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We numerically investigate the performance of atomic transport in optical microtraps via the so
called spatial adiabatic passage technique. Our analysis is carried out by means of optimal control
methods, which enable us to determine suitable transport control pulses. We investigate the ultimate
limits of the optimal control in speeding up the transport process in a triple well configuration for
both a single atomic wave packet and a Bose-Einstein condensate within a regime of experimental
parameters achievable with current optical technology.
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I. INTRODUCTION

The coherent control of matter waves has become a
very relevant research topic with significant technologi-
cal applications such as in atom lasers [1–3] and quan-
tum information processing (QIP) [4], to only cite a few.
Indeed, very recently, experimental demonstrations with
ultracold atoms in two-dimensional (2D) optical lattices,
of single quantum bit (qubit) rotations [5], single site
addressability [6, 7], and single atom detection [8, 9],
with very high fidelities, have been reported. One of
the current most important goals of QIP is to go be-
yond the manipulation of a handful of qubits since the
main challenge is to build scalable quantum hardware
where several thousands of qubits are coherently manip-
ulated within the relaxation times of the system [10].
It has been also understood that the practical realiza-
tion of QIP requires to devise new architectures. Indeed,
several schemes for two-qubit quantum gates implemen-
tations based on atomic systems proposed in the past
can be, at least in principle, realized in experiments, but
they may present several shortcomings when building a
scalable quantum computing hardware (see Ref. [11] for
a review on QIP with neutral particles). Moreover, in
order to name a QIP system “scalable”, it is also impor-
tant that the resources required to control the quantum
system, typically classical devices (e.g., laser fields, re-
frigerators), are scalable as well [12].

Paradigmatic examples of QIP are the Cirac-Zoller [13]
and the Mølmer-Sørensen [14] ion quantum computers,
which have been proven to be powerful schemes to ex-
perimentally realize small quantum algorithms [15–17]
or to engineer quite exotic entangled states (up to 14
qubits), like Werner [18] or Greenberger-Horne-Zeilinger
states [19, 20]. These schemes, however, present rather
difficult technical problems when hundreds or even thou-
sands of ions participate in the collective motion (e.g,
decoherence of motional modes, sensitivity to electric
noise [21]). Thus, currently, a big effort is made in the
design and practical realization of new schemes that are
actually scalable. For instance, in Ref. [22] it has been

proposed an ion quantum processor architecture, where
some areas of the chip processor are used only to store
the information, and others to manipulate it. Such a
design requires to transport an ion from one location
to another one in the chip preserving its quantum me-
chanical coherence. A similar problem is encountered for
QIP implementations with neutral atoms either in opti-
cal lattices [23–25] or in microwave atom chips [26, 27].
Atoms trapped in optical lattices can be efficiently pre-
pared via the superfluid Mott insulator quantum phase
transition [28, 29], and single sites addressed [6, 7], but
the realization of quantum gates between qubits located
in far away lattice sites can be a serious problem for a
scalable neutral-atom-based quantum processor. Solu-
tions to this issue can be afforded, for instance, by aux-
iliary atoms that can be efficiently transported in state-
independent periodic external traps [30] or by using op-
tical tweezers [31].
A major underlying concept of these QIP paradigms

is the coherent transport of ions or atoms in such a way
that they mediate the operation of quantum gates be-
tween spatially distant qubits. The needed transport
time, however, has been estimated to be about 95% of
the time used for carrying out the whole quantum com-
putation [32]. It is therefore imperative to reduce the
time needed to transport an atom or ion from the quan-
tum memory to the processing units and, therefore, to
engineer robust control transport pulses. In this respect,
optimal control theory is a prominent candidate for a
drastic improvement of the design of accurate QIP pro-
tocols, and, recently, several theoretical investigations
on the optimal transport of both a single atom and an
atomic ensemble have been undertaken [33–36]. Besides
this, very recently, control pulses numerically obtained
by using iterative optimization algorithms have been ex-
perimentally applied, with great success, in order to effi-
ciently transfer a one-dimensional (1D) degenerate Bose
gas from the transverse ground to the lower excited state
of a waveguide potential [37]. This result shows the po-
tential offered by optimal control methods to engineer
current experiments of ultra-cold atoms.
In this work we investigate the ultimate limits of the
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transport of neutral atoms in optical microtrap arrays by
means of numerical optimization methods. Specifically,
we are interested in the spatial adiabatic passage (SAP)
protocol [38], the matter wave analogue of the stimulated
Raman adiabatic passage (STIRAP) technique used in
quantum optics to transfer the population between two
atomic internal levels [39]. The SAP technique consists
in adiabatically following an energy eigenstate of the sys-
tem, the so-called spatial dark state, that only involves
the vibrational ground states of the two extreme wells
of a triple-well potential (see Fig. 1). The spatial dark
state presents at all times a node in the central region
such that the middle-well population is almost negligi-
ble throughout the transport process. Therefore, the
SAP protocol enables to transport an atom from a lat-
tice site to the next-nearest-neighbor without populating
the nearest-neighbor site (the middle well in Fig. 1). If
one atom is present in the middle trap, the SAP tech-
nique can be used to implement a single atom diode or
a transistor [40]. In addition, this transport technique
may allow to reduce the complexity of several quantum
computing architectures [7, 26, 41–43]. In fact, compared
to the tunneling induced oscillation between two adjacent
traps, such technique is more robust against variations of
the system parameters and requires less precise control
of the distance and timing. Three-level atom optics tech-
niques [38], such as the SAP protocol, allow also to create
superpositions (spatial dark states) of matter waves be-
tween two separated sites of the lattice, useful for appli-
cations in atomic interferometry, or to inhibit the tunnel-
ing among lattice sites, therefore allowing to create con-
ditional phase shifts for quantum logic, or to transport
an empty site [38]. We also mention, that, recently, the
implementation of the SAP protocol for radio-frequency
traps [44–46] within the three mode approximation has
been investigated [47], and that such technique could be
even employed for the ion transport in segmented micro-
traps [48, 49].

Beside this, we will investigate the transport of a Bose-
Einstein condensate (BEC) in relation to recent experi-
ments with optical dipole traps [50–52]. We note that a
similar study has been carried out in Ref. [33], where the
optimal transport of a BEC in magnetic microtraps, like
the ones produced with atom chips [4], has been investi-
gated, and that, very recently, the optimal control pulses
for harmonically trapped BECs have been analytically
determined [36]. We underscore that, while the goal of
those investigations was to transfer a BEC between spa-
tially separated locations, here, in addition to this goal,
we aim at minimizing the occupancy of the middle well
in a triple-well configuration, as showed in Fig. 1, by
following as much as possible the spatial dark state of
the trapping potential. This additional constraint is the
main signature of the SAP protocol.
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Figure 1. (Color online). Upper panel: Initial (black thick
line) and final (blue thin line) potential configuration for step
1 of the transport process with trap separation 6.5 µm, beam
waist 2w = 1.3µm, potential depth V0 = kB × 86 nK, and
trap frequency ωx =

√

4V0/mσ2 = 2πνx ≃ 2π × 711 Hz.

The initial ground state wave function ψ0(x) ≡ φ
(1)
−1(x) (red)

of the left well is also displayed. Lower panel: Initial and
final potential configuration (same as the blue thin line of
the upper panel) for the SAP process. The goal wave func-

tion ψ′
g(x) ≡ φ

(2)
−1(x) (bright grey) of step 1 is shown. This

state also corresponds to the initial wave function of the SAP

process, whose goal wave function is ψg(x) ≡ φ
(2)
1 (x) (dark

green), superimposed on the right well of the lower panel.
The horizontal black arrows indicate the transport direction.

