
ar
X

iv
:1

10
1.

04
77

v2
  [

qu
an

t-
ph

] 
 2

2 
Ju

n 
20

11

Common entanglement witnesses and their

characteristics

Nirman Ganguly1,3∗, Satyabrata Adhikari2, A. S. Majumdar3

1 Dept. of Mathematics, Heritage Institute of Technology, Kolkata-107, West Bengal, India

2 Institute of Physics, Sainik School Post, Bhubaneshwar-751005, Orissa, India

3 S. N.Bose National Centre for Basic Sciences, Salt Lake, Kolkata-700 098, India

November 23, 2018

Abstract

We investigate the issue of finding common entanglement witness for certain class of states and

extend this study to the case of Schmidt number witnesses. We also introduce the notion of common

decomposable and non-decomposable witness operators which is specially useful for constructing a

common witness where one of the entangled states is with a positive partial transpose. Our approach

is illustrated with the help of suitable examples of qutrit systems.

PACS numbers: 03.67.-a, 03.67.Mn

1 Introduction

Entanglement lies at the core of quantum information theory. Although entanglement is a vital resource

for processes like teleportation, dense coding, quantum key distribution and quantum computation [1,

2,3,4], its detection is a hard task. For low dimensional (2 ⊗ 2 and 2 ⊗ 3) states there exists a simple

necessary and sufficient condition for separability [5,6], which is based on the fact that separable states

have a positive partial transpose (PPT). For higher dimensional systems all states with negative partial

transpose (NPT) are entangled but there are entangled states which have a positive partial transpose.

This paradoxical behaviour of quantum entanglement in higher dimensions makes it difficult to lay down

a single necessary and sufficient condition for its detection.

A major breakthrough in this direction is provided in the form of entanglement witnesses (EW) [6,7].

An outcome of the celebrated Hahn-Banach theorem in functional analysis, entanglement witnesses are
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hermitian operators with at least one negative eigenvalue. Entanglement witness provides a necessary

and sufficient condition to detect entanglement. More specifically a given state is entangled if and only

if there is an EW that detects it [6]. Such a property makes EW an useful tool in the experimental

detection of entanglement. Though it is difficult to construct an EW that detects an unknown entangled

state, several methods have been suggested in the literature pertaining to several classes of entangled

states[7,8,9]. The notion of an entanglement witness was further extended to Schmidt number witness,

which detects the Schmidt number of quantum states [10,11].

An interesting line of study concerning entanglement witnesses is to find a common EW for different

entangled states. It was proved by Wu and Guo [12] that for a given pair of entangled states ρ1 and

ρ2, a common EW exists if and only if λρ1 + (1 − λ)ρ2 is an entangled state ∀λ ∈ [0, 1]. They thus

arrived at a sufficient condition for entanglement for pairs of entangled states. Construction of a common

entanglement witness for two entangled states not only detects them but also any state which is a convex

combination of the two. Thereby one can detect a large class of entangled states if one is able to find a

common EW satisfying the above criterion.

In the present work our motivation is to propose some methods to construct common EW for certain

classes of states making use of the above condition of existence. We first propose some characteristics of

common Schmidt number witnesses based on the analysis of common entanglement witnesses, providing

suitable examples for our propositions. We then suggest schemes for finding common EW for various

categories of states based on their spectral characteristics. The distinction between a common decompos-

able witness operator and a non-decomposable one is of relevance in the probe for finding common EW.

A decomposable operator is unable to detect a PPTES (positive partially transposed entangled state),

whereas a non-decomposable witness can successfully detect a PPTES. This distinction propagates to a

common witness. Precisely, if one of the entangled states in a convex combination is a PPTES, then the

common witness is non-decomposable. Our analysis makes use of some decomposable and nondecompos-

able witnesses including one which we had proposed earlier [14]. We illustrate our results through various

appropriate examples from qutrit systems.

