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Effect of decoherence and correlated noise on the entanglement of X-type state of the

Dirac fields in the non-inertial frame is investigated. A two qubit X-state is considered to

be shared between the partners where Alice is in inertial frame and Rob in an accelerated

frame. The concurrence is used to quantify the entanglement of theX-state system influenced

by time correlated amplitude damping, depolarizing and bit flip channels. It is seen that

amplitude damping and bit flip channels heavily influence the entanglement of the system

as compared to the depolarizing channel. It is found possible to avoid entanglement sudden

death (ESD) for all the channels under consideration for µ > 0.75 for any type of initial

state. No ESD behaviour is seen for depolarizing channel in the presence of correlated noise

for entire range of decoherence parameter p and Rob’s acceleration r. It is also seen that the

effect of environment is much stronger than that of acceleration of the accelerated partner.

Furthermore, it is investigated that correlated noise compensates the loss of entanglement

caused by the Unruh effect.
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I. INTRODUCTION

Quantum entanglement is the major resource in quantum information science and can be used

as a potential source for quantum teleportation of unknown states [1], quantum key distribution

[2], quantum cryptography [3] and quantum computation [4, 5]. Entanglement sudden death for

bipartite and multipartite systems has been the main focus of researchers during recent years [6-11].

Another important feature, entanglement sudden birth (ESB) has also been investigated where the

initially unentangled qubits can be entangled after a finite evolution of time [12-13]. Recently,

entanglement behavior in non-inertial frames was investigated by Alsing et al. [14]. They studied

the fidelity of teleportation between relative accelerated partners. Quantum information in a

relativistic setup has become an interesting topic of research during recent years [15-27].

Since, quantum systems are influenced by their environment that may results in the non-unitary

dynamics of the system. Therefore, the environmental effect on a quantum system gives rise to the

http://arxiv.org/abs/1301.2759v1
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phenomenon of decoherence that causes an irreversible transfer of information from the system to

the environment [28-29]. Study of decoherence in non-inertial frames have been investigated for

bipartite and multipartite systems by number of authors [30-33], where it is shown that entangle-

ment is degraded by the acceleration of the inertial observers. Recently, a qubit-qutrit system in

non-inertial frames has been analyzed under decoherence [34], where it is shown that ESB does

occur in case of depolarizing channel. On the other hand, quantum channels with memory [35-39]

provide a natural theoretical framework for the study of any noisy quantum communication. The

main focus of this work is to study the entanglement dynamics in the presence of correlated noise

as it has not been studied yet in non-inertial frames.

In this paper, decoherence and correlated noise effects are investigated for X-type states in

non-inertial frames by considering using amplitude damping, depolarizing and bit flip channels.

The two observers Alice and Rob share an X-type state in non-inertial frames. Alice is considered

to be stationary whereas Rob moves with a uniform acceleration. Two important features of

entanglement, ESD and ESB are investigated. No ESD occurs in case of depolarizing channel in

the presence of correlated noise.

II. OPEN SYSTEM DYNAMICS OF NON-INERTIAL OBSERVERS UNDER

CORRELATED NOISE

The evolution of a system and its environment can be described by

USE(ρS ⊗ |0〉E 〈0|)U †
SE (1)

where USE represents the evolution operator for the combined system and |0〉E corresponds to the

initial state of the environment. By taking trace over the environmental degrees of freedom, the

evolution of the system can be obtained as

L(ρS) = TrE{USE(ρS ⊗ |0〉E 〈0|)U †
SE}

=
∑

µ
E 〈µ|USE|0〉EρSE 〈0|)U †

SE |µ〉E (2)

where |µ〉E represents the orthogonal basis of the environment and L is the operator describing

the evolution of the system. The above equation can also be written as

L(ρS) =
∑

µ
MµρSM

†
µ (3)
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where Mµ = E 〈µ|USE|0〉E are the Kraus operators as given in Ref. [40]. The Kraus operators

satisfy the completeness relation

∑

µ
M †

µMµ = 1 (4)

The decoherence process can also be represented by a map in terms of the complete system-

environment state. The dynamics of a d-dimensional quantum system can be represented by the

following map [41]

USE |ξl〉S ⊗ |0〉E =
∑

k
Mk|ξl〉S ⊗ |k〉E (5)

where {|ξl〉S} (l = 1, ....., d) is the complete basis for the system and

|ξ1〉S ⊗ |0〉E → M0|ξ1〉S ⊗ |0〉E + ..... +Md2−1|ξ1〉S ⊗ |d2 − 1〉E

|ξ2〉S ⊗ |0〉E → M0|ξ2〉S ⊗ |0〉E + ..... +Md2−1|ξ2〉S ⊗ |d2 − 1〉E

.