II. OPTICAL DIPOLE MICROTRAPS

We consider a (transverse) potential, where either a
single atom or BEC is trapped, given by the following
analytical expression

V (x, t) = V0

{

1−
1
∑

k=−1

vk(t) exp

[

− (x− kdk(t))
2

2w2

]

}

,

(1)
where V0 represents the depth of the three Gaussian
dipole traps, with 2w being the laser beam waist, d−1(t)
represents the distance between the central trap and the
left trap, d1(t) is the distance between the central trap
and the right trap, while the central trap remains at
d0(t) ≡ 0 ∀t ∈ [0, T ]. Here T is the time needed to
transport the system of interest (i.e., an atom or a BEC)
initially prepared in the ground state of the trap on the
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left (centered in −|x′0|) to the ground state of the trap
on the right (centered in |x′0|). As outlined above, we
shall first consider a 1D scenario, but later we shall also
study the influence of the dimensionality on the transport
performance. We note that optical dipole traps, as the
ones of Ref. [51], can be designed to form a 2D lattice.
The x − y plane, that defines the lattice, has a weaker
confinement than the (vertical) axial direction, thereby
defining a “pancake” geometry. It is in the (transverse)
x− y plane that the transport occurs and because of this
we refer to the potential (1) along x as transverse (in our
study the trap frequencies in the x and y directions will
be assumed to be equal).

In Fig. 1 the potential is illustrated, where experimen-
tally realistic parameters (i.e., potential depth, trap sep-
aration, and beam waist) have been considered for 85Rb
atoms. Due to the large (initial) separation between the
trap minima of the lattice [x′0 = 6.5µm, see Fig. 1 (top)],
no tunneling is expected to happen until the traps are
closer. The SAP transport is split and optimized in three
different stages. Firstly, in a time T1, the initial atomic
state (the ground state of the left well) is moved from
x′0 = −6.5µm to x0 = −2.5µm, i.e., from the left well of
the initial trap configuration (thick black line) given in
Fig. 1 (top) to the left well of the potential of the upper
panel of Fig. 1 (blue thin line). Secondly, the atomic sys-
tem is brought, in a time T2, from the left well centered at
x0 = −2.5µm to the right one centered at x0 = 2.5µm
(see blue line of the lower panel of Fig. 1). The third
step consists in bringing the system from the right well
centered at x0 = 2.5µm to the right well centered at
x′0 = −6.5µm of the potential displayed in Fig. 1 (top),
which is equivalent to reversing the first step of the pro-
cess. Hence, the total transport time is T = 2T1 + T2. It
is in the second step that the SAP process takes place.
Since at the beginning the atoms are quite far apart,
the direct application of the SAP technique would sim-
ply slow down the whole transport process, because ini-
tially no tunneling would take place. Instead, with the
above outlined procedure, the first step can be sped up
as much as possible until the so-called quantum speed
limit is reached, that is, the minimum time required to
evolve a quantum system from an initial state to an other
orthogonal state [53–55].

Finally, we note that a crucial condition for the re-
alization of SAP is that the initial and final states in-
volved during the transport process should be in reso-
nance. This requirement can be fulfilled by fixing at all
times the minima of the potential at the same energy
level, through the control of the time-dependent param-
eters v−1(t), v1(t) [v0(t) ≡ 1] (see also Fig. 2), as well
as by fixing the maxima of the triple well configuration
to the same energy level, through the control of w, that
is, the beam waist (see the appendix for the analytical
expressions of v±1). The control of the latter, however,
would require beam waist values below the actual experi-
mentally achievable limit [51], and therefore it will not be
considered in our study. Hence, in our analysis we have
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Figure 2. (Color online). Potentials at time t = T2/2:
the blue (solid) line shows the potential when v±1 are time-
dependent, whereas the magenta (dashed) line when v±1 are
time-independent. The potential minima have been lifted by
about 0.33hνx and 0.44hνx, respectively. The symmetry of
the potentials is due to the fact that, at that time, the two
outer traps are equidistant from the centre x = 0, that is, a
distance almost equal to the minimal allowed trap separation
δx0 = 1.43µm. The rest of trap parameters are as in Fig. 1.

fixed w to the minimum experimentally achievable value
(i.e., 0.65 µm), which enables us to prepare the atoms,
before the transport, in a lattice configuration with min-
imum periodicity.

III. SINGLE ATOM TRANSPORT

In this section we analyze the transport of a single
trapped atom in the absence of a thermal or quantum
bath. The atomic state obeys the Schrödinger equation
of motion. In order to speed up the transport process we
rely on numerical optimization techniques. For the prob-
lem considered in this paper, we employed a recently in-
troduced optimization method, named the chopped ran-
dom basis (CRAB) algorithm [56]. Such a method has
been shown to be a powerful tool in order to optimize the
closed dynamics of many-body quantum systems [57] and
the dynamics of light harvesting [58]. Moreover, since the
implementation of the CRAB algorithm does not rely on
the equation of motion that governs the system dynam-
ics, there is no need of algorithmic modifications when
nonlinear dynamics is regarded (e.g., the dynamics of a
BEC), unlike for the monotonically convergent Krotov
algorithm [59–61] or the gradient ascent pulse engineer-
ing algorithm [62]. Even though CRAB does not provide
monotonic convergence it allows to directly restrict and
select the space of control pulses (e.g., enforcing limited
bandwidth), since it relies on a multi-variable function
minimization that can be performed, for example, via
a direct-search method (e.g., the Nelder–Mead method
as implemented, for instance, in MATLAB). For more
details on the procedure of the CRAB algorithm imple-
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mentation and its computational performance we refer to
Ref. [56].

A. Optimization of step 1 of the transport process

We remind that our goal here is to transport an atom
initially prepared in the ground state of the left well of
the potential displayed in Fig. 1 (top), centered in x′0 =
−6.5µm, to the ground state of the left well of the poten-
tial shown in Fig. 1 (bottom) blue (solid) line, centered in
x0 = −2.5µm. In this case we shall consider the control
pulses to be identical, that is, d−1(t) = d1(t) ≡ d(t).
In this section, the objective functional (to be mini-

mized) for the control problem we are interested in can
be identified by the so-called overlap infidelity, namely

I = 1−
∣

∣

∣

∣

∫

R

dxψ′∗
g (x)ψ(x, T1)

∣

∣

∣

∣

2

. (2)

Here ψ(x, T1) is the wave function at time t = T1 propa-

gated from the initial condition ψ0(x) ≡ φ
(1)
−1(x) at time

t = 0, where φ
(1)
−1(x) is the ground state of the left trap

centered at x = x′0 = −6.5µm. The wave function ψ′
g(x)

is the wave function we aim to achieve in a given time T1,

that is, the ground state φ
(2)
−1(x) of the left well centered

at x = x0 = −2.5µm. The superscript (j) in φ
(j)
−1 refers

to the two first stages of the transport process. When

j = 1 the state φ
(1)
−1 corresponds to the ground state of

the left well of the potential (thick black line) illustrated
in the upper panel of Fig. 1, while for j = 2 it corresponds
to the ground state of the left well of the potential shown
in the lower panel of Fig. 1 (blue solid line). The same

applies to φ
(j)
1 , but for the right wells.

