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Quantum walk on distinguishable non-interacting many-particles and

indistinguishable two-particle

C. M. Chandrashekar1, ∗ and Th.Busch1, †

1Physics Department, University College Cork, Cork, Ireland

We present an investigation of many-particle quantum walks in systems of non-interacting dis-
tinguishable particles. Along with a redistribution of the many-particle density profile we show
that the collective evolution of the many-particle system resembles the single-particle quantum walk
evolution when the number of steps is greater than the number of particles in the system. For
non-uniform initial states we show that the quantum walks can be effectively used to separate the
basis states of the particle in position space and grouping like state together. We also discuss a
two-particle quantum walk on a two-dimensional lattice and demonstrate an evolution leading to
the localization of both particles at the center of the lattice. Finally we discuss the outcome of a
quantum walk of two indistinguishable particles interacting at some point during the evolution.

PACS numbers: 03.67.Lx, 03.67.Ac, 05.30.Ch

I. INTRODUCTION

The idea of a quantum walk, the quantum analog of
the classical random walk, dates back to 1958 [1] and
1965 [2] but the concept was formally developed only
in 1990’s [3–5]. In a one-dimensional situation a quan-
tum walk evolving in position space spreads quadratically
faster than its classical counterpart, due to the interfer-
ence of amplitudes of the multiple paths [6, 7]. This was
found to have interesting applications in quantum infor-
mation theory, allowing for efficient quantum algorithms
[8–11]. However, quantum walks have also been shown
the be useful for coherent quantum control over atoms
and quantum phase transitions [12], to explain break-
down phenomena in electric-field driven systems [13],
to give direct experimental evidence for wavelike energy
transfer within photosynthetic systems [14, 15], to gener-
ate entanglement between two spatially separated system
[16] and to generate topological phases [17]. Experimen-
tal implementation of quantum walks have been reported
using nuclear magnetic resonance (NMR) [18, 19], contin-
uous tunneling of light fields through waveguide lattices
[20], the phase space of trapped ions [21, 22], single opti-
cally trapped neutral atoms [23] and single [24, 25] and
two-photon systems [26, 27]. All of these advances have
made the area of quantum walks a very promising tool,
just like its classical counterpart.

Quantum walks are widely categorized into two forms,
namely, continuous-time and discrete-time walks. In this
article we will discuss the discrete-time quantum walk
and in particular we will focus on the quantum walk in a
system of distinguishable particles. In Section II we will
define the distinguishable non-interacting many-particle
quantum walk and discuss the dynamics and some of the
results of the collective evolution of the many-particle
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system. We will show that for an evolution in which
the number of steps is greater than the number of parti-
cles, the collective probability distribution resembles the
single-particle probability distribution. This can be ef-
ficiently used for separating the different basis states of
the many particle system and grouping them together in
position space even when the initial states of the par-
ticles are a randomized superposition of state. We also
discuss the physical relevance of the study. In Section
III, we look at the dynamics of a two-particle quantum
walk and show that it is possible to localize the joint
probability at the center of the lattice. We also look into
the joint probability of the indistinguishable, both boson
and fermion two-particle quantum walk evolution when
the particle meet in the lattice after the walk evolution.
We conclude in Section IV.
Though the review articles in this special issue intro-

duce the concepts of quantum walks in great detail, we
will briefly discuss the main features of the quantum walk
evolution which will be relevant for this article here for
self-consistency reasons.
The discrete-time quantum walk of a single two-state

particle in one-dimension is defined on a Hilbert space
H = Hc ⊗ Hp, where Hc is the coin Hilbert space with
the basis state described in terms of the internal state of

the particle, | ↓〉 =

[

1
0

]

and | ↑〉 =

[

0
1

]

. The position

Hilbert space, Hp, has the basis states |ψj〉, where j ∈ I

is a set of integers associated with each lattice site. Each
step in the evolution of the walk is described using a
quantum coin operation

B(θ) ≡
(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)

(1)

which evolves the particle into a superposition of the in-
ternal basis states and which is followed by the unitary
shift operator

