10〉CE − β(|L〉2 + |R〉2)|1〉A|10〉CE

]

+ |01〉BB1

[

− iα
(

|L〉2 − |R〉2
)

|0〉A|01〉CE − α
(

|L〉2 + |R〉2
)

|1〉A|01〉CE

− β
(

|L〉2 + |R〉2
)

|0〉A|10〉CE + iβ
(

|L〉2 − |R〉2
)

|1〉A|10〉CE

]

+ |10〉BB1

[

− iα
(

|L〉2 − |R〉2
)

|0〉A|01〉CE − α
(

|L〉2 + |R〉2
)

|1〉A|01〉CE

− β
(

|L〉2 + |R〉2
)

|0〉A|10〉CE + iβ
(

|L〉2 − |R〉2
)

|1〉A|10〉CE

]

− |11〉BB1

[

α
(

|L〉2 + |R〉2
)

|0〉A|01〉CE − iα
(

|L〉2 − |R〉2
)

|1〉A|01〉CE

− iβ
(

|L〉2 − |R〉2
)

|0〉A|10〉CE − β
(

|L〉2 + |R〉2
)

|1〉A|10〉CE

])

. (28)

Now, after the photon F1 has interacted with D and E, the stateof the system can be written as

|φ′′

3 〉 =
1

8

{

|00〉BB1

[

α
(

|L〉2 + |R〉2
)

|0〉A|01〉CE

[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

− iα
(

|L〉2 − |R〉2
)

|1〉A|01〉CE

[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

− iβ
(

|L〉2 − |R〉2
)

|0〉A|10〉CE

[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

− β(|L〉2 + |R〉2)|1〉A|10〉CE

[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

]

+ |01〉BB1

[

− iα
(

|L〉2 − |R〉2
)

|0〉A|01〉CE

[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

− α
(

|L〉2 + |R〉2
)

|1〉A|01〉CE

[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

− β
(

|L〉2 + |R〉2
)

|0〉A|10〉CE

[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

+ iβ
(

|L〉2 − |R〉2
)

|1〉A|10〉CE

[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

]

+ |10〉BB1

[

− iα
(

|L〉2 − |R〉2
)

|0〉A|01〉CE

[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

− α
(

|L〉2 + |R〉2
)

|1〉A|01〉CE

[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

− β
(

|L〉2 + |R〉2
)

|0〉A|10〉CE

[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

+ iβ
(

|L〉2 − |R〉2
)

|1〉A|10〉CE

[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

]

− |11〉BB1

[

α
(

|L〉2 + |R〉2
)

|0〉A|01〉CE

[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

− iα
(

|L〉2 − |R〉2
)

|1〉A|01〉CE

[

− i
(

|L〉1 + |R〉1
)

|0〉D −
(

|L〉1 − |R〉1
)

|1〉D
]

− iβ
(

|L〉2 − |R〉2
)

|0〉A|10〉CE

[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

− β
(

|L〉2 + |R〉2
)

|1〉A|10〉CE

[(

|L〉1 − |R〉1
)

|0〉D − i
(

|L〉1 + |R〉1
)

|1〉D
]

]}

. (29)
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Next, considering the plate QWP2 for F1 and F2, plus a Hadamard operations upon C and E, we obtain

|ψ3〉 =
1

8

{

|00〉BB1

[

− i|L0〉2C |L0〉1E(α|00〉AD − β|11〉AD) + i|L0〉2C |L1〉1E(α|00〉AD + β|11〉AD)

− i|L1〉2C|L0〉1E(α|00〉AD + β|11〉AD) + i|L1〉2C |L1〉1E(α|00〉AD − β|11〉AD)

− |L0〉2C |R0〉1E(α|01〉AD + β|10〉AD) + |L0〉2C |R1〉1E(α|01〉AD − β|10〉AD)

− |L1〉2C |R0〉1E(α|01〉AD − β|10〉AD) + |L1〉2C |R1〉1E(α|01〉AD + β|10〉AD)

− |R0〉2C |L0〉1E(α|10〉AD + β|01〉AD) + |R0〉2C |L1〉1E(α|10〉AD − β|01〉AD)

− |R1〉2C |L0〉1E(α|10〉AD − β|01〉AD) + |R1〉2C |L1〉1E(α|10〉AD + β|01〉AD)

+ i|R0〉2C |R0〉1E(α|11〉AD − β|00〉AD)− i|R0〉2C |R1〉1E(α|11〉AD + β|00〉AD)