.

.

|ξd〉S ⊗ |0〉E → M0|ξd〉S ⊗ |0〉E + ..... +Md2−1|ξd〉S ⊗ |d2 − 1〉E (6)

Let Alice and Rob (the accelerated observer) share the following X-type initial state

ρAR =
1

4

(

IAR +

3
∑

i=0

ciσ
(A)
i ⊗ σ

(R)
i

)

(7)

where IAR is the identity operator in a two-qubit Hilbert space, σ
(A)
i and σ

(R)
i are the Pauli

operators of the Alice’s and Rob’s qubit and ci (0 ≤ |ci| ≤ 1) are real numbers satisfying the unit

trace and positivity conditions of the density operator ρAR. In order to study the entanglement

dynamics, different cases for initial state are considered, for example, the general initial state

(|c1| = 0.7, |c2| = 0.9, |c3| = 0.4), the Werner initial state (|c1| = |c2| = |c3| = 0.8), and Bell basis

state (|c1| = |c2| = |c3| = 1).

Let the Dirac fields, as shown in Refs. [42, 43], from an inertial perspective, can be described

by a superposition of Unruh monochromatic modes |0U 〉 = ⊗ω|0ω〉U and |1U 〉 = ⊗ω|1ω〉U with

|0ω〉U = cos r|0ω〉I |0ω〉II + sin r|1ω〉I |1ω〉II (8)

and

|1ω〉M = |1ω〉I |0ω〉II (9)
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where cos r = (e−2πωc/a + 1)−1/2, a is the acceleration of the observer, ω is frequency of the Dirac

particle and c is the speed of light in vacuum. The subscripts I and II of the kets represent the

Rindler modes in region I and II, respectively, as shown in the Rindler spacetime diagram (see Ref.

[31], Fig. (1)). By using equations (8) and (9), equation (7) can be re-written in terms of Minkowski

modes for Alice (A) and Rindler modes for Rob (R̃). The single-mode approximation is used in

this study, i.e. a plane wave Minkowski mode is assumed to be the same as a plane wave Unruh

mode (superposition of Minkowski plane waves with single-mode transformation to Rindler modes).

Therefore, Alice being an inertial observer while her partner Rob who is in uniform acceleration,

are considered to carry their detectors sensitive to the ω mode. To study the entanglement in the

state from their perspective one must transform the Unruh modes to Rindler modes. Hence, Unruh

states must be transformed into the Rindler basis. Let Rob detects a single Unruh mode and Alice

detects a monochromatic Minkowski mode of the Dirac field. Considering that an accelerated

observer in Rindler region I has no access to the field modes in the causally disconnected region

II and by taking the trace over the inaccessible modes, one obtains the following density matrix

ρAR̃ =
1

4

















(1 + c3) cos
2 r 0

0 (1 + c3) sin
2 r + (1− c3)

0 c+ cos r

c− cos r 0

0 c− cos r

c+ cos r 0

(1− c3) cos
2 r 0

0 (1− c3) + (1 + c3) sin
2 r

















(10)

where c+ = c1 + c2 and c− = c1 − c2.

Since noise is a major hurdle while transmitting quantum information from one party to other

through classical and quantum channels. This noise causes a distortion of the information sent

through the channel. It is considered that the system is strongly correlated quantum system, the

correlation of which results from the memory of the channel itself. The action of a Pauli channel

with partial memory on a two qubit state can be written in Kraus operator formalism as [35]

Aij =
√

pi[(1 − µ)pj + µδij]σi ⊗ σj (11)

where σi (σj) are usual Pauli matrices, pi (pj) represent the decoherence parameter and indices i

and j runs from 0 to 3. The above expression means that with probability µ the channel acts on the
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second qubit with the same error operator as on the first qubit, and with probability (1−µ) it acts

on the second qubit independently. Physically the parameter µ is determined by the relaxation

time of the channel when a qubit passes through it. The action of a two qubit Pauli channel

when both the qubits of Alice and Rob are streamed through it, can be described in operator sum

representation as [46]