S ≡
∑

j

[| ↓〉〈↓ | ⊗ |ψj−1〉〈ψj |+ | ↑〉〈↑ | ⊗ |ψj+1〉〈ψj |]

(2)
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which transforms the state of the particle into a super-
position in position space. Therefore, the full operation
for each step of the quantum walk on the Hilbert space
Hc ⊗Hp can be written in the form

W (θ) ≡ S[B(θ)⊗ 1]. (3)

and the state after t steps of evolution is given by

|Ψt〉 =W (θ)t|Ψin〉. (4)

Here

|Ψin〉 =
(

cos(δ/2)| ↓〉+ eiη sin(δ/2)| ↑〉
)

⊗ |ψ0〉, (5)

is the initial state of the particle at a position j = 0. The
coin parameter θ controls the variance of the probability
distribution of the walk [6, 7, 28, 29] and the probability
to find the particle at site j after t steps is given by
P (j, t) = 〈ψj |trc(|Ψt〉〈Ψt|)|ψj〉.

II. DISTINGUISHABLE MANY-PARTICLE

QUANTUM WALK

Many particle quantum walks are fundamentally dif-
ferent for systems of non-interacting distinguishable and
indistinguishable particles. For the first one, the evolu-
tion of the walk can be straight forwardly predicted by
considering many single-particle quantum walks [12, 32],
whereas for the latter one many particle interference ef-
fects, based on the bosonic or fermionic nature of the
particles, strongly influence the evolution and makes it
computationally hard to study [30, 31].
Though the evolution of distinguishable particles does

not involve many-particle interference effect, the collec-
tive behavior of the single particle interference effects can
reveal interesting features of the systems dynamics. Such
systems can be approximately realized in cold, but ther-
mal samples of neutral atomic gases in optical lattices
[23], which can be engineered to minimize the atom-atom
interaction and dynamically control the atom transport
[33–35]. Therefore, they have been suggested for observa-
tion of quantum phase transitions [12] or for generation
and control over spatial entanglement between different
lattice sites [32]. Another interesting question is the ex-
ploration of the meeting probabilities and meting times
of many-particles at pre-defined positions (see Ref. [36]
for two particle meeting probabilities).
In this section we will define the non-interacting distin-

guishable many-particle quantum walk and discuss some
of the interesting outcomes from the collective evolu-
tion. To define a simple form of distinguishable many-
particle quantum walk in one-dimension, we will con-
sider a system of M non-interacting particles, where ini-
tially exactly one particle occupies a lattice site and ev-
ery particle has its own coin and position Hilbert space,

H = (Hc ⊗Hp)
⊗M

. If the number of particles is odd [44],
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FIG. 1: (color online) Probability distribution of 51 particles
initially located individually at positions j = −25 to j = +25
after the quantum walk evolution using using the Hadamard
operator B(π/4) as the quantum coin. (a) The initial state of
all the particles is 1√

2
(| ↓〉+i| ↑〉) and evolves in position space.

The spread of the distribution with an increasing number of
steps is clearly visible. (b) Initially all particles are either
in state | ↓〉 or state | ↑〉 and subsequently subjected to the
quantum walk of 500 steps. For all the particle in the initial
state | ↓〉, the distribution with peak on the left is obtained
and for all the particle in the initial state | ↑〉, the distribution
with peak on the right is obtained.

the initial state can be written as

|ΨM
ins〉 =

j=M−1

2
⊗

j=−M−1

2

[( | ↓〉+ i| ↑〉√
2

)

⊗ |ψj〉
]

, (6)

which, after t steps, will evolve into

|ΨM
t 〉 = [W (θ)⊗M ]t

j=M−1

2
⊗

j=−M−1

2

[( | ↓〉+ i| ↑〉√
2

)

⊗ |ψj〉
]

.