The paper is organized as follows. We begin with a statement of certain relevant definitions and results

in section 2, which are useful for the later analysis. In section 3, we propose and study some features

of common Schmidt number witnesses. Next, in section 4 we suggest methods to detect a combined

pair of entangled states and construct the common EW for them. We then provide explicit examples

demonstrating our methods for finding common entanglement witnesses in section 5. In section 6, we

distinguish between a common decomposable and a non-decomposable witness operator citing examples.

We conclude with a brief summary of our results in section 7.
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2 Prerequisites

We begin with a brief summary of a few useful definitions and results.

Definition-1: The kernel of a given density matrix ρ ∈ B(HA ⊗HB) is defined as

ker(ρ) = {|x〉 ∈ HA : ρ|x〉 = 0} (1)

Definition-2: A PPT entangled state δ is called an edge state if for any ε > 0 and any product vector

|e, f〉, δ′

= δ − ε|e, f〉〈e, f | is not a PPT state [8].

Definition-3: A hermitian operator W is said to be an entanglement witness operator iff

(i) Tr(Wσ) ≥ 0 ∀ separable state σ and

(ii) Tr(Wρ) < 0, for at least one entangled state ρ. (2)

Definition-4: A witness operator is said to be decomposable if it can be expressed in the form

D = P +QTA (3)

where P and Q are positive semi-definite operators. Non-decomposable operators are those which cannot

be written as in (3).

Result-1: A non-decomposable witness that can detect an edge state δ is of the form P+QTA−εI, where
P is a projector on ker(δ) andQ a projector on ker(δTA) and 0 < ε ≤ ε0 = inf|e,f〉〈e, f |P+QTA |e, f〉 (|e, f〉
is a product vector) [8].

Result-2: Another non-decomposable witness operator can be expressed in the form as [14]:

W1 = QTA − k(I − P ), (4)

where 0 < k ≤ k0 and

k0 = min
Tr(QTAσ)

Tr((I − P )σ)
(5)

The minimum is taken over all separable states σ. An extension of these in tripartite systems is the

witness

Wtri = QTX − k0(I − P ), X = 1, 2, 3 (6)

P=Projector on Ker(δtri) and Q= Projector on Ker(δTX

tri ), where TX denotes the transpose taken with

respect to any one of the subsystems. As before, we define

k0 = min
Tr(QTXσ)

Tr((I − P )σ)
(7)

where the minimum is taken over all separable states σ.
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Result-3: Given a state ρ whose partial transposition is negative, then one witness that can detect ρ is

W = (|e−〉〈e−|)TA (8)

where |e−〉 is an eigenvector corresponding to a negative eigenvalue of ρTA .

Result-4: For a given pair of entangled states ρ1 and ρ2 an EW, W ′ common to both of them exists if

and only if for 0 ≤ λ ≤ 1, λρ1 + (1− λ)ρ2 is an entangled state [12].

3 Common Schmidt number Witness

Consider the space HN ⊗HM , with N < M . Define Sk to be the set of states whose Schmidt number is

≤ k. Thus, S1 is the set of separable states and the different states share the relation S1 ⊂ S2 ⊂ S3.... ⊂
Sk.. ⊂ SN and are convex[10,11].

A k Schmidt witness(kSW ),WS is defined as [10]

Tr(WSσ) ≥ 0, ∀σ ∈ Sk−1 (9)

Tr(WSρ) < 0 for at least one ρ ∈ Sk (10)

A well-known example of a kSW is I − m
k−1

P [10] where m and k respectively denote the dimension and

Schmidt number and P is a projector on 1√
m
Σm−1

i=0 |ii〉.
Proposition-I: Suppose ρ1 and ρ2 are Schmidt number k states. If there exists a common kSW for ρ1

and ρ2, then the Schmidt number of their convex combination will also be k. In other words the Schmidt

number of λρ1 + (1− λ)ρ2 is also k (λ ∈ [0, 1]).