The wells of the upper panel of Fig. 1 (thick and thin
lines) are sufficiently deep that the trapping potentials
can be, with good approximation, considered harmonic,
but with slightly different trap frequencies. Hence, an
excellent guess control pulse is given by [34]

dho(t) = (x′0 − x0)

{

t

T1
+ sin

(

2πt

T1

)[

8π

3(ωxT1)2
− 2

3π

]

− sin

(

4πt

T1

)[

4π

3(ωxT1)2
− 1

12π

]}

− x′0. (3)

For a particle in a moving harmonic potential such a con-
trol pulse is optimal, i.e., it yields I = 0, and it is quite
robust against control pulse distortions [34]. Neverthe-
less, as Fig. 3 shows (solid line), for our case with Gaus-
sian traps, we obtain already a good result for large, but
not adiabatic (i.e., not in the regime ωxT1 ≫ 1), trans-
port times.
To reduce the infidelity we further optimized the trans-

port process by means of the CRAB algorithm, which
works as follows: we start with the initial guess given by
Eq. (3) and we define the new control pulse as d(t) =

2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4
10

−4

10
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10
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10
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10
0

I
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Figure 3. (Color online). Overlap infidelity vs. transport
time: black (solid) line with the control pulse dho(t) defined
in Eq. (3); the other two lines show the infidelity obtained
with the CRAB optimized control pulse dopt(t) = dho(t)gopt(t)
for Ng = 8 (dashed line) and Ng = 16 (dot-dashed line).

dho(t)g(t), where

g(t) = 1 +
1

λ(t)

Ng
∑

k=1

[Ak sin (ωkt) +Bk cos (ωkt)] . (4)

Here ωk = 2πk/T1, Ng ∈ N is the number of time-
independent Ak and Bk coefficients, λ(t) is a time-
dependent function enforcing the boundary conditions
of d(t) at t = 0 and t = T1, namely limt→0,T1 λ(t) =
+∞. Basically, the CRAB algorithm seeks for the time-
independent coefficients Ak, Bk and frequencies ωk that
minimize the overlap infidelity (2). Besides, in the nu-
merical simulations, we set a tolerance (∼ 10−4) on the
determination of either the coefficients or the frequen-
cies ωk. Such a tolerance is defined as the minimum
allowed distance between the vertexes of the polytope
generated within the Nelder-Mead multidimensional non-
linear minimization procedure [63].
As illustrated in Fig. 3, the CRAB algorithm slightly

improves the result for large T1 times obtained with the
control pulse defined in Eq. (3), but for short times the
slight difference due to the proximity of the central trap
in the trap frequencies (of about 0.7%) of the left wells
[thick and thin lines of Fig. 1 (top)], becomes crucial
as well as the anharmonicity of the confinement poten-
tial. We have also investigated the improvement of the
overlap infidelity due to a higher number of harmonics
Ng involved in the control pulse. As Fig. 3 shows, a
significant improvement can be observed only for initial
large overlap infidelities, whereas for already almost per-
fect transport processes the reduction is almost insignifi-
cant. This numerical observation is not surprising, since
the dynamics with an initial large overlap infidelity re-
quire more sophisticated control pulses (i.e., higher har-
monics), in order to properly steer the atomic dynam-
ics. Such more complex control pulses, however, might
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Figure 4. (Color online). Optimal control pulses of step 1 of
the transport process (red dashed line with Ng = 8, blue solid
line Ng = 16); initial guess given by Eq. (3) (black thick solid
line). The transport time is T1 = 3.4 ms.

be more difficult to implement experimentally. Beside
this, as shown in Fig. 3, we also note that the overlap
infidelity drops quite significantly, as a rule of thumb,
for times larger than 3 ms, which is consistent with the
fact that the transport time cannot be shorter than the
inverse of the typical trap frequency, that is, 1/νx ∼ 2
ms. We underscore that the threshold ν−1

x cannot be
precisely identified with the quantum speed limit, but it
is in close relation with it. An exact determination of
the quantum speed limit relies on the time average of
the instantaneous energy fluctuations, which depend on
the particular control pulse. This is non trivial compu-
tational task for time-dependent Hamiltonians. Only in
simple cases, such as the Landau-Zener model, the min-
imum time can be efficiently estimated [55]. However,
further optimization, that is, larger values of Ng, will
not overcome this (physical) limit.
As an example of the optimization, Fig. 4 shows the

optimized transport control pulses for two different sets
of coefficients {Ak, Bk} for the transport time T1 = 3.4
ms, where dho(t) has been used as initial guess (black
thick line). We see that, to achieve very small infideli-
ties, the control pulse involves more wiggles, especially
of large amplitude at the intermediate times, where the
system is more excited. On the other hand, at the end
of the transport process the system has to be restored
again in the ground state of the trap, and therefore the
modulation of the control pulse is more “gentle”.
We have also investigated the robustness against trap

position fluctuations due to possible experimental imper-
fections. To this aim we used for the time-dependent
control pulses the following expression

d∓1(t) = dopt(t)± ashake sin(ωshaket), (5)

where dopt(t) is the optimal control pulse obtained with
CRAB. With such a choice, for ashake > 0 the left and
right wells oscillate in phase, whereas for ashake < 0 their

0 0.1 0.2 0.3 0.4

10
−3

10
−2

a shake [µm]

I

Figure 5. (Color online). Overlap infidelity vs. amplitude of a
shaking in the trap positions of the outer traps with ωshake =
10−2ωx, δx0 = 1.43µm, and ℓ =

√

~/mωx = 0.41µm. The
transport time is T1 = 3.4 ms and Ng = 16.

oscillations are out of phase. However, since in this par-
ticular step of the transport process only a populated
well is effectively involved, the only value that matters
is |ashake| (for negative values the behavior of I is basi-
cally the same). The result of such analysis is shown in
Fig. 5 for ωshake/ωx = 10−2 and T1 = 3.4 ms (see also
Fig. 3). We see that the optimal control pulse is quite
robust against fluctuations of the trap position. This re-
sult is in agreement with the findings for a particle in a
moving harmonic potential [34].
Finally, we investigated the role of spatial dimension-

ality. Up to now, we performed our analyses in the quasi-
1D regime. However, we recall that in the experiments
of Refs. [50, 51] the potential in the z (axial) direction
is shallower than in x or y. We therefore performed nu-
merical simulations of the 2D Schrödinger equation with
the trapping potential

V (x, z, t) = V0

{

1−
1
∑

k=−1

vk(t)e
−

[x−kd(t)]2

2w2 e
− z2

2w2
z

}

.(6)

Here 2wz is the beam waist along the z direction. The
ratio ωz/ωx is determined by wx/wz, namely, the larger
wz is, the smaller the (axial) frequency ωz. The new
(ground) initial and goal states have been obtained by us-
ing the imaginary time propagation procedure, typically
used for the determination of the ground state of a BEC.
As trial functions for the imaginary time propagation we
took the tensor product of the solutions of the quasi-1D
regime: for the transverse direction by a numerical exact
diagonalization of the single particle Hamiltonian, and
for the axial direction by choosing the Gaussian ground
state of the harmonic oscillator.
The result of such analysis, for the optimal control

pulse obtained for the transport time T1 = 3.4 ms with
Ng = 16, is shown in Fig. 6. As it is illustrated,
the smaller ωz is, the better the infidelity. This be-
havior is reasonable: since wz ≫ wx, we can write
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Figure 6. (Color online). Overlap infidelity vs. the ratio
ωz/ωx. Here I2D is simply the generalization of Eq. (2) with
a two-variable integration. The transport time is T1 = 3.4 ms
and Ng = 16.

exp(−z2/2w2
z) ≃ 1 − z2/2w2

z , which implies an almost
perfect harmonic potential in the axial direction, thereby
almost separable from the one in the transverse direction.
The figure shows, however, that the infidelity becomes
larger than the one obtained in the quasi-1D regime,
which is almost one order of magnitude smaller (see
Fig. 3). We attribute this enhancement to the not com-
pletely negligible coupling between the axial and trans-
verse motion. Thus, for an exact infidelity and control
pulse evaluation, a 2D optimization should be performed.
Of course, the result relies on the particular chosen ωz/ωx

ratio, which ultimately is determined by the experimen-
tal setup. As already pointed out in Ref. [26], care has to
be taken when calculations with realistic parameters in
the quasi-1D regime are considered. The quantum speed
limit behavior, however, remains fundamentally the same
as the one of the quasi-1D regime outlined above, and the
control pulses obtained in this regime would be excellent
initial guesses for the 2D optimization.

B. Optimization of step 2: SAP process

The transport via SAP is the second step of the opti-
mization process outlined above, where the initial condi-

tion at time t = 0 is given by ψ0(x) ≡ φ
(2)
−1(x), whereas

ψg(x) is the ground state wave function φ
(2)
1 (x) of the

right well centered at x = x0 (see Fig. 1).