(7)
Here W (θ)⊗M is the evolution operator for each step of
the walk, which will evolve each particle into the superpo-
sition of its neighboring positions, establishing the quan-
tum correlation between the particle and the position
space. After t steps, these correlations overlap resulting
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FIG. 2: (color online)(a) The initial state has an antiferro-
magnetic ordering with neighboring particles being in differ-
ent internal states. (b) Probability distribution of 51 parti-
cles, initially in the state shown in (a) with one particle in
each position ranging from j = −25 to j = +25, after a quan-
tum walk of different number of steps using the Hadamard
operator B(π/4) as the quantum coin. Lower parts in the left
(right) of the distribution are due to the low contribution of
state | ↓〉 ( | ↑〉) from the particle initially in state | ↑〉 (| ↓〉).
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FIG. 3: (color online) Probability of finding a particle in state
| ↓〉 of a single-particle walk with increasing number of steps
if the particle was initially in state | ↓〉. For small values of
θ the probability of finding the particle in state | ↓〉 is larger
than for larger value of θ.

in,

[W (θ)⊗M ]t|ΨM
in 〉 ∝

M−1

2
⊗

j=−M−1

2

[Aj−t| ↓〉 ⊗ |ψj−t〉

+Aj−t+1| ↓〉 ⊗ |ψj−t+1〉+ ......+Aj+t| ↓〉 ⊗ |ψj+t〉
+Bj−t| ↑〉 ⊗ |ψj−t〉+ ......+ Bj+t)| ↑〉 ⊗ |ψj+t〉], (8)

which can be written as

[W (θ)⊗M ]t|ΨM
in〉 ∝

M−1

2
⊗

j=−M−1

2





j+t
∑

x=j−t

[Aj
x| ↓〉+ Bj

x| ↑〉]⊗ |ψx〉



 . (9)

Here Aj
x and Bj

x are the probability amplitudes of the
state | ↓〉 and | ↑〉 of each of the particles initially at
position j at the new position x, which range from (j− t)
to (j + t) after the t step walk.
The probability distribution after t steps is given by

the sum of the probabilities at a given lattice site of each
particle k

P (j, t) =

M
∑

k=1

Pk(j, t) (10)

and the effective probability distribution for different
numbers of steps is shown in Fig. 1(a). As expected, after
t steps of the quantum walk, the M particles are spread
between (M−t) and (M+t). In Fig. 1(b) the asymmetric
probability distributions resulting from all particles be-
ing initially in state | ↓〉 or | ↑〉 after 500 steps are shown.
From Fig. 1(a), and 1(b), it is clearly evident that when
t≫M the probability distribution profile ofM particles
resembles the single-particle profile. From earlier studies
of single-particle quantum walks of t steps on a particle
initially at position j = 0 using Bθ as the quantum coin
it is known that the probability distribution spreads over
the interval (−t cos(θ), t cos(θ)) in position space and de-
cays quickly outside this region [7, 29]. For anM particle
system the peak of the effective probability distribution
is given by contributions from the probability of all M
particles and therefore located at ∓[t cos(θ)−M/2].
Apart from all particles being initially in the symmet-

ric superposition state of | ↓〉 and | ↑〉 (see Eq.(6)), one
can also consider a situation of antiferromagnetic order-
ing (see Fig. 2(a)), where two neighboring particles are in
opposite states. In Fig. 2(b) we show the final probabil-
ity distribution for this situation after a different number
of steps. Though each particle undergoes an asymmetric
evolution with the states | ↓〉 moving left and the states
| ↑〉 moving right, the collective distribution is symmetric
due to equal number of particles initially in both states.
Many-particle quantum walks of particles initially in

antiferromagnetic order or in a completely randomized
initial state are very useful for separating different ba-
sis states of the particles in position space and grouping
them together. Using a different angle θ in the quantum
coin operation one can find different outcomes for the
probabilities of basis states grouped after the evolution
of the quantum walk. To demonstrate this we will con-
sider the examples of a single-particle initially in one of
the basis state.
A quantum walk of a single particle initially in state

| ↓〉 (or equivalently | ↑〉) using a Hadamard coin (θ =
π/4) results in constructive interference towards the left
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FIG. 4: (color online) Probability distribution of 51 particles
after 200 steps for different values of θ. The states | ↓〉 walk
to the left and the states | ↑〉 to the right. In (a) the initial
state of all particle was | ↓〉 and in (b) the initial state of all
particle was | ↑〉. In (c) the initial state of each particle is
randomly choose from | ↓〉 and | ↑〉.