Proof: Since ρ1,ρ2 are in Sk and Sk is convex , λρ1 + (1 − λ)ρ2 cannot have a Schmidt number > k.

Now, let WS be the common kSW for ρ1 and ρ2 . As a result

Tr(WS(λρ1 + (1− λ)ρ2)) = λTr(WSρ1) + (1− λ)Tr(WSρ2) < 0 (11)

since Tr(WSρ1) < 0, Tr(WSρ2) < 0. Thus the Schmidt number of λρ1 + (1− λ)ρ2 is also k.

Proposition-II: Suppose δ1 and δ2 are two states with Schmidt number (SN) k1 and k2 respectively

where k1 > k2. Then a common witness Wk, if it exists, will be of class k, where k = min(k1, k2).

Proof: It follows from the definition of Schmidt number witness that there exists a k1SW , Wk1
for which

Tr(Wk1
δ1) < 0, but Tr(Wk1

δ2) ≥ 0. Therefore a common witness if it exists should be of class k where

k = min(k1, k2).

Example-I: Convex combination of two pure SN 3 states

Consider the states |Φ1〉 = a|00〉+ b|11〉+
√
1− a2 − b2|22〉 and |Φ2〉 = x|00〉+ y|11〉+

√

1− x2 − y2|22〉.
A 3SW of the form WS3 = I − 3

2
P detects both states for many ranges of a, b, c, x, y, z (one such range
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is 0.25 ≤ a ≤ 0.65, 0.25 ≤ b ≤ 0.65, 0.25 ≤ x ≤ 0.65, 0.25 ≤ y ≤ 0.65). Therefore, for those ranges, WS3

is a common witness for the states |Φ1〉 and |Φ2〉 and thus their convex combination will have SN 3. (P

is a projector on 1√
3
Σ2

i=0|ii〉)

Example-II: Convex combination of a pure SN 3 state and a pure SN 2 state

Consider now the state |Φ1〉 = a|00〉 + b|11〉 +
√
1− a2 − b2|22〉 and |χ〉 = t|00〉 +

√
1− t2|11〉. Here a

2SW of the form WS2 = I − 3P detects both of them whereas the previous 3SW fails to qualify as a

common witness.

Example-III: Convex combination of a mixed state and a pure SN 2 state

Consider the two-qutrit isotropic state Ω = αP + 1−α
9
I with (− 1

8
≤ α ≤ 1). The 2SW , WS2 detects it

∀1 ≥ α > 1

4
, which is exactly the range for which the isotropic state is entangled. As a result, the 2SW

detects λΩ + (1− λ)|χ〉〈χ|(λ ∈ [0, 1]).

4 Methods to construct common entanglement witness

Case-I: Let us consider that the two states described by the density operators ρ1 and ρ2 be negative

partial transpose (NPT) states. Let us further assume that the two sets S1 and S2 consist of the set

of all eigenvectors of ρ
TA

1 and ρ
TA

2 corresponding to their negative eigenvalues. In set builder notation,

S1 and S2 can be expressed as S1 = {|x〉 : ρ
TA

1 |x〉 = λ−|x〉, λ− is a negative eigenvalue of ρ
TA

1 } and

S2 = {|y〉 : ρTA

2 |y〉 = α−|y〉, α− is a negative eigenvalue of ρ
TA

2 }. Now we propose the following theorem:

Theorem 1: If S1 ∩ S2 6= φ, then there exists a common witness detecting not only ρ1 and ρ2 both but

also all the states lying on the straight line joining ρ1 and ρ2.

Proof: Let S1 ∩ S2 6= φ . Then there exists a non-zero vector |η〉 ∈ S1 ∩ S2. Let W = (|η〉〈η|)TA . This

gives

Tr(Wρ1) = Tr((|η〉〈η|)TA

ρ1) = Tr((|η〉〈η|)ρTA

1 ) < 0 (12)

With similar justifications,

Tr(Wρ2) < 0 (13)

If now we consider ρ = λρ1 + (1 − λ)ρ2, λ ∈ [0, 1], then Tr(Wρ) < 0. Hence the theorem.