+ i|R1〉2C |R0〉1E(α|11〉AD + β|00〉AD)− i|R1〉2C |R1〉1E(α|11〉AD − β|00〉AD)

]

+ |01〉BB1

[

i|L0〉2C |L0〉1E(α|10〉AD + β|01〉AD)− i|L0〉2C |L1〉1E(α|10〉AD − β|01〉AD)

+ i|L1〉2C|L0〉1E(α|10〉AD − β|01〉AD)− i|L1〉2C |L1〉1E(α|10〉AD + β|01〉AD)

+ |L0〉2C |R0〉1E(α|11〉AD − β|00〉AD)− |L0〉2C |R1〉1E(α|11〉AD + β|00〉AD)

+ |L1〉2C |R0〉1E(α|11〉AD + β|00〉AD)− |L1〉2C |R1〉1E(α|11〉AD − β|00〉AD)

− |R0〉2C |L0〉1E(α|00〉AD − β|11〉AD) + |R0〉2C |L1〉1E(α|00〉AD + β|11〉AD)

− |R1〉2C |L0〉1E(α|00〉AD + β|11〉AD) + |R1〉2C |L1〉1E(α|00〉AD − β|11〉AD)

+ i|R0〉2C |R0〉1E(α|01〉AD + β|10〉AD)− i|R0〉2C |R1〉1E(α|01〉AD − β|10〉AD)

+ i|R1〉2C |R0〉1E(α|01〉AD − β|10〉AD)− i|R1〉2C |R1〉1E(α|01〉AD + β|10〉AD)

]

+ |10〉BB1

[

i|L0〉2C |L0〉1E(α|10〉AD + β|01〉AD)− i|L0〉2C |L1〉1E(α|10〉AD − β|01〉AD)

+ i|L1〉2C|L0〉1E(α|10〉AD − β|01〉AD)− i|L1〉2C |L1〉1E(α|10〉AD + β|01〉AD)

+ |L0〉2C |R0〉1E(α|11〉AD − β|00〉AD)− |L0〉2C |R1〉1E(α|11〉AD + β|00〉AD)

+ |L1〉2C |R0〉1E(α|11〉AD + β|00〉AD)− |L1〉2C |R1〉1E(α|11〉AD − β|00〉AD)

− |R0〉2C |L0〉1E(α|00〉AD − β|11〉AD) + |R0〉2C |L1〉1E(α|00〉AD + β|11〉AD)

− |R1〉2C |L0〉1E(α|00〉AD + β|11〉AD) + |R1〉2C |L1〉1E(α|00〉AD − β|11〉AD)

+ i|R0〉2C |R0〉1E(α|01〉AD + β|10〉AD)− i|R0〉2C |R1〉1E(α|01〉AD − β|10〉AD)

+ i|R1〉2C |R0〉1E(α|01〉AD − β|10〉AD)− i|R1〉2C |R1〉1E(α|01〉AD + β|10〉AD)

]

− |11〉BB1

[

− i|L0〉2C|L0〉1E(α|00〉AD − β|11〉AD) + i|L0〉2C |L1〉1E(α|00〉AD + β|11〉AD)

− i|L1〉2C|L0〉1E(α|00〉AD + β|11〉AD) + i|L1〉2C |L1〉1E(α|00〉AD − β|11〉AD)

− |L0〉2C |R0〉1E(α|01〉AD + β|10〉AD) + |L0〉2C |R1〉1E(α|01〉AD − β|10〉AD)

− |L1〉2C |R0〉1E(α|01〉AD − β|10〉AD) + |L1〉2C |R1〉1E(α|01〉AD + β|10〉AD)

− |R0〉2C |L0〉1E(α|10〉AD + β|01〉AD) + |R0〉2C |L1〉1E(α|10〉AD − β|01〉AD)

− |R1〉2C |L0〉1E(α|10〉AD − β|01〉AD) + |R1〉2C |L1〉1E(α|10〉AD + β|01〉AD)

+ i|R0〉2C |R0〉1E(α|11〉AD − β|00〉AD)− i|R0〉2C |R1〉1E(α|11〉AD + β|00〉AD)

+ i|R1〉2C |R0〉1E(α|11〉AD + β|00〉AD)− i|R1〉2C |R1〉1E(α|11〉AD − β|00〉AD)

]}

. (30)