(right) of the origin and therefore localizes all particles
with high probability on the left (right) of the origin. To
understand this, let us look at the analytic form of the
evolution after t steps using B(θ) as coin operator. The

state after t steps can be written as

W (θ)t|Ψins〉 = |Ψ(t)〉 =
t

∑

j=−t

(Aj,t| ↓〉|ψj〉+ Bj,t| ↑〉|ψj〉)

(11)
where Aj,t and Bj,t are given by the coupled iterative
relations

Aj,t = cos(θ)Aj+1,t−1 + sin(θ)Bj+1,t−1 (12a)

Bj,t = − cos(θ)Bj−1,t−1 + sin(θ)Aj−1,t−1. (12b)

Straightforward algebra allows to decouple these equa-
tions at the price of a time-dependence on the previous
two steps

Aj,t = cos(θ) (Aj+1,t−1 −Aj−1,t−1)−Aj,t−2 (13a)

Bj,t = cos(θ) (Bj+1,t−1 − Bj−1,t−1)− Bj,t−2. (13b)

By repeating this process of substitution one can find
an expression linking Aj,t and Bj,t to the amplitude of
the initial state of the particle and the angle, θ, of the
coin operation. Therefore, the expression for the total
probability of finding the particle in state | ↓〉 and | ↑〉
after time t is

P|↓〉(t) =
∑

j

|Aj,t|2 (14a)

P|↑〉(t) =
∑

j

|Bj,t|2 (14b)

To obtain a spatially symmetric probability distribu-
tion for a particle initially in symmetric superposition
state, the walk should be invariant under an exchange
of |0〉 ↔ |1〉, and hence should evolve Aj,t and Bj,t alike
(as, for example, the Hadamard walk does [37]). From
the above analysis we see that Aj,t and Bj,t are sym-
metric to each other and evolve alike for all value of θ
only when the initial state of the particle is a symmetric
superposition state. When the initial state is | ↓〉, the
walk will evolves with constructive interference towards
left and destructive interference to the right, (exact form
depending on the value of θ) and vice versa when the ini-
tial state is | ↑〉. The associated probability amplitudes
oscillate strongly between the left and the right hand side
for small numbers of steps and stabilize for longer times.
This can be seen in Fig. 3 and also directly from Eq. (13)
when realizing that the amplitude at each position oscil-
lates and the range of oscillation reduces as the amplitude
at each position decreases over time [42].
For a particle initially in state | ↓〉 a smaller value of θ

returns a high probability of finding the particle in state
| ↓〉 but if the initial state is | ↑〉 the probability of finding
the particle in | ↓〉 will be very low. We should also note
that a small probability of state | ↑〉 (| ↓〉) is present
along with the state | ↓〉 (| ↑〉) to the left (right) of the
origin but that will not alter the trend. From the above
analysis we can conclude that an initially randomized
many-particle state can be efficiently sorted in position
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space with respect to its basis states. This in turn allows
to create an ordered state with high probability.
To demonstrate this we show in Fig. 4(a) the proba-

bility distribution for different values of θ for a sample
of 51 particles after 200 steps when the initial state of
all the particles was | ↓〉 and Fig. 4(b) shows the same
for an initial state of | ↑〉. A strong asymmetry is visi-
ble for both cases. In contrast, the probability distribu-
tion shown in Fig. 4(c) assumes that the initial state of
each particle was randomly chosen from | ↓〉 and | ↑〉 and
the anisotropy in the final distribution vanishes. From
Figs. 4(a) and (4(b)) one can also see that for increasing
θ the probability distribution widens and its maximum
amplitude decreases.
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FIG. 5: (color online) Probability distribution of two distin-
guishable particles on a two-dimensional lattice using B(π/4)
as quantum coin operation. (a) Joint probability distribution
of two particles staring at (0, 0) and (20, 20) with initial states
| ↓〉 after 10 steps. (b) Localization of two-particle probabil-
ity distribution at the center of the lattice after a one time
bit-flip operation on both particles at t = j/2 was introduced.