Case-II: Let δ1 and δ2 be two edge states. We know that a witness operator of the form Wedge =

P +QTA − εI can detect an edge state δ if P is a projector on ker(δ) and Q a projector on ker(δTA) and

0 < ε ≤ ε0 = inf|e,f〉〈e, f |P +QTA |e, f〉 where |e, f〉 is a product vector [8]. Thus we propose:

Theorem 2: Wedge can detect both δ1 and δ2 if dim(ker(δ1)∩ker(δ2)) > 0 or dim(ker(δTA

1 )∩ker(δTA

2 )) >

0.

Proof: Let dim(ker(δ1) ∩ ker(δ2)) > 0, i.e., there exists at least one non-zero eigenvector |a〉 ∈
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ker(δ1) ∩ ker(δ2). We assume P = |a〉〈a|.
Further, let dim(ker(δTA

1 ) ∩ ker(δTA

2 )) > 0. We take |b〉 ∈ ker(δTA

1 ) ∩ ker(δTA

2 ). Assume Q = (|b〉〈b|)TA .

On taking Wedge = P +QTA − εI with the above mentioned definition of ε , we obtain

Tr(Wedgeδ1) < 0 and Tr(Wedgeδ2) < 0 (14)

Consequently, Wedge detects δ = λδ1 + (1− λ)δ2 for 0 ≤ λ ≤ 1 since

Tr(Wedgeδ) = Tr(Wedge(λδ1 + (1− λ)δ2)) < 0 (15)

Thus Wedge is a common witness for δ1 and δ2 and detects any convex combination of δ1 and δ2.

Case-III: Let δ1tri and δ
2
tri be two tripartite edge states. Using (6) we have the following theorem:

Theorem 3: The witness Wtri can detect both the tripartite edge states δ1tri and δ
2
tri if dim(ker(δ

1
tri) ∩

ker(δ2tri)) > 0 or dim(ker((δ1tri)
TX ) ∩ ker((δ2tri)

TX )) > 0. Here TX represents the transposition with

respect to any one of the subsystems.

Proof: Proof is similar to Theorem 2.

5 Examples from Qutrit systems

Here, we exemplify the methods to find common entanglement witnesses as laid down in section 4 for the

different classifications.

Example 1: Let us consider the following states in C3 ⊗ C3: ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|,
where |ψ1〉 = 1√

2
(|00〉 + |11〉) and |ψ2〉 = 1√

3
(|00〉 + |11〉 + |22〉). On observation we find an eigen-

vector |e−〉 = |01〉 − |10〉 common to ρTA

1 and ρTA

2 corresponding to their respective negative eigenvalues.

On defining U = |e−〉〈e−| and W = UTA , we obtain Tr(Wρ1) < 0 and Tr(Wρ2) < 0. Therefore, W is a

common witness to the entanglement in ρ1 and ρ2. Hence we can conclude that ρ = λρ1 + (1 − λ)ρ2 is

entangled for all λ ∈ [0, 1] and can be detected by W .

Example 2: The following family of edge states in C2 ⊗ C4 was introduced in [13].

τ(b, s) =
1

2(2 + b+ b−1)



































b 0 0 0 0 −1 0 0

0 1 0 0 0 0 −1 0

0 0 b−1 0 0 0 0 −1

0 0 0 1 s 0 0 0

0 0 0 s 1 0 0 0

−1 0 0 0 0 b−1 0 0

0 −1 0 0 0 0 1 0

0 0 −1 0 0 0 0 b



































(16)
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(τ(b, s))TA =
1

2(2 + b+ b−1)



