We start the optimization by using the following initial
guess control pulses:

d01(t) =

{

(x0 − δx0) cos
2
(

πt
T2−td

)

+ δx0 t ∈ [0, T2 − td]

x0 t ∈ (T2 − td, T2]

(7)

d0−1(t) =

{

x0 t ∈ [0, td]

(x0 − δx0) cos
2
(

π(T2−t)
T2−td

)

+ δx0 t ∈ (td, T2].

(8)

We note that d1(t) is d−1(t) time inverted. We chose the
time delay between the two control pulses as td = 0.17T2,
where T2 is the transport time used to carry out the SAP
technique. Such a choice is due to the analogy between
SAP and STIRAP. Indeed, as shown in Ref. [39], the time
over which the two control pulses do overlap, has to fulfill
the (adiabatic) criterion

td >
10

mint∈[0,T ]{Ω(d(t)/ℓx)}
, (9)

where [38]

Ω(d/ℓx)

ωx
= 2

d

ℓx

(

e(d/ℓx)
2{1 + d[1 − erf(d/ℓx)]/ℓx} − 1√

π[e2(d/ℓx)2 − 1]

)

,

(10)

with ℓx =
√

~/mωx. The tunneling “Rabi” frequency de-
scribes the coupling between the left and the middle wells
for d = d0−1 and between the right and the middle wells
for d = d01. We note, however, that Eq. (10) is only valid
for harmonic trapping potentials. For Gaussian traps the
actual Rabi frequency must be numerically assessed, but
for an estimation of the time delay, Eq. (10) can be used.
As we will discuss at the end of this section about the
robustness of SAP against fluctuations of td, the error in-
duced by using Eqs. (9,10) is indeed small, and the value
of td used in our analyses is quite reasonable.
In this scenario the CRAB optimization works as fol-

lows. For the guess control pulse d0−1(t) we take

d−1(t) =

{

x0 t ∈ [0, td]

(x0 − δx0) cos
2
[

π(T2−t)
T2−td

g(t)
]

+ δx0, t ∈ (td, T2]

(11)

where both g(t) and λ(t) are only defined in the time
interval (td, T2], but the expression remains the one given
in Eq. (4). Such a choice for d−1(t) ensures that it is
always bounded by δx0 and x0. The control pulse d1(t) is
then the time inverse of d−1(t), that is, d1(t) = d−1(T2−
t).
As outlined previously, here the goal is not only

the minimization of the overlap infidelity I = 1 −
|〈ψg|ψ(T2)〉|2, but also the minimization of the occupancy
in the middle trap. To this aim, we use the following ob-
jective functional, namely the cost function we want to
minimize:

J = 1 +
wE

T2

∫ T2

0

dt
[

∆E(t) + |ψd(xC , t)|2
]

−
[

wd

T2 − 2td

∫ T2−td

td

dt|〈ψd(t)|ψ(t)〉|2

+ wg|〈ψg|ψ(T2)〉|2
]

, (12)
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where |ψd〉 is the spatial dark state, which corresponds to
the first excited state obtained by diagonalizing at each
time the single particle Hamiltonian Ĥ(t) = p̂2/2m +
V (x, t), ∆E(t) = |E2(t) + E0(t) − 2E1(t)| with En(t)

n = 0, 1, 2 the first three eigenvalues at time t of Ĥ(t) (E1

is the energy of the spatial dark state), and xC is the po-
sition of the minimum of the middle well, where the node
of the spatial dark state should be located. The energy
difference ∆E(t) is used to keep the energy of the spatial
dark state equidistant from the energies of the ground
and second excited states, and reduce the transitions out
of the dark state. The second line of Eq. (12) corresponds
to the projection of the evolved state on the actual spa-
tial dark state in the interval [td, T2 − td], whereas the
weights wE , wg, and wd can be adjusted for convergence.
We note that a similar objective functional has been used
in Ref. [64].
We first investigate the behavior of the SAP process

without optimization. In Fig. 7 we show the overlap fi-
delity F = 1 − I as a function of the transport time T2
when the trap parameters v±1(t) are chosen to be time-
dependent (blue-bright line), which fixes the minima of
the triple well potential to the same energy level. Instead,
the black-dark line corresponds to the scenario for which
v±1(t) ≡ 1 ∀t ∈ [0, T2]. In this case the first three lowest

eigenstates of the Hamiltonian Ĥ(t) are not in resonance
and the evolved state tries to follow the second excited
eigenstate, as also illustrated in Fig. 7 by the behavior
of the overlap infidelity at long times. This phenomenon
occurs because when the two outer wells approach the
middle one, the minima of the outer wells correspond
to a larger energy than the minimum of the middle well
(see also the magenta dashed line in Fig. 2), and there-
fore it is energetically more favorable for the system to
follow the second excited state. Additionally, we note
that fixing the minima of the triple well configuration to
the same energy level yields a spatial dark state whose
node is not localized in the centre of the middle trap, as
desired, but it is lifted towards the outer well with lower
barrier (or potential maximum). In order to have a node
in the middle trap one should also require maxima at the
same energy level, but this in not contemplated in our
study as outlined in Sec. II. Thus, the dark state has to
be properly engineered and this also explains our choice
for the cost functional (12).
As shown in Fig. 7 (bright-blue line on the top), the

asymmetry of the potential, due to the fact that the max-
ima of the triple-well potential are not fixed to the same
energy level (while the minima are), does not enable the

atom to follow an eigenstate of Ĥ(t), in particular the
spatial dark state, and an oscillatory behavior occurs.
Interestingly, the occupancy in the middle trap, defined
as

Pc(t) =

∫ xmax
R (t)

xmax
L

(t)

dx|ψ(x, t)|2, (13)

Pc(T2) =
1

T2

∫ T2

0

dtPc(t), (14)
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Figure 7. (Color online). Overlap fidelity F = |〈ψg|ψ(T2)〉|
2

(top) and probability of occupancy of the middle trap (bot-
tom) vs. time. The blue (bright) lines refer to time-dependent
trap parameters v±1(t), whereas the black (dark) lines refer
to time-independent trap parameters v±1(t) ≡ 1. The in-
sets show zooms of both the overlap infidelity (top) and the
occupancy probability (bottom). The diamond and square
symbols on the top of the blue (bright) line of both panels
represent the situations for which the CRAB optimization
has been performed. In both cases δx0 = 1.43µm.

is higher when we force the minima of the trapping poten-
tial to be at the same energy level (i.e., time-dependent
v±1). Here xmax

L,R (t) are the positions at time t of the

maxima of the trapping potential of Fig. 1 (lower panel).

In figure 8 we show the optimal control pulses d−1(t)
[panel (a)] together with the corresponding probabilities
of occupancy Pc(t) [panel (c)] for the transport time
T2 = 31.4 ms, that is, the red diamond symbol in the
insets of Fig. 7 (we recall that d1 is the time inverted
control pulse of d−1). Instead, in panel (b) the trap
parameter v−1(t) is displayed, which corresponds to the
optimal quantum dynamics for T2 = 31.4 ms with time-
dependent trap parameters and with objective functional
given in Eq. (12) (v1 is basically the time inverted of
v−1). For the CRAB optimization we used Ng = 25 and
we set wg,d = 0.5 and wE = 1. Such a choice is a good
trade-off between small overlap infidelity and occupancy.
In Table I, we show the results of both the overlap infi-
delity and probability of occupancy, for which a further
improvement was not possible. Indeed, our attempts at
optimizing by considering d±1(t) as independent control
pulses, by looking for an optimal set of frequencies ωk,
instead of coefficients {Ak, Bk}, or by varying td, have
not been able to further improve the obtained results.

