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Abstract 
 

In this paper we consider the model with decoherence operators  introduced by [Brun,T.A, et.al, 

Phys.Rev.A 67 (2003) 032304] which has recently been considered in the two-dimensional setting by 

[Ampadu,C.,  Brun-Type Formalism for Decoherence in Two Dimensional Quantum Walks, 

Communication in Theoretical Physics To Appear, arXiv:1104.2061 (2011)] to obtain the limit of the 

decoherent quantum walk. 
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I. Introduction 

As is well known the physical implementation of the quantum walk faces many obstacles including  

environmental noise and imperfections collectively known as decoherence. Apart from the review  

on the decoherent quantum walk in [1], other studies on the decoherent quantum walk can be  

found in[2-26] and have been reviewed by the author of the present paper in [27]. In [28], the  

decoherent quantum random walk on the 1-dimensional integer lattice Z  is studied, leading to  

expressions for the first and second moments of the position distribution, it is also shown in the long  

time limit that the variance grows linearly with time with the diffusive character. In [27] the Brun  

type decoherence is extended to the two dimensional setting providing generalizations with wide  

range of applications. The generalized first and second moments for the decoherent quantum walk  

is obtained, the Brun formalism for the quantum walk is also treated. In the presence of broken line  

noise,  the diffusive character of the walk is studied. It is conjectured that the diffusion  



coefficient in the quantum realm varies directly as p1 , and inversely as 2p , where p is the  

probability of adjacent broken link at a given site in the walk. The conjecture if holds true implies the  

diffusion coefficient of the decoherent quantum walk is always larger than the diffusion coefficient  

 in the classical case. 

As the author of the present paper pointed out in [27], due to the complexity of the calculations, the  

pure analytic papers on the decoherent quantum walk have been given little attention in the  

literature.  Moreover in [29] it is found that the complicated form of the superoperator in [28]  

makes it difficult to obtain the limit of the decoherent quantum walk. However, this difficulty is  

overcome by analyzing the characteristic function of the position probability distribution. 

In this paper we follow the convention of obtaining the limit of the decoherent quantum walk by  

analyzing the characteristic function. This paper is organized as follows. In Section II some basic  

notions about the decoherent quantum walk is presented. Let  


 
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t

yxiq tyxPeetqR
,

)()( ),,(),(  be the characteristic function of  the position probability  

distribution ),,( tyxP . In Section III we present the main result about ),,(),,( tytxtPtyxPt  , 

t

Z
yx , , the rescaled probability mass function. We show if 1 is an eigenvalue of the 

superoperator with multiplicity 1, and there is no other eigenvalue whose modulus equals 1, then  

the characteristic function converges to a convex combination of normal distributions. In particular  

we show ),,( tyxPt  converges in distribution to a continuous convex combination of normal  

distributions. Section IV is devoted to the conclusions, there an interesting problem is proposed  

which in a sense concerns illustrating the results of Section III. 

 

 

 

 



II. Definitions 

Consider the quantum random walk on the general square lattice 2Z . Let the state space be given  

by CP HH  , where PH  denotes the position space and CH  denotes the coin space. Let the basis  

for the position space be given by  Zyxyx ,:, , and let the basis for the coin space be given by  

 DURL ,,, , where DURL ,,, represent the left, right, upward, and downward chirality  

states respectively. Let the shift operators in PH  be defined as follows: yxyxR ,1,  , 

yxyxL ,1,  , 1,,  yxyxU , and 1,,  yxyxD , where  DULR ,,,  are  

unitary shift operators on the particle position. Let DULR PPPP ,,,  be the orthogonal projections on  

the coin space CH  spanned by  DURL ,,, , where IPPPP DULR  . Let 

M  be the unitary transformation on CH , then the evolution operator of the quantum walk is given  

by          MIPDPUPLPRG DULR   . The eigenvectors yx kk ,  of  

 DULR ,,,  are given by yxekk
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yx
yx ,,

,
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, . We should remark that 
yx kkM ,  is also a  

unitary operator.  

Let  nA be a set of unital operators on CH , that is, IAA
n

nn  * . The decoherence on the coin 

subspace is defined as follows, before each unitary transformation acting on the coin, a  

measurement given by the unital operators is performed on the coin, after which a density operator  



X on CH  is transformed by 
n

nn XAAXX * . The general density operator of the quantum  
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III. Limiting distribution of coined quantum walk subject to decoherence 

Let 
 
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t

yxiq tyxPeetqR
,

)()( ),,(),(  be the characteristic function of ),,( tyxP . The  

purpose of this section is to obtain the limit theorems for the decoherent quantum walk. We should  
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where we have used the following property of the dirac delta function  
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where 1z  and )(ˆ
CHLO . Note that the generating function is well defined by Lemma 1 below.  

We  should remark that the proof is similar to Lemma 3.1 in Fan et.al [29], therefore we omit  it. 