To conclude the controlled teleportation of entangled states one needs to measure of the two states of polarization of the photons
F1 and F2 plus the control measurements (B and B1). The required appropriate rotations are displayed in TableVI .
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2C 1E Control AD AO

|L0〉2C |L0〉1E |00〉BB1
α|00〉AD − β|11〉AD I⊗ σzσx

|L0〉2C |L1〉1E |00〉BB1
α|00〉AD + β|11〉AD I⊗ σx

|L1〉2C |L0〉1E |00〉BB1
α|00〉AD + β|11〉AD I⊗ σx

|L1〉2C |L1〉1E |00〉BB1
α|00〉AD − β|11〉AD I⊗ σzσx

|L0〉2C |R0〉1E |00〉BB1
α|01〉AD + β|10〉AD I⊗ I

|L0〉2C |R1〉1E |00〉BB1
α|01〉AD − β|10〉AD I⊗ σz

|L1〉2C |R0〉1E |00〉BB1
α|01〉AD − β|10〉AD I⊗ σz

|L1〉2C |R1〉1E |00〉BB1
α|01〉AD + β|10〉AD I⊗ I

|R0〉2C |L0〉1E |00〉BB1
α|10〉AD + β|01〉AD σx ⊗ σx

|R0〉2C |L1〉1E |00〉BB1
α|10〉AD − β|01〉AD σzσx ⊗ σx

|R1〉2C |L0〉1E |00〉BB1
α|10〉AD − β|01〉AD σzσx ⊗ σx

|R1〉2C |L1〉1E |00〉BB1
α|10〉AD + β|01〉AD σx ⊗ σx

|R0〉2C |R0〉1E |00〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|R0〉2C |R1〉1E |00〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|R1〉2C |R0〉1E |00〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|R1〉2C |R1〉1E |00〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|L0〉2C |L0〉1E |01〉BB1
α|10〉AD + β|01〉AD σx ⊗ σx

|L0〉2C |L1〉1E |01〉BB1
α|10〉AD − β|01〉AD σzσx ⊗ σx

|L1〉2C |L0〉1E |01〉BB1
α|10〉AD − β|01〉AD σzσx ⊗ σx

|L1〉2C |L1〉1E |01〉BB1
α|10〉AD + β|01〉AD σx ⊗ σx

|L0〉2C |R0〉1E |01〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|L0〉2C |R1〉1E |01〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|L1〉2C |R0〉1E |01〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|L1〉2C |R1〉1E |01〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|R0〉2C |L0〉1E |01〉BB1
α|00〉AD − β|11〉AD I⊗ σzσx

|R0〉2C |L1〉1E |01〉BB1
α|00〉AD + β|11〉AD I⊗ σx

|R1〉2C |L0〉1E |01〉BB1
α|00〉AD + β|11〉AD I⊗ σx

|R1〉2C |L1〉1E |01〉BB1
α|00〉AD − β|11〉AD I⊗ σzσx

|R0〉2C |R0〉1E |01〉BB1
α|01〉AD + β|10〉AD I⊗ I

|R0〉2C |R1〉1E |01〉BB1
α|01〉AD − β|10〉AD σz ⊗ I

|R1〉2C |R0〉1E |01〉BB1
α|01〉AD − β|10〉AD σz ⊗ I

|R1〉2C |R1〉1E |01〉BB1
α|01〉AD + β|10〉AD I⊗ I

2C 1E Control AD AO

|L0〉2C |L0〉1E |10〉BB1
α|10〉AD + β|01〉AD σx ⊗ σx

|L0〉2C |L1〉1E |10〉BB1
α|10〉AD − β|01〉AD σzσx ⊗ σx

|L1〉2C |L0〉1E |10〉BB1
α|10〉AD − β|01〉AD σzσx ⊗ σx

|L1〉2C |L1〉1E |10〉BB1
α|10〉AD + β|01〉AD σx ⊗ σx

|L0〉2C |R0〉1E |10〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|L0〉2C |R1〉1E |10〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|L1〉2C |R0〉1E |10〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|L1〉2C |R1〉1E |10〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|R0〉2C |L0〉1E |10〉BB1
α|00〉AD − β|11〉AD I ⊗ σzσx