Given our findings in Fig. 7, we have also analyzed the
scenario for which v±1 = 1. In this case we used for the
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optimization the following objective functional

J = wI

[

1− |〈ψg|ψ(T2)〉|2
]

+ wPPc(T2), (15)

where the weights wI , wP are adjusted for convergence.
The results of such analysis are illustrated in both Table I
and Fig. 8.
Concerning the final probability of occupancy in the

middle trap, Pc(T2), the optimization decreases the value
from 0.1166, obtained with the initial guess control pulses
d0±1, to the value of 0.0466, obtained with the optimal
control pulse, when the system tries to follow the second
excited eigenstate; from 0.1498 to 0.0771 or to 0.0916 in
the other two cases when the system is forced to follow
the spatial dark state (see also Table I). As illustrated in
Fig. 8 (c), the probability distribution function Pc(t) is
peaked around t = T2/2, that is, when the trap separa-
tion is minimum. For comparison, we also show the prob-
ability distribution for T2 = 44.8 ms (the green square
symbol in the insets of Fig. 7), after optimization. In this
situation, the distribution is almost symmetric with re-
spect to t = T2/2, because the optimized dynamics tends
to split the transport of the wave packet from the left
to the right well not directly, but in a two-step-like pro-
cess, where at time t = T2/2 the state is almost a dark
state. This fact is also confirmed by the pair (pd, nd)
of values of the projection onto the instantaneous spa-
tial dark state [second line of Eq. (12)] and the node of
the spatial dark state [second integrand in the first line
of Eq. (12)]: for T2 = 31.4 ms we have (0.211,0.027),
whereas for T2 = 44.8 ms we get (0.151,0.011). Thus, for
longer times, the system follows more closely the spatial
dark state when the objective functional (12) is chosen.
A final remark on the choice of the objective func-

tionals comes from the following fact. As shown in the
second and third rows of Table I, both the overlap in-
fidelity and the probability of occupancy in the middle
well are decreased when the objective functional (15) is
used in the CRAB optimization. This choice implies a
better achievement of our goals as well as a computation-
ally less demanding simulation. Indeed, with (15) there
is no need to diagonalize the instantaneous single particle
Hamiltonian Ĥ(t). Hence, with this choice it is possible
to efficiently optimize the transport in optical superlat-
tices containing different interacting atomic species [64]
and, particularly relevant for our purposes, the transport
of a condensate. In this case the determination of the in-
stantaneous spatial dark state and its eigenvalue are more
involved [65].
Finally, as in Sec. III A, we investigated the robustness

of the optimized dynamics against trap position fluctu-
ations by adding a shaking term to the control pulses
dopt∓1(t), as in Eq. (5). Moreover, since the CRAB al-
gorithm determines the optimal time-independent coef-
ficients Ak and Bk, we were also able to investigate the
effect of an imprecise control of the time delay td on the
overlap infidelity. The result of such analysis is illus-
trated in Fig. 9 for ωshake/ωx = 10−2 and for T2 = 31.4
ms. We compare the obtained results for two cases: when

T2(ms) I Pc(T2)

31.4⋆ 0.0007 0.0466

31.4† 0.0035 0.0771

31.4 0.0048 0.0916

44.8 0.0028 0.0699

Table I. Optimized errors for different transport times of the
SAP technique for a single atom. The first row corresponds
to the case for which v±1 = 1, whereas in the other cases v±1

are time-dependent. For the first two rows the objective func-
tional used in the CRAB optimization is defined in Eq. (15),
but for the second row we fixed the minima of the trapping
potential to the same energy level. Instead, for the last two
rows, the objective functional is defined in Eq. (12).

the atomic system is forced to follow the instantaneous
spatial dark state (right) and when it is forced to fol-
low the second excited state of the trapping potential
(left). As already pointed out in Ref. [38], for purely har-
monic confinement, the SAP process is less affected by
imprecise timing, but the overlap infidelity drops faster
for fluctuations in the trap positions than in the ideal
case considered in Ref. [38]. Indeed, while for harmonic
traps the fidelity is reduced by 1-2% [38], at the optimal
time delay and ashake ∼ ℓx/2 (ℓx is the harmonic oscilla-
tor ground state width), for Gaussian traps the fidelity
. 60% (right picture), which shows how detrimental the
anharmonicity of the trapping potential is [66]. How-
ever, this phenomenon is also due to the fact that the
system follows the second excited state, which is more
sensitive to energy losses, and therefore to a worsening of
the transport fidelity. Additionally, the figure shows the
fragility of the dynamics that the instantaneous spatial
dark state of the system is forced to follow, especially
concerning the control of the time delay. This further
analysis confirms what we already noticed in the overlap
infidelity and occupancy probability, that is, it is more
efficient to follow the second excited state rather than
the spatial dark one.

IV. TRANSPORT OF A CONDENSATE

In this section we investigate the optimal transport of
a BEC in optical dipole potentials such as the ones in
Eq. (1). We assume the quasi-1D regime of quantum
degeneracy and a mean field description of the atomic
system dynamics, that is, we assume that the Gross–
Pitaevskii equation (GPE) [67]

−i~∂ψ(x, t)
∂t

= Ĥgp[ψ]ψ(x, t),

Ĥgp[ψ] =

[

− ~
2

2m

∂2

∂x2
+ V (x, t) + g1DN |ψ(x, t)|2

]

(16)
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Figure 8. (Color online). (a) Optimal control pulses obtained by means of the CRAB algorithm respectively for the three
situations listed in the first three rows of Table I: T2 =31.4⋆ms (blue dashed line), T2 =31.4†ms (black solid line), and T2 =31.4
ms (red solid thick line). (b) Trap parameter v−1(t) for the optimal control pulse T2 =31.4 ms (red solid thick line) of panel
(a). (c) Probability of occupancy of the middle well vs. time obtained with the optimal control pulses for T2 =31.4⋆ms (blue
thin line) and T2 =31.4 ms (red thick line). (d) Probability of occupancy of the middle well vs. time obtained with the optimal
control pulse for T2 =44.8 ms. Here the time delay is td ≃ 5.2 ms for T2 = 31.4 ms, td ≃ 7.5 ms for T2 = 44.8 ms, and for both
transport times δx0 = 1.43µm.

well describes the physics of our problem. Here ψ
is normalized to one, N is the atom number, g1D =

2~ω⊥a
s
3D

(

1− 1.4603
as
3D

a⊥

)−1

[68], as3D is the three di-

mensional (3D) s-wave scattering length, and a⊥ =
(2~/mω⊥)

1/2. This assumption implies that the radial
confinement is frozen to its ground state, and therefore
that the ratio η = ω⊥/ωx is significantly larger than 1
(ω⊥ is the transverse trap frequency, that is, the trap
frequency in the y− z plane). As we already pointed out
in Ref. [26], a good value is η = 20, for which radial exci-
tations due to two-body collisions can be suppressed. We
underscore that a simulation of the current experimental
setup would require a 3D simulation of the GPE, since
the transport occurs in the transverse direction while the
axial confinement has a shallower trap than the trans-
verse one, where the transport process occurs.

A. Attractive inter-particle interaction

It is well known (see, for instance, Ref. [67]), that for
attractive interactions (i.e., g1D < 0, that is, as3D < 0),
a critical number of condensed atoms exists, Ncr, such

that for N > Ncr the condensate is not stable and the
GPE has no longer a stationary solution. We have in-
vestigated this phenomenon in the quasi 1D regime by
considering the Gross-Pitaevskii energy functional. For
an arbitrary confinement potential V (x) the functional is
defined as [67]:

E

N
=

∫

dx

[

~
2

2m

∣

∣

∣

∣

∂ψ(x)

∂x

∣

∣

∣

∣

2

+ V (x)|ψ(x)|2 + g1D
N

2
|ψ(x)|4

]

.

(17)

For a harmonic trap, a Gaussian Ansatz for the conden-
sate wave function can be used, which has been proven
to provide an excellent estimation of Ncr for a three-
dimensional BEC [67]. To this aim, let us consider the
following Ansatz for the condensate wave function (nor-
malized to 1)

ψ(x) = (σℓx
√
π)−1/2 exp

(

− x2

2σ2ℓ2x

)

, (18)

where σ is a dimensionless parameter which represents
the effective width of the BEC. By inserting (18) into
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Figure 9. (Color online). Transport efficiency (i.e., 1 − I) from φ
(2)
−1(x) to φ

(2)
1 (x) as a function of the time delay td between

the two trap approaches and the amplitude ashake of shaking the positions of the outer traps with ωshake = 10−2ωx: (left) for
time-dependent trap parameters v±1, that is, when the system is forced to follow the dark state; (right) for time-independent
trap parameters v±1(t) ≡ 1, that is, when the system is forced to follow the second excited state. Here δx0 = 1.43µm and the
“optimal” time delay td ≃ 5.2 ms.