ρf =

1
∑

k1, k2=0

(Ak2 ⊗Ak1)ρin(A
†
k1

⊗A†
k2
) (12)

where ρin represents the initial density matrix for quantum state and Aki are the Kraus operators

as expressed in equation (11). A detailed list of single qubit Kraus operators for different quantum

channels with uncorrelated noise is given in table 1. Whereas, the Kraus operators for amplitude

damping channel with correlated noise are given by Yeo and Skeen [36]

Ac
00 =

















cosχ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















, Ac
11 =

















0 0 0 0

0 0 0 0

0 0 0 0

sinχ 0 0 0

















(13)

where, 0 ≤ χ ≤ π/2 and is related to the quantum noise parameter as

sinχ =
√
p (14)

The action of such a channel with memory can be written as

π → ρ = Φ(π) = (1− µ)
1
∑

i,j=0

Au
ijπA

u†
ij + µ

1
∑

k=0

Ac
kkπA

c†
kk (15)

where the superscripts u and c represent the uncorrelated and correlated parts respectively. The

Kraus operators are of dimension 22 and are constructed from single qubit Kraus operators by

taking their tensor product over all n2 combinations

Ak = ⊗
ki
Aki (16)

where i is the number of Kraus operator for a single qubit channel. The final state of the system

after the action of the channel can be obtained as

ρf = Φp,µ(ρA,I) (17)

where Φp,µ is the super-operator realizing the quantum channel parametrized by real numbers

p and µ. Since, the entanglement dynamics of the bipartite subsystems (especially the system-

environment dynamics) is of interest here, therefore, only bipartite reduced matrices are considered.
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It is assumed that both Alice and Rob’s qubits are influenced by the time correlated environment.

The entanglement of a two-qubit mixed state ρ in a noisy environment can be quantified by the

concurrence as defined by [45]

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, λi > λi+1 > 0 (18)

where λi are the square roots of the eigenvalues of the matrix ρf ρ̃f , with ρ̃f being the spin flip

matrix of ρf and is given by

ρ̃f = (σy ⊗ σy)ρf (σy ⊗ σy) (19)

where σy is the usual Pauli matrix. Since the density matrix under consideration has X-type

structure, therefore a simpler expression for the concurrence [46] can be used

C(ρ) = 2max{0, C̃1(ρ), C̃2(ρ)} (20)

where C̃1(ρ) =
√
ρ14ρ41 −

√
ρ22ρ33 and C̃2(ρ) =

√
ρ23ρ32 −

√
ρ11ρ44. The reduced-density matrix of

the inertial subsystem A and the non-inertial subsystem R̃, can be obtained by taking the partial

trace of ρAR̃EAE
R̃

= ρAR̃ ⊗ ρAR̃EAE
R̃

over the degrees of freedom of the environment i.e.

ρAR̃ = TrEAE
R̃
{ρAR̃EAE

R̃

} (21)

which yields the concurrence for the X-state structure using equation (20), under amplitude damp-

ing channel as

CAD(ρ) =
1

8

























2
√

c+2(p(µ − 1) + 1)2 cos2(r)

−

√

√

√

√

√

√

√

√

√

√

√





2(c3 + 1)pµ cos2(r) + ((p − 2)p(µ − 1)− 1)×
(c3 + (c3 + 1) cos(2r)− 3)



×




(p + 1)(µ − 1)(c3(p− 1) + (c3 + 1) cos(2r)(p − 1)

−3p− 1)− 2(c3 + 1)(p − 1)µ cos2(r)





























(22)
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The concurrence of X-state system in case of depolarizing channel becomes

CDep(ρ) =
1

16

























































√

√

√

√

√

√

√

√

√

√

√

− cos2(r)





(c3 + 1)p(c−µ+ c+(−4p

+(4p− 7)µ + 4)) cos2(r)− 2c+(p(µ − 2) + 4)



×




(c3 + 1)p(c−µ+ c+(−4p + (4p− 7)µ + 4)) cos2(r)

−2
(

c+
(

4(µ − 1)p2 + (6− 8µ)p− 4
)