b 0 0 0 0 0 0 s

0 1 0 0 −1 0 0 0

0 0 b−1 0 0 −1 0 0

0 0 0 1 0 0 −1 0

0 −1 0 0 1 0 0 0

0 0 −1 0 0 b−1 0 0

0 0 0 −1 0 0 1 0

s 0 0 0 0 0 0 b



































(17)

where 0 < b < 1 and |s| < b. We consider δ1 = τ(0.4, 0) and δ2 = τ(0.5, 0). It is observed that the

eigenvector |01〉 + |12〉 ∈ ker(δ1) ∩ ker(δ2). Further, the eigenvector |03〉 + |12〉 and |01〉 + |10〉 lies in

ker(δTA

1 ) ∩ ker(δ
TA

2 ). Taking the projectors as defined in Theorem (2) and ε as in Result-1, we obtain

the witness

Wedge =



































−ε 0 0 0 0 1 0 0

0 −ε+ 2 0 0 0 0 1 0

0 0 −ε 0 0 0 0 1

0 0 0 −ε+ 1 0 0 0 0

0 0 0 0 −ε+ 1 0 0 0

1 0 0 0 0 −ε 0 0

0 1 0 0 0 0 −ε+ 2 0

0 0 1 0 0 0 0 −ε



































(18)

This gives Tr(Wedgeδ1) < 0 and Tr(Wedgeδ2) < 0. Thus, Wedge is a common witness and also detects

the class of states δ = λδ1 + (1− λ)δ2, 0 ≤ λ ≤ 1.

Example 3: We consider the following class of tripartite edge states as proposed in [15]:

δtri(a, b, c) =
1

n



































1 0 0 0 0 0 0 1

0 a 0 0 0 0 0 0

0 0 b 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0 1

c
0 0 0

0 0 0 0 0 1

b
0 0

0 0 0 0 0 0 1

a
0

1 0 0 0 0 0 0 1



































(19)

7



where n = 2 + a+ b+ c+ 1/a+ 1/b+ 1/c and the basis is taken in the order |000〉, |001〉, |010〉, |011〉,
|100〉, |101〉, |110〉, |111〉. The partial transpose with respect to system C is given by

δTC

tri (a, b, c) =
1

n



































1 0 0 0 0 0 0 0

0 a 0 0 0 0 1 0

0 0 b 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0 1

c
0 0 0

0 0 0 0 0 1

b
0 0

0 1 0 0 0 0 1

a
0

0 0 0 0 0 0 0 1



































(20)

Next we take the edge states δ1tri = δtri(1, 1, 1) and δ
2
tri = δtri(1, 2, 2). It is observed that |111〉 − |000〉 ∈

ker(δ1tri) ∩ ker(δ2tri) and |110〉 − |001〉 ∈ ker((δ1tri)
TC ) ∩ ker((δ2tri)

TC ). Now, taking the projectors and k

as defined in Result 2 the witness is

Wtri =



































0 0 0 0 0 0 0 −k − 1

0 1− k 0 0 0 0 0 0

0 0 −k 0 0 0 0 0

0 0 0 −k 0 0 0 0

0 0 0 0 −k 0 0 0

0 0 0 0 0 −k 0 0

0 0 0 0 0 0 1− k 0

−k − 1 0 0 0 0 0 0 0



































(21)

It is found that Wtri detects both δ
1
tri and δ

2
tri , thus detecting the states δ12tri = λδ1tri + (1− λ)δ2tri, ∀λ ∈

[0, 1].