(17) we obtain

E

N~ωx
=

1

4

(

1

σ2
+ σ2

)

− fcα

σ
√
2π
, (19)

where f−1
c = 1−1.4603as3D/a⊥, and α = ηNas3D/ℓx. The

behavior of the GP energy functional, for some values of
η and N for an atomic cloud of 85Rb atoms trapped in
the hyperfine state |F = 2,mF = −2〉, is illustrated in
Fig. 10. As the figure shows, the local minimum disap-
pears for either a small atom number (solid vs. dashed
lines) or for a small ratio η (solid vs. dashdot lines). Im-
portantly, the energy local minimum appears always for
E < 0, that is, the interaction energy, Eint, exceeds the
kinetic energy. Contrarily to the repulsive case, for at-
tractive interatomic forces the kinetic energy, Ekin, can-
not be neglected. Indeed, it stabilizes the condensate
against collapses, namely the condensate is stable as long
as Ekin > Eint. We can give a rough estimation of Ncr

by using this inequality:

Ekin ∼ − ~
2

2mℓ2x
Eint ∼ −2~ω⊥fcN

|as3D|
ℓx

, (20)

which imply

Ncr ≃ (4ηfc)
−1 ℓx

|as3D| . (21)

By fixing η = 20, we have Ncr ≃ 0.3, for ωx = 2π × 711
Hz, and Ncr ≃ 2.7, for ωx = 2π × 7.11 Hz. The latter
value of Ncr could be in principle further enhanced by
reducing η, even though the quasi 1D condition would
no longer be very well fulfilled. Hence, from this analy-
sis, we see that, for an attractive BEC in the quasi 1D
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Figure 10. (Color online). Gross-Pitaevskii energy functional
vs. the effective width in the Gaussian model for attractive
interacting atoms in the quasi 1D regime. The black (solid)
line corresponds to η = 20 and N = 10, the red (dashed) line
to η = 20 and N = 5, and the blue (dashdot) line to η = 5 and
N = 10. For all curves we considered 85Rb atoms confined in
a harmonic trap with frequency ωx = 2π × 711 Hz.

regime, the admissible condensate atom number is ex-
tremely small. With such condensate atomic numbers
the realization of attractive BECs in optical microtraps
is actually not feasible. Given this, the attractive case
will be discarded in the subsequent transport analysis.
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B. Optimization of step 1 of the transport process

Firstly, we computed the ground state of the left well
by using the imaginary time propagation technique. We
start by considering 3N atoms in such a way that we have
precisely N atoms in each well. This approach is valid
when the three wells are far apart. The imaginary time
propagation for 3N atoms yields a wave function which
is the sum of three inverted parabolas, for large N , or
almost Gaussian functions, for small N . Each of these
three spatially separated density profiles is localized in
one of the three wells. Then, we selected the part of the
wave function localized in the left well, properly normal-
ized, as initial state. This new wave function describes
precisely a BEC with N atoms [we have checked the sta-
tionarity of the solution by propagating it in real time via
GPE with N in the mean-field potential and as confine-
ment the initial (static) potential]. When the two outer
traps move towards the middle one, since the Gaussian
potentials do overlap, the three wells cannot be treated as
independent anymore (see also Fig. 1 lower panel). Even
though the condensate wave functions of each of the three
wells do not overlap, the curvature of the outer wells is
different from the middle one. Hence, it is no longer
straightforward to determine how many atoms are con-
tained in each well. To overcome this problem, we propa-
gate adiabatically the condensate wave function trapped
in the well centered in x′0 towards the one centered in
x0. The trap position x0 is chosen as the minimum sep-
aration between the three wells such that N |ψ(x, T1)|2 is
localized only on the left well, that is, the atomic density
in the middle and right wells can be effectively neglected.
We underscore that the value of x0 crucially depends on
N , for fixed g1D. Hence, the adiabatically evolved con-
densate wave function is chosen as goal state of step 1
of the transport process. We then analyzed how fast the
initial state can be propagated towards the goal state, by
simulating the dynamics for different transport times T1,
which have been chosen much smaller than the adiabatic
transfer time.

We have considered atomic ensembles with N = 10 or
200 87Rb atoms per well (the latter have been recently
obtained in experiments [51]). For 10 atoms the initial
potential configuration is the same as for the single par-
ticle scenario (Fig. 1 top), with x0 = −3.0µm and a
slightly smaller trap frequency ωx = 2π × 702 Hz with
respect to 85Rb. For N = 200, since the condensate
wave function has a much larger width than the single
particle one, the dipole potential has to be adjusted. To
this aim, in order to keep the (initial) lattice periodic-
ity fixed, that is, |x′0| = 6.5µm (i.e., with laser beam
waist 1.3 µm), the potential depth has been increased up
to V0 = kB × 25µK. Such a potential depth implies a
single-well trap frequency ωx = (4V0/mσ

2)1/2 ≃ 2π 12
kHz, very similar to the trap geometry of Ref. [51], and
x0 = −3.8µm as minimal (target) separation.

4 6 8 10 12 14 16 18 20 22
10

−4

10
−2

10
0

I

0.1 0.3 0.5 0.7 0.9 1.1 1.3
10

−4

10
−2

10
0

I

T1 [ms]

Figure 11. (Color online). Overlap infidelity vs. transport
time: black (solid) line with the control pulse Dho(t) defined
in Eq. (22); the other two lines show the infidelity obtained
with the CRAB optimized control pulse dopt(t) = Dho(t)gopt(t)
for Ng = 8 (dashed line) and Ng = 16 (dashdot line). The
upper panel corresponds to N = 10, whereas the lower one to
N = 200.

As initial guess for the control pulse we used

Dho(t) =















υ2
mt2

∆x 0 ≤ t < ∆x
2υm

,

υmt− ∆x
4

∆x
2υm

≤ t < ∆x
υm

υ2
m(T1−t)2

2(∆x−υmT1)
+∆x ∆x

υm
≤ t ≤ T1

,(22)

where ∆x = |x′0| − |x0|, and υm = 3∆x/2T1 is the maxi-
mum trap velocity during the transport. Such a control
pulse has been proven to be optimal for a 1D condensate
in a moving harmonic potential at the transport times
T1,n = 3(2n+1)π/ωx with n ∈ N [36]. Thus, there exists
a minimum transport time, T1,0 = 3π/ωx, for which no
excitation in the condensate is produced.
In exactly the same way as for the single-atom trans-

port, we investigated the (quantum) speed limit of step
1 of the transport process, whose results are illustrated
in Fig. 11 for N = 10 (top) and N = 200 (bottom)
atoms with repulsive interaction. For 200 atoms the po-
tential depth is about V0 ≃ 43.5~ωx, the chemical poten-
tial µ = 39.2~ωx whereas in the Thomas-Fermi limit we
have µTF = 37.4~ωx [69]. Thus, the system is well within
this limit. Concerning the optimization, the CRAB al-
gorithm works precisely as we described in Sec. III A,
with the only difference that we have to substitute the
Schrödinger equation with the GPE and define the con-
trol pulse as d(t) = Dho(t)g(t), where g(t) is given by
Eq. (4). Besides, the overlap infidelity is defined again
through Eq. (2), where ψ′

g(x) ≡ ψ(x, Tad) is the state
obtained adiabatically, Tad ∼ 3 ms, starting from the
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ground state of the left well of the initial potential con-
figuration with trap separation |x′0| = 6.5µm. The same
procedure is used for N = 10 atoms.