+ c−pµ
)





−2

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

√

cos2(r)





(

−4(µ− 1)p2 + 8(µ − 1)p + 4
)

c−
2 − c+pµc−

+(c3 + 1)2(p(µ− 4) + 4) cos2(r) + 4(c3 + 1)p





















1
4(c3 + 1)2(p(µ− 4) + 4) cos4(r)

−1
4





4
(

(µ − 1)p2 − 2(µ − 1)p − 1
)

c−
2
+ c+pµc−

+4c3(p(µ− 3) + 4) + 4(p(µ − 3) + 4)



×

cos2(r) + p(µ− 2) + 4









































































(23)

and the concurrence of the X-state system under the influence of bit flip channel reads

CBF(ρ) =

√

√

√

√

√





c+
(

2(µ − 1)p2 − 2(µ − 1)p − 1
)

+2c−p(−µp+ p+ µ− 1)





2

cos2(r)

−1

2

√

√

√

√

√

(

2p− (c3 + 1)(2p − 1) cos2(r)
)

(

(c3 + 1)(2p − 1) cos2(r)− 2p+ 2
)

(24)

where the super-scripts AD, Dep and BF correspond to amplitude damping, depolarizing and bit

flip channels respectively. The results are consistent with Refs. [46, 47] and can be easily verified

from the expressions (equations 22-24) by setting r = µ = 0 and µ = 0 respectively.

III. DISCUSSIONS

Analytical expressions for the concurrence are calculated for X-type initial state in non-inertial

frames influenced by amplitude damping, depolarizing and bit flip channels. In figures 1 and 2, the

concurrence is plotted as a function of memory parameter µ for p = 0.3 and p = 0.7 respectively, for

amplitude damping, depolarizing and bit flip channels. The first panel (column-wise) corresponds

to Bell states, whereas the second and third panels correspond to Werner and general initial states,

respectively. It is seen that for Bell basis states, entanglement sudden death can be avoided in case

of amplitude damping and depolarizing channels in the presence of correlated noise. However, it
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is possible to fully avoid ESD for all the channels under consideration for µ > 0.75 (which can be

seen from the figure). On the other hand, ESD can also be avoided for Werner and general initial

states as well in case of amplitude damping channel at higher degree of correlations. As the value

of acceleration r increases, the entanglement degradation is enhanced which is more prominent

for lower range of memory parameter µ. It is also seen that bit-flip noise heavily influences the

entanglement of the system as compared to the amplitude damping and depolarizing channels for

lower level of decoherence. Whereas at higher level of decoherence, damping effect of amplitude

damping channel becomes more prominent (see figure 2). Furthermore, it can be seen that initial

state plays an important role in the system-environment dynamics of entanglement in non-inertial

frames.

In figure 3, the concurrence is plotted as a function of decoherence parameter p for µ = 0.5

for amplitude damping, depolarizing and bit flip channels. It can be seen that the concurrence is

heavily damped by different environments. This effect is much prominent for amplitude damping

and bit flip channels. It is seen that maximum entanglement degradation occurs at p = 0.5 in

case of bit flip channel and entanglement rebound process take place for p > 0.5. Furthermore, no

ESD behaviour is seen for depolarizing channel in the presence of correlated noise. The degree of

entanglement degradation enhances as one shifts from Bell type initial state to the case of general

initial state. However, it saturates for infinite acceleration limit (r = π/4).

In figures 4 and 5, the concurrence is plotted as a function of Rob’s acceleration r and decoher-

ence parameter p with µ = 0.3 and 0.7 for amplitude damping, depolarizing and bit flip channels.

The upper panel (row-wise) corresponds to Bell states, whereas the middle and lower panels cor-

respond to Werner and general initial states respectively. From figure 5, it can be seen that ESD

can be fully avoided for all the three types of initial states under depolarizing and bit flip noises at

50% quantum correlations. On the other hand, ESD behaviour is seen only in case of amplitude

damping channel for p > 0.75. Therefore, different environments affect the entanglement of the

system differently. In figure 6, the concurrence is plotted as a function of memory parameter µ and

decoherence parameter p with r = π/4 for amplitude damping, depolarizing and bit flip channels.