Lemma 1: Suppose  entriescomplexwithmatricesunitaryofspaceM 44 , and  nA is a set of 

unital operators. Let  be an eigenvalue of qkkqkk yyxx
L  ,;, , then 1 . 
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 converges inside 1z , and  



 qkkqkk yyxx
zLI  ,;,   has no poles  inside the disk 1z . By Lemma 1 and  

))((,;, Cqkkqkk HLLzLI
yyxx

  we have  dz
z

qzG

i
e

rz

tt

yxiq






 
1

1

)( ),(

2

1


 for some 10  r . Since a 

basis for )( CHL is given by   

















xxzzyyyzxzxyozoy

oxzyzxyxzoyoxooo





,,,,,,,

,,,,,,,,
,  where o ,  

x , y , and z  are the Pauli matrices. We can write Ô  as a linear combination of the basis elements. 
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the exception of 0 , the traces of the other Pauli matrices are zero. Since the elements in the basis are  

in a tensor product, the decomposition implies the trace of 00    is four, whilst the traces of the  

other matrices is zero. Hence when taking the trace in 
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terms of the basis for )( CHL , then we have the following lemma whose proof is similar to Lemma 3.2  

in  Fan et.al  [29], therefore we omit it. We should remark that in Lemma 2 below we have given the  

matrix representation for qkkqkk yyxx
L  ,;,  in terms of the tensor product of the matrix representation for  



vkkL ,  as given in Lemma 3.2 of the paper of Fan et.al [29]. However to get the matrix in Lemma 2 below  
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Lemma 2:  Suppose  entriescomplexwithmatricesunitaryofspaceM 44 , and  nA is a set  
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since Ô  is a density operator. Since )(0 qz is a root of Adet , then 0)),(( 0 qqzg . So 

)(
),(),()),((

0 0

)()(

0

00

qz
z

qzg

q

qzg

g

zqzg

qzzqzz



















. When ,0q 1)0(0 z , so  

)0(
)0,(),1(

0 0

10

z
z

zg

q

qg

zq














. Now consider the matrix A at 1z  we see that  if 16,13,4,1i ,  

then 0)( qli . So 1,16

2

1,131,41,1

2 sin)(cossin)cos1(),1( qAAAqqiAqqg  . Since the cofactor 

01,161,131,4  AAA , we see that 0
),1(

0






q
q

qg
. Since 0)0( iz  for 3,2,1i , it follows that 

0
),(

0

0 




zz
z

qzg
, hence since 0

),1(

0






q
q

qg
, it follows that 0)0(

)0,(
0

1








z
z

zg

z

 iff 0)0( z  

So, 0)0( z  and 1
)0,1(

)0,1(2






z

g

h . From the Dominated Convergence theorem we can get 















2

2
0

]2,0[

)0(

24

1
,lim




yx

qz

t
dkdket

t

q
R  for ]2,0[ q , where ),( tqR is the characteristic function  



of the probability distribution. From this and the Cramer-Levy Theorem [30] we see that ),( yxPt   

converges to a continuous convex combination of normal distributions. 

 

IV. Concluding Remarks 

In this paper we have shown that ),,( tyxPt  converges to a continuous convex combination of  

normal distributions, under certain eigenvalue conditions. It is an interesting problem to analyze the  

spectrum of the superoperator 
yyxx kkkkL ,;,  and obtain the necessary and sufficient conditions for the  

unitary transformation M  to satisfy the eigenvalue conditions. Another problem that would be of  

interest to experimentalist  is  the performance of the theoretical distribution (limiting distribution)  

in experiments.  Below we discuss the Hadamard walk on the square lattice using neutral atoms  

trapped in periodic optical potentials to measure the distribution. Since the internal states of the  

atom are influenced by decoherence resulting from example uncontrollable phase shifts,  

imperfections in the manipulation by means of laser pulses as well as fluctuations in the trapping  

potential during lattice shifts, using neutral atoms trapped in optical lattices is a good scenario. In a  

sense we are roughly proposing parts of the work of Dur et.al [20] to gain insight on how the  

theoretical distribution performs in experiments. Let the coin operator be the standard two- 

dimensional Hadamard operator, and consider a single neutral atom at position )0,0(),( 00 yx   

and the case where the lattice sites )0,0( , )1,0( , )0,1( , and )1,1( , which traps the internal states  

00 , 01 , 10 , 11 , respectively, of the neutral atom, moves with constant velocities 0leftv ,  

0rightv , 0upv , and 0downv , respectively, to the left, right, upward, and downward directions  

respectively. The initial state of the lattice is such that the minimum of a potential well is located at  

position )0,0(),( 00 yx  at 00 t . The lattice movements are used to implement the shift  

operator, while laser pulses allow one to manipulate the internal state of the atom and thus to  

select the corresponding trapping potential (and therefore the direction of the movement). Given  



that the atom is initially prepared in state  11100100
2

1
 ii  at position )0,0(),( 00 yx  

the application of the Hadamard operator to the internal state of the atom at times t  readily  

implements the quantum random walk  by adapting the set up in Dur et.al [20] to the square lattice.  

The spatial probability distribution of the atom at time t  corresponds to the theoretical distribution.  

The distribution can be measured using a simple fluorescence measurement with several repetitions  

of the experiment. 
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