We see from Fig. 11 that, while for N = 10 the infi-
delity decreases monotonically with respect to the trans-
port time T1, for N = 200 this is not the case, and it
becomes a monotonic function only for Ng = 16. We
attribute this behavior of the infidelity to a non perfect
revival of Bogoliubov excitation modes present during the
transport process, which have a larger impact for bigger
condensates, because of the larger non-linear interaction.
To further improve the results one could also optimize
the dynamics of the Bogoliubov collective excitations, for
instance, by solving the time-dependent Bogoliubov-de
Gennes equations [70]. This approach, however, would
allow to engineer the Bogoliubov modes, but at the ex-
penses of a very demanding numerical optimization.

Furthermore, as shown in Fig. 11, the transport times
for N = 200 are shorter than in the single-particle and
small condensate cases. This is basically due to a shorter
transport distance ∆x = 2.7µm (in the single-particle
case ∆x = 4µm) and to the trap frequency, which is
∼ 16 times larger than in the single atom scenario. Fur-
thermore, we see that the control pulse (22) is an excel-
lent guess with satisfactory overlap infidelities up to 1
ms for 200 atoms and up to 16 ms for 10 atoms, even
for transport times T1 6= T1,n. Notably, with respect to
the single particle optimization, the addition of harmon-
ics does not improve significantly the overlap infidelity
for short transport times. This behavior may also be
related to the initial guess for the coefficients {Ak, Bk},
for which we always started by setting their initial val-
ues to zero. Indeed, this may occur also for T1 = 0.7 ms
(N = 200), where the control pulse with Ng = 16 yields
a slightly worst overlap infidelity with respect to the one
obtained with Ng = 8. The choice for the initial values
of {Ak, Bk} might be not the right one, since the control
landscape may have several minima: the larger the num-
ber Ng is, the larger the control landscape. Thus, our
initial choice likely produces an optimal control solution
trapped in a local minimum that is not the same for a
larger Ng. We also note that by performing the opti-
mization on the frequencies ωk instead of the coefficients
{Ak, Bk} the improvement in the infidelity is very small.

Regarding the quantum speed limit [54], it can be
roughly fixed to 0.5 ms for N = 200, which is larger than
1/νx ≃ 0.08 ms and is slightly smaller than T1,0 ≃ 0.13
ms. We (numerically) defined the limit by considering
the time for which the infidelity is approximately 10−3.
This is a reasonable threshold to quantify the error on
the distance between the state evolved until time T1 and
the goal state. We note that the quantum speed limit
is roughly determined by maxt∈[0,T1]{h/[Eg(t)−Ee(t)]},
where h is the Planck constant, Eg(t) is the instanta-
neous ground state energy, and Ee is the instantaneous
energy of the first excited state. For shorter times, it is
not physically possible to bring the system in the ground
state of the trap without populating excited energy lev-
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Figure 12. (Color online). Difference between the guess con-
trol pulseDho(t) and the optimal one of step 1 of the transport
process for T1 = 0.5 ms and Ng = 16 (N = 200). In the inset
the optimal control pulse is displayed.

els, which, on the other hand, are needed, during the
interval (0, T1), to perform a fast transport of the atom.
Instead, for N = 10 atoms, the quantum speed limit can
be roughly fixed to T1 = 16 ms, where the infidelity is
about 10−3. Even though in the single particle scenario
we had a slightly higher value of the trap frequency, be-
cause of the use of 85Rb atoms, it is interesting to note
that already a small atomic cloud significantly alters the
quantum speed limit, which, for a single atom, has been
estimated around 3 ms.
In Fig. 12 the difference between the initial guess

(22) and the optimal control pulse for N = 200 atoms,
T1 = 0.5 ms and Ng = 16 is depicted. This plot shows
how small is the correction on the guess control pulse,
even though it is quite important to decrease by more
than an order of magnitude the overlap infidelity. For
N = 10 atoms, the initial guess pulse (thick line in
Fig. 13) is rather different with respect to the CRAB op-
timized one. This larger distortion is due to the fact that
since the potential depth V0 = 2.55~ωx and (initial) trap
separation are the same as in the single particle scenario,
the potential wells are not deep enough to consider the
control pulse of Eq. (22), optimal for a harmonic trap, as
a good transport pulse. Indeed, while the single-particle
energy is about 0.46~ωx, the chemical potential for 10
atoms is µ ≃ 1.87~ωx.
Finally, we also investigated the robustness of the op-

timal control pulse for N = 200 against fluctuations
of the outer trap positions like for the single atom dy-
namics. For the transport time T1 = 0.5 ms the op-
timal solution obtained with CRAB is rather robust:
the overlap infidelity changes from 0.0012 to 0.0046 for
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Figure 13. (Color online). Control pulses of the step 1 of
the transport process for N = 10 atoms: initial guess given
by Eq. (22) thick (black) line, and optimal CRAB pulse with
Ng = 16 thin (red) line. The transport time is T1 ≃ 15.9 ms.

ashake = ℓx ≃ 0.1µm. This effect is due to the coopera-
tive behavior of the atoms in the collective motion of the
condensate. Instead, we did not investigate the effect of
dimensionality, because, unlike in the single particle sce-
nario, the nonlinear term appearing in the GPE is also
affected by the augmented space geometry, and therefore
the comparison would not be fair (apart from the issue
of validity in the quasi-2D regime).

C. Optimization of step 2: SAP process

The optimization of SAP with interacting particles is
more difficult with respect to the single atom scenario.
Indeed, as also discussed in Ref. [65], in the spectrum
of the nonlinear Gross-Pitaevskii Hamiltonian (16) loops
near the avoided crossing points and new eigenstates of
Ĥgp emerge when enhancing the nonlinear interaction.
As pointed out by Graefe et al. [65], within a three-mode
model, SAP, in order to work in the nonlinear regime, has
to fulfill the following two conditions: (i) g1DN∆ ≥ 0;
(ii) g1DN/ℓx < gc = ∆. Here ∆ represents a detuning
between the three wells, that is, the resonance condition
needed for SAP. We note that the resonance condition
in this case imposes that the onsite energies of the wells,
~ωk(t) + µk(t), are constant at all times, where ωk(t) is
the local frequency of the k-th well and µk(t) the corre-
sponding chemical potential at time t. The inequality (ii)
shows that there exists an upper bound on the nonlinear
interaction strength for the realization of SAP. The prob-
lem we are studying, however, cannot be strictly treated
within a three-mode approximation. Nevertheless the
model will be used as a guideline when discussing the
results of the optimization.

As for the single particle study, we applied the CRAB
algorithm in order to understand whether optimal con-
trol can improve the performance of the SAP protocol.

Both for N = 50 and 200, however, we noticed that for
a fixed number of harmonics (Ng = 10) CRAB was not
able to reduce the value of the overlap infidelity obtained
with the initial guess control pulses (11). This (empiri-
cal) observation holds both when we are optimizing the
control pulse by searching for the optimal set of coef-
ficients Ak, Bk, and when we seek the optimal set of
frequencies ωk. Moreover, we numerically noticed that
the convergence of the algorithm to the value of the over-
lap infidelity obtained with the initial guess control pulse
takes longer than in the single-atom case. Even though
in these two cases the number of atoms is likely much
larger than the one allowed for the realization of SAP
in the nonlinear regime, we attribute the occurrence of
such a phenomenon to a more elaborated control land-
scape topology, that is, a control landscape with a large
number of local minima due to the emergence of new
eigenstates in the system. We did not further investigate
this aspect, which deserves a deeper analysis in a sep-
arated work, but we rather chose to further reduce the
number of atoms to N = 10. In this case CRAB was
able to improve the performance of the protocol with
respect to the initial guess control pulse. As already
pointed out in the previous section, with respect to the
single-atom scenario, here we used 87Rb atoms which im-
ply a smaller trap frequency ωx and a trap separation
x0 = −3.0 µm. Apart from these small changes, due
to a different atomic species and a broader size of the
atomic sample, the trap configuration is essentially the
one of the single-atom case. Nevertheless, the optimiza-
tion carried out for different transport times T2 could not
go below ∼20% of overlap infidelity and ∼10% of pop-
ulation in the middle trap. The result of such a study
is illustrated in Fig. 14. The obtained results cannot be
improved by further optimizing the frequencies ωk. This
shows that even though optimal control can improve the
performance of the protocol, there is however a physical
limit due to the SAP resonance condition for which no
further optimized dynamics can be achieved. Indeed, at
t = T2/2 the separation between the wells is minimal and
we can roughly estimate the detuning as ∆ ≃ 0.15 ~ωx,
whereas g1DN/ℓx ≃ 5.56 ~ωx, which shows how condi-
tion (ii) is not satisfied even with only N = 10 atoms.
To increase ∆ one should further reduce δx0, but then the
three wells merge in a single one, or, alternatively, by re-
ducing the atom number. In this case, however, the BEC
would be very small and the GP description might be
also questionable. Although with a different trap setup,
the analysis carried out in Ref. [47] also shows that the
overlap infidelity increases quite quickly with the num-
ber of atoms and that even with only two 87Rb atoms the
(non-optimized) performance of SAP is quickly harmed
(∼16% of infidelity). Besides, as Fig. 14 illustrates, the
behavior is not monotonic, which is probably related to
a non optimal dynamics of the Bogoliubov modes.