III. JOINT PROBABILITY OF TWO-PARTICLE

QUANTUM WALK

Two-particle quantum walks have been studied from
various perspectives [38–41] and first experimental im-
plementations have recently been reported [22, 26]. Here
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FIG. 6: (color online) Quantum walk on a two-dimensional
lattice for two indistinguishable bosons initially at (0, 0) and
(20, 20) in | ↓↓〉 and interacting via σx after 20 steps using
B(π/4) as the quantum coin operation. The probabilities for
finding the particles in the state (a) | ↓↓〉 (b) | ↑↑〉 and (c)
| ↓↑〉 are shown at t = 20. The relative height of the final
distributions however can be shown to depend on the initial
state.

we will discuss the probability distribution of a quan-
tum walk using two distinguishable particles on a two-
dimensional lattice and present a protocol to increase the
meeting probability of the two particle at a particular lat-
tice after a particular time. We then compare this to the
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quantum walk evolution of two indistinguishable parti-
cles which only interact at the end of a certain number
of steps.
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FIG. 7: (color online) Probability distribution of finding the
two fermions staring at (0, 0) and (20, 20) with initial states
| ↓〉 and interacting with σx after 20 steps of quantum walk on
a two-dimensional lattice using B(π/4) as quantum coin op-
eration. The state | ↓↑〉 is the only possible state for fermions.

To define a two-particle quantum walk we will consider
a two-dimensional square lattice and label the two axis
as X and Y such that (x, y) represent a position on the
lattice. We will consider two particles initially in state
| ↓〉 at diagonally opposite points (0, 0) and (j, j),

|Ψ2
ins〉 = [| ↓〉 ⊗ |ψ0,0〉]⊗ [| ↓〉 ⊗ |ψj,j〉] , (15)

where j is the length of the lattice, which has j × j posi-
tions. The shift operator for the quantum walk evolution
is defined separately for both particles in such a way that
they evolve towards each other,

S1 ≡
∑

x,y

[| ↓〉〈↓ | ⊗ |ψx+1,y〉〈ψx,y|

+| ↑〉〈↑ | ⊗ |ψx,y+1〉〈ψx,y|]
S2 ≡

∑

x,y

[| ↓〉〈↓ | ⊗ |ψx−1,y〉〈ψx,y|

+| ↑〉〈↑ | ⊗ |ψx,y−1〉〈ψx,y|]. (16)

Each step of the evolution can be implemented by
W2(θ) = [B(θ) ⊗ S1] ⊗ [B(θ) ⊗ S2] and after t steps the
state is given by

[W2(θ)]
t|Ψ2

ins〉 = {[B(θ)⊗ S1]⊗ [B(θ) ⊗ S2]}t

×{[| ↓〉 ⊗ |ψ0,0〉]⊗ [| ↓〉 ⊗ |ψj,j〉]} . (17)

The two particles meet each other for the first time after
t = j steps and the meeting probability at each position
is different for the distinguishable and indistinguishable
case.

Two distinguishable particles: In this case the joint
probability of the two particles at each position at the
time of meeting each other is the sum of the probabilities
of both individual particle. In Fig. 5(a) we show this
distribution for both particles after t = j/2 = 10 steps
on a 20× 20 lattice. The first time the two distributions
overlap is at t = 20 where they spread along the diagonal
of the lattice (not shown). If, however, we introduce a
one time bit-flip operation, σx at t=j/2=10,

[W (θ)⊗2]j/2[σx ⊗ σx][W (θ)⊗2]j/2|Ψ2
ins〉 (18)

one can see from Fig. 5(b) that the evolution can be
reversed, which leads to localization of both the particles
in the center of the lattice at time t = j with a good
probability.