6 Common decomposable and non-decomposable witness oper-

ators

Central to the idea of the detection of a PPTES is a non-decomposable witness which can successfully

identify a PPTES in contrast to a decomposable witness which fails in this purpose. If we are given

two states described by the density operators ∆1 and ∆2 then we can construct a witness operator

common not only to the states ∆1 and ∆2 but also to the states lying on the straight line joining ∆1

and ∆2. Naturally, the next question as to whether the common witness operator is decomposable or

non-decomposable. The answer lies in the nature of the states ∆1 and ∆2. The decomposable or non-

decomposable nature of the common witness operator depends on the PPT or NPT nature of the states

8



∆1 and ∆2. Let us suppose that ∆1 and ∆2 are two entangled states. Now if we consider the convex

combination of ∆1 and ∆2, i.e., ∆ = λ∆1 + (1 − λ)∆2, 0 ≤ λ ≤ 1, then the common decomposable

witness operator and common non-decomposable witness operator can be seen as:

Common decomposable witness operator: If both ∆1 and ∆2 are NPT then a decomposable

operator is enough to qualify as a common witness.

Common non-decomposable witness operator: If either ∆1 or ∆2 or both are PPT then the

common witness operator is non-decomposable.

Note that if ∆1 is PPT and ∆2 is NPT, or vice-versa, then the state ∆ may be NPT and it may be detected

by a decomposable witness operator, but such a witness operator will not be common to ∆1 and ∆2,

because either ∆1 or ∆2 is PPT, and a PPT entangled state cannot be detected by a decomposable witness

operator. Let us understand the above defined common decomposable and common non-decomposable

witness operators by considering the following two cases: (i) convex combination of a class of PPT mixed

entangled state and a class of NPT pure entangled state and (ii) convex combination of a class of PPT

mixed entangled state and a class of NPT mixed entangled state.

Case-I: Convex combination of a class of PPT mixed entangled state and a class of NPT

pure entangled state

Let us consider a class of PPT mixed entangled state [16]

ρe1 =
2

7
|ψ+〉〈ψ+|+ α

7
̺+ +

5− α

7
̺−, 3 < α ≤ 4 (22)

where |ψ+〉 = 1√
3
(|00〉+|11〉+|22〉), ̺+ = 1

3
(|01〉〈01|+|12〉〈12|+|20〉〈20|) and ̺− = 1

3
(|10〉〈10|+|21〉〈21|+

|02〉〈02|). Further let us consider a pure entangled state which is described by the density operator

ρe2 = β|00〉〈00|+ β
√

1− β2|00〉〈11|+ β
√

1− β2|11〉〈00|+ (1− β2)|11〉〈11| (23)

The convex combination of the above two states can be described by the density operator

ρe = λρe1 + (1 − λ)ρe2, 0 ≤ λ ≤ 1 (24)

Enumerating the eigenvalues of the partial transpose of the state (24) it is observed that the state has

the following characterization:

Sl. No. λ α β Nature of ρe

1 0 ≤ λ < 0.75 3 < α ≤ 3.9 0.07 < β ≤ 0.99 (ρe)TB < 0

2 0.75 ≤ λ ≤ 1 3 < α ≤ 3.9 0 ≤ β ≤ 0.01 (ρe)TB ≥ 0

Since the state ρe is free entangled for the range of three parameters 0 ≤ λ < 0.75, 3 < α ≤ 3.9,

0.07 < β ≤ 0.99, so a decomposable witness operator is sufficient to detect it and it is given by

W d = (|χ〉〈χ|)TB (25)

9



where |χ〉 is an eigenvector corresponding to a negative eigenvalue of the state (ρe)TB . The witness

operator W d detects ρe as well as the state ρe2, but it fails to detect ρe1, as ρe1 is PPT and W d is

decomposable. So, in this case we are not able to construct a common decomposable witness operator.

However, using Result-1, we can construct a non-decomposable witness operator in the form

Wnd = |φ〉〈φ| − εI (26)

where |φ〉 ∈ ker(ρe). With this selection, we obtain

Tr(Wndρe) = −ε < 0, T r(Wndρe1) = −ε < 0, T r(Wndρe2) = −ε < 0 (27)

The above non-decomposable witness operator Wnd not only detects ρe2 but also detects ρe1, and thus,

it is a common non-decomposable witness operator. Let us now consider the case when (ρe)TB ≥ 0 for

0.75 ≤ λ ≤ 1, 3 < α ≤ 3.9, 0 ≤ β ≤ 0.01. As β → 0, the state ρe2 approaches the separable projector

|11〉〈11|. Consequently, the convex combination of ρe1 and ρe2 is PPT. Thus in this scenario, we can

conclude that either all the states lying on the straight line joining ρe1 and the projector |11〉〈11| are
separable, or we are incapable of detecting the most weak bound entangled state.