Finally, concerning the population of the middle trap,
Fig. 14 shows that it is almost constant with a mini-
mum of about 0.1. We note that, in comparison with the
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Figure 14. (Color online). Overlap infidelity (top) and prob-
ability of occupancy of the middle trap (bottom) vs. time
for the optimization of the SAP protocol for N = 10 inter-
acting 87Rb atoms. The minimum allowed trap separation is
δx0 = 1.42 µm and v±1(t) = 1.

single-atom case, we did not further minimize the pop-
ulation of the middle well, since the transport efficiency
was already lower, and therefore we preferred to focus
on the minimization of the overlap infidelity [i.e., we set
wP = 0 in Eq. (15)]. Nevertheless, the CRAB optimiza-
tion has been able to further reduce the population with
respect to the one obtained with the initial guess control
pulse.

V. CONCLUSIONS

In this paper we have numerically investigated the per-
formance of the SAP protocol by means of optimal con-
trol both at the single particle and at the many-body
level. In our analysis we have considered trap param-
eters, atomic species, and atom numbers that are used
in current experiments [71]. The transport process has
been split in three steps, because of the initial large trap
separation. The first step brings the atom(s) localized in
the left well closer to the middle well in such a way that
tunneling between the three wells occurs, therefore en-
abling the realization of the second step of the transport,
that is, the SAP process. Afterwards, the third step of
the transport process brings further away from the mid-
dle well the atom(s) localized in the right well. We have
seen that while we can easily achieve the quantum speed
limit, both for the single particle and the condensate sce-
nario, for the first and last steps of the dynamical trans-
port process, the second one requires a higher degree of
control already for small transport time reductions with

respect to the “adiabatic” times. In the single atom case,
we observe a smaller population in the middle trap when
the system is forced to follow the second excited state of
the trap (i.e., time-independent v±1) rather than follow-
ing the actual dark state (i.e., time-dependent v±1). In
the latter case, due to the different energy level of the
maxima of the triple well configuration, the node of the
dark state wave function is not localized within the mid-
dle trap, but outside. This fact forced us to additionally
engineer the shape of the dark state wave function ren-
dering the control landscape more complicated. Thus,
we had to make a trade-off between transfer efficiency
and suppression of the middle trap population. In addi-
tion, we observed that the engineering of the dark state
reduces the robustness against trap and time delay fluc-
tuations of the optimal control pulse. We note that, in
order to further improve the transfer efficiency and re-
duce the population of the middle trap, by engineering
properly the potential, one could employ a programmable
and computer controllable nematic liquid-crystal spatial
light modulator, where the trap separation can be varied
by changing the periodicity of the modulator [72]. Alter-
natively, optical superlattices can be used, which would
allow to fix the three minima at the same energy level as
well as the two maxima.

The optimization of the SAP protocol for a condensate
strongly relies on the atom number and onsite energy of
the wells. We have investigated in some detail the perfor-
mance of the protocol forN = 10 atoms with repulsive in-
teraction. The analysis showed that the CRAB algorithm
is able to improve the transport efficiency with respect to
the one obtained with the initial guess control pulse, but
the maximum attainable efficiency, for a transport time
not longer than 450 ms, is about 80% with a population
in the middle well of about 10%. It is not clear whether
longer times could yield a better efficiency, which would
require a longer computational time, but if this would
be the case, one has also to take into account the effects
of decoherence. For instance, if we consider atom chip
technology [4], where the expected limits due to surface-
induced decoherence of motional states are comparable
to the ones of the hyperfine states, which have coherence
times of about 1s [73], our analysis already shows that
we are actually close to the limit of the SAP protocol.
This ultimate limit, for a relatively small BEC, is due
to the emergence of new eigenstates and crossing levels,
as discussed in detail in Ref. [65], which break down the
SAP protocol when the nonlinear interaction exceeds a
critical value.

In summary, from our investigations, it emerges that
while at the single atom level SAP can be optimized
below the 0.1% level, and possibly observed in current
experiments, the application of an optimized SAP tech-
nique to a condensate is rather limited, already even with
small number of atoms. On the other hand, it would be
interesting to investigate more precisely and more gener-
ally the influence of the nonlinear interaction of BEC on
the quantum speed limit of a certain dynamical process,
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and this will be pursued in future work.
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APPENDIX

The determination at each time of v−1(t) and v1(t)
is a rather complicated nonlinear minimization problem.
In our simulations, however, we noticed that an excel-
lent approximation to the values of v−1(t) and v1(t) is
given by the following procedure: at the beginning the
positions of the minima of the trapping potential (1) are
determined by looking for the roots {xL, xC , xR} of the
function

V ′(x, t) =

1
∑

k=−1

[x−kdk(t)] exp
{

− (x− kdk(t))
2

2w2

}

, (23)

where v±1 = 1. Then, we use the following formulae:

v−1(t) =

{[

exp

(

− x2C
2w2

)

− exp

(

− x2L
2w2

)][

exp

(

− (xC − d1(t))
2

2w2

)

− exp

(

− (xR − d1(t))
2

2w2

)]

−
[

exp

(

− x2C
2w2

)

− exp

(

− x2R
2w2

)][

exp

(

− (xC − d1(t))
2

2w2

)

− exp

(

− (xL − d1(t))
2

2w2

)]}

/

{[

exp

(

− (xC − d1(t))
2

2w2

)

− exp

(

− (xL − d1(t))
2

2w2

)][

exp

(

− (xC + d−1(t))
2

2w2

)

− exp

(

− (xR + d−1(t))
2
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−
[

exp

(

− (xC + d−1(t))
2

2w2

)

− exp

(

− (xL + d−1(t))
2
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(

− (xC − d1(t))
2
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(

− (xR − d1(t))
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)]}

,

(24)

v1(t) =
v−1(t)

[

exp
(

− (xC+d−1(t))
2

2w2

)

− exp
(

− (xL+d−1(t))
2

2w2

)]

− exp
(

− x2
C

2w2

)

− exp
(

− x2
L

2w2

)

exp
(

− (xC−d1(t))2

2w2

)

− exp
(

− (xL−d1(t))2

2w2

) (25)

These solutions are obtained by solving the system of lin-
ear equations: V (xL, t) = V (xC , t), V (xR, t) = V (xC , t).
Finally, we also mention that our numerical simula-

tions of both the Schrödinger and the Gross-Pitaevskii

equation have been performed by means of the split op-
erator technique together with the fast Fourier transform
algorithm [63].
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and S. J. Glaser, J. Magn. Reson., 172, 296 (2005).
[63] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and

B. P. Flannery, Numerical recipes, 3rd ed. (Cambridge
University Press, Cambridge, 2007).
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