|R0〉2C |L1〉1E |10〉BB1
α|00〉AD + β|11〉AD I⊗ σx

|R1〉2C |L0〉1E |10〉BB1
α|00〉AD + β|11〉AD I⊗ σx

|R1〉2C |L1〉1E |10〉BB1
α|00〉AD − β|11〉AD I ⊗ σzσx

|R0〉2C |R0〉1E |10〉BB1
α|01〉AD + β|10〉AD I⊗ I

|R0〉2C |R1〉1E |10〉BB1
α|01〉AD − β|10〉AD σz ⊗ I

|R1〉2C |R0〉1E |10〉BB1
α|01〉AD − β|10〉AD σz ⊗ I

|R1〉2C |R1〉1E |10〉BB1
α|01〉AD + β|10〉AD I⊗ I

|L0〉2C |L0〉1E |11〉BB1
α|00〉AD − β|11〉AD I ⊗ σzσx

|L0〉2C |L1〉1E |11〉BB1
α|00〉AD + β|11〉AD I⊗ σx

|L1〉2C |L0〉1E |11〉BB1
α|00〉AD + β|11〉AD I⊗ σx

|L1〉2C |L1〉1E |11〉BB1
α|00〉AD − β|11〉AD I ⊗ σzσx

|L0〉2C |R0〉1E |11〉BB1
α|01〉AD + β|10〉AD I⊗ I

|L0〉2C |R1〉1E |11〉BB1
α|01〉AD − β|10〉AD I⊗ σz

|L1〉2C |R0〉1E |11〉BB1
α|01〉AD − β|10〉AD I⊗ σz

|L1〉2C |R1〉1E |11〉BB1
α|01〉AD + β|10〉AD I⊗ I

|R0〉2C |L0〉1E |11〉BB1
α|10〉AD + β|01〉AD σx ⊗ σx

|R0〉2C |L1〉1E |11〉BB1
α|10〉AD − β|01〉AD σzσx ⊗ σx

|R1〉2C |L0〉1E |11〉BB1
α|10〉AD − β|01〉AD σzσx ⊗ σx

|R1〉2C |L1〉1E |11〉BB1
α|10〉AD + β|01〉AD σx ⊗ σx

|R0〉2C |R0〉1E |11〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

|R0〉2C |R1〉1E |11〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|R1〉2C |R0〉1E |11〉BB1
α|11〉AD + β|00〉AD σx ⊗ I

|R1〉2C |R1〉1E |11〉BB1
α|11〉AD − β|00〉AD σzσx ⊗ I

TABLE VI. Possible results and rotations for completing thecontrolled teleportation with two controls, corresponding to caseii ). The first
column (2C) shows the possible results of measurements on the states of atomC and photon2. Second column refers to the Alice’s possible
results of measurements on photon1 and atomE. ColumnControl shows the state of controlsB andB1. AD column does the same for the
teleported stateAD. Fourth column (AO) shows the corresponding Pauli matrices representing unitary operations on the atomic state required
to complete the teleportation process.

iii) Generalization: the generalization of the controlled teleportation of entangled states can be done by using either a QWP1

or a QWP2 in the lower branch (see Fig. 7) when the scheme is implemented using odd or even number of controls, respectively.

IV. CONCLUSIONS

In summary we presented three schemes to realize controlledteleportation of atomic states via photonic Faraday rotations
in lossy optical cavities connected by optical fibers. The schemes only involve virtual excitations of the atoms and considers
low-Q cavities, ideal photodetectors, and fibers without absorption. On the other hand, the practical experimental imperfections
due to photon loss and inefficiency in the detectors turn the protocol as being probabilistic. In this respect, we can estimate
the success probability of the scheme take into account the losses mentioned above, based in Ref. [45], e.g., considering the
coupling and transmission of the photon through the single-mode optical fiber given byTf = 0.2, the transmission of each
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photon through the other optical components byTo = 0.95, the fraction of photons with the correct polarizationpπ = 0.5,
the quantum efficiency of the single-photon detector asη = 0.15, ∆Ω/4π = 0.02 as the solid angle of light collection, and
a single-photon rate by source given by75kHz. So, we estimate the success probability of the CT of superposition and CPT
asP = pBell × Tf × To × pπ × η × ∆Ω/4π ≃ 7.125 × 10−5 (consideringpBell = 0.25 as the probability of the ideal
Bell-state measurement without necessity of additional rotations), which results in one successful controlled teleportation event
every≃ 0.19s. The same estimative is obtained for the preparation of thetwo atoms entangled state. In the case of TC of
entanglement we have two fibers branches, two photon sourcesand two photodetectors. So, we estimate the success probability
asP = pBell × |Tf × To × pπ × η ×∆Ω/4π|2 ≃ 2.031× 10−8, which results in one successful event every≃ 11min.
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