It is shown that maximum ESD occurs in case of amplitude damping channel. However, ESD can

be avoided for depolarizing channel for µ > 0 even for maximum value of decoherence i.e. p = 1.
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IV. CONCLUSIONS

Environmental effects on the entanglement dynamics of Dirac fields in non-inertial frames is

investigated by consideringX-type initial state shared between the two partners. It is assumed that

the Rob is in accelerated frame moving with uniform acceleration whereas Alice is the stationary

observer. The concurrence is used to investigate the decoherence and correlated noise effects on the

entanglement of the system. Different initial states are considered such as Bell basis, Werner type

and general initial states. It is seen that in case of Bell basis states, entanglement sudden death

can be avoided for amplitude damping and depolarizing channels in the presence of correlated

noise. Whereas, for Werner like and general initial states, the entanglement sudden death occurs

more rapidly as the value of decoherence parameter p and Rob’s acceleration r increase. Therefore,

the initial state plays an important role in the system-environment dynamics of entanglement in

non-inertial frames. It is shown that bit-flip channel and amplitude damping channels heavily

influence the entanglement of the system as compared to the depolarizing channel. It is possible to

avoid ESD for all the channels under consideration for µ > 0.75 irrespective of the type of initial

state considered. The effect of environment is much stronger than that of Rob’s acceleration r.

Furthermore, no ESD occurs for depolarizing channel for any value of p and r, in the presence of

correlated noise. In conclusion, correlated noise compensates the loss of entanglement caused by

the Unruh effect.
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Figures captions
Figure 1. (Color online). The concurrence is plotted as a function of memory parameter µ for

p = 0.3 for amplitude damping, depolarizing and bit flip channels, where the abbreviations AD,

Dep and BF correspond to amplitude damping, depolarizing and bit flip channels respectively.

Figure 2. (Color online). The concurrence is plotted as a function of memory parameter µ for

p = 0.7 for amplitude damping, depolarizing and bit flip channels.

Figure 3. (Color online). The concurrence is plotted as a function of decoherence parameter p

for µ = 0.5 for amplitude damping, depolarizing and bit flip channels.

Figure 4. (Color online). The concurrence is plotted as a function of Rob’s acceleration, r and

decoherence parameter, p with µ = 0.3 for amplitude damping, depolarizing and bit flip channels.

Figure 5. (Color online). The concurrence is plotted as a function of Rob’s acceleration, r and

decoherence parameter, p with µ = 0.7 for amplitude damping, depolarizing and bit flip channels.

Figure 6. (Color online). The concurrence is plotted as a function of memory parameter, µ and

decoherence parameter, p with r = π/4 for amplitude damping, depolarizing and bit flip channels.

Table Caption
Table 1. Single qubit Kraus operators for amplitude damping, depolarizing and bit flip channels

where p represents the decoherence parameter.

TABLE I: Single qubit Kraus operators for amplitude damping, depolarizing and bit flip channels where p

represents the decoherence parameter.

Amplitude damping channel A0 =





1 0

0
√
1− p



 , A1 =





0
√
p

0 0





Depolarizing channel
A0 =

√

1− 3p

4
I, A1 =

√

p

4
σx

A2 =
√

p

4
σy, A3 =

√

p

4
σz

Bit flip channel A0 =
√
1− pI, A1 =

√
pσx
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FIG. 1: (Color online). The concurrence is plotted as a function of memory parameter µ for p = 0.3 for

amplitude damping, depolarizing and bit flip channels.
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FIG. 2: (Color online). The concurrence is plotted as a function of memory parameter µ for p = 0.7 for

amplitude damping, depolarizing and bit flip channels.
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FIG. 3: (Color online). The concurrence is plotted as a function of decoherence parameter p for µ = 0.5 for

amplitude damping, depolarizing and bit flip channels.
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FIG. 4: (Color online). The concurrence is plotted as a function of Rob’s acceleration, r and decoherence

parameter, p with µ = 0.3 for amplitude damping, depolarizing and bit flip channels.
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FIG. 5: (Color online). The concurrence is plotted as a function of Rob’s acceleration, r and decoherence

parameter, p with µ = 0.7 for amplitude damping, depolarizing and bit flip channels.
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FIG. 6: (Color online). The concurrence is plotted as a function of memory parameter, µ and decoherence

parameter, p with r = π/4 for amplitude damping, depolarizing and bit flip channels.
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