Case-II: Convex combination of a class of PPT mixed entangled state and a class of NPT

mixed entangled state

Let us consider a class of PPT entangled mixed state and a class of NPT entangled mixed state which

are described by the density operators

Υ1 =
2

7
|ψ+〉〈ψ+|+ α

7
̺+ +

5− α

7
̺− (3 < α ≤ 4) (28)

and

Υ2 =
2

7
|ψ+〉〈ψ+|+ γ

7
̺+ +

5− γ

7
̺− (4 < γ ≤ 5) (29)

respectively. The convex combination of the states Υ1 and Υ2 is given by

Υ = λΥ1 + (1− λ)Υ2 (0 ≤ λ ≤ 1) (30)

The nature of the resultant state described by the density operator Υ depends on the values of the mixing

parameter λ and the other two parameters α and γ, as is given in the table below:

Sl. No. α γ λ Nature of Υ

1 3 < α ≤ 4 4 < γ ≤ 5 0 ≤ λ < γ−4

γ−α
ΥTB < 0

2 3 < α < 4 4 < γ ≤ 5 γ−4

γ−α
≤ λ ≤ 1 ΥTB ≥ 0

3 α = 4 4 < γ ≤ 5 λ = 1 ΥTB ≥ 0

The state Υ is NPT for the range of parameters 3 < α ≤ 4, 4 < γ ≤ 5, 0 ≤ λ < γ−4

γ−α
, and in

this case the common witness operator is a non-decomposable witness which detects Υ, Υ1 and Υ2,
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whereas a decomposable witness fails to detect all the three simultaneously. However, in the remaining

two cases where the ranges of three parameters are given by 3 < α < 4, 4 < γ ≤ 5, γ−4

γ−α
≤ λ ≤ 1

and α = 4, 4 < γ ≤ 5, λ = 1, we find that the vectors |v1〉 = |11〉 − |00〉 ∈ ker(Υ1) ∩ ker(Υ2) and

|v2〉 = |22〉 − |00〉 ∈ ker(Υ1) ∩ ker(Υ2). In this scenario, a non-decomposable witness operator can be

constructed, which detects both Υ1, Υ2 and hence Υ. Such a non-decomposable witness operator is of

the form

Γ = P − εI (31)

where P = |v1〉〈v1|+ |v2〉〈v2|, and 0 < ε ≤ ε0 = inf|e,f〉〈e, f |P |e, f〉.

7 Conclusions

To summarize, in this work we have investigated the conditions for the existence of common Schmidt

number and entanglement witnesses, and proposed methods for the construction of common witness

operators. Common entanglement witnesses for pairs of entangled states enable us to detect a large class

of entangled states, viz., when a common witness exists for two states, it enables us to detect all states

lying on the line segment joining the two. Certain characteristics of the states help us to construct the

common witnesses which we have discussed here. We have considered a few interesting examples of states

presented earlier in the literature in the context of entanglement witnesses, and these illustrations from

qutrit systems buttress our claim of suggesting schemes for finding common witnesses.

Our study shows that the nature of the common witness is significantly dictated by the positivity of the

transpose of the two states. Specifically, a decomposable witness can never qualify to be a common witness

if one the states is PPTES. Thus, we demarcate between a common decomposable and a nondecomposable

witness. In our analysis of common Schmidt number witnesses we find that if the two states are both

of SN k and a common SN witness exists for them, then the convex combination will be of SN k. We

conclude by noting that an interesting question for further study could be to find whether the converse

of the above statement is true.
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