Two indistinguishable particle: If the two particles are
indistinguishable, their probability distributions interfere
when they overlap at the same position in the lattice. For
bosons the allowed states at each position in the lattice
are | ↓↓〉, | ↑↑〉 or | ↓↑〉 ≡ | ↓↑〉, whereas for fermions these
are restricted to | ↓↑〉 ≡ | ↓↑〉. The probabilities for these
states to be obtained at each position at time t are then
given for bosons as

P j
|↓↓〉 =

|Aa
j,t|2 · |Ab

j,t|2
∑

j [|Aa
j,t|2 · |Ab

j,t|2 + |Ba
j,t|2 · |Bb

j,t|2 + |Aa
j,t|2 · |Bb

j,t|2 +Ab
j,t|2 · |Ba

j,t|2]
(19a)

P j
|↑↑〉 =

|Ba
j,t|2 · |Bb

j,t|2
∑

j [|Aa
j,t|2 · |Ab

j,t|2 + |Ba
j,t|2 · |Bb

j,t|2 + |Aa
j,t|2 · |Bb

j,t|2 +Ab
j,t|2 · |Ba

j,t|2]
(19b)

P j
|↑↓〉 =

|Aa
j,t|2 · |Bb

j,t|2 + |Ab
j,t|2 · |Ba

j,t|2
∑

j [|Aa
j,t|2 · |Ab

j,t|2 + |Ba
j,t|2 · |Bb

j,t|2 + |Aa
j,t|2 · |Bb

j,t|2 +Ab
j,t|2 · |Ba

j,t|2]
. (19c)

Here Aa and Ab are the amplitudes of the particles a and b to be in state | ↓〉, and Ba and Bb are the amplitudes
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to be in the state | ↑〉. We show these probabilities two
particles initially at (0, 0) and (20, 20) and meeting after
evolving for 20 steps of walk using Eq. (17) in Fig. 6(a),(b)
and (c).
If the particles are fermions the probability of finding

the two-particle in the only possible state at each posi-
tions is

P j
|↓↑〉 =

‖Aa
j,t|2 · |Bb

j,t|2 + |Ab
j,t|2 · |Ba

j,t|2
∑

j [‖Aa
j,t|2 · |Bb

j,t|2 + |Ab
j,t|2 · |Ba

j,t|2]
, (20)

which is shown in Fig. 7 for the same parameters as in
the bosonic case above. The difference to the bosonic
case is clearly visible. Using different initial states of the
particle or different coin operations during the evolution
will of course alter the probability distribution. Intro-
ducing a one time bit-flip operation half way through the
evolution for indistinguishable particles as we did for dis-
tinguishable particle will lead to localization of the join
probability at the center (not shown).
From this one can see that even a one time particle-

particle interaction in an indistinguishable many-particle
quantum walk can result in different probability distribu-
tions which might be useful for applications in quantum
information and other fundamental quantum mechani-
cal experiments. With the possibility of increasing the
number of steps, the number of particles and the num-
ber of time the particle-particle interaction is introduced,
the evolution gets even more interesting and complicated,
but becomes computationally difficult. Recently,for the
case of two atoms in an optical lattice performing a quan-

tum walk with interactions via cold collisions the appear-
ance of a bound state has been predicted [43], which gives
scope for further exploration of the dynamics using our
approach for many-particle system by introducing inter-
actions at regular intervals.

IV. CONCLUSION

We have presented a number examples of quantum
walk dynamics of many-particle system with different
initial states of the particles. Though the distinguish-
able many-particle quantum walk dynamics does not in-
volve many-particle interference during the evolution we
have shown that it can be effectively used to separate
the eigenstates of the particles position space and group
them together. We have also presented an example of
two-particle quantum walk dynamics with defined inter-
action that can lead to localization of two distinguish-
able particles at the center if they start their walk from
opposite ends of the lattice. Extending this scheme to
indistinguishable boson and fermion pairs results in the
different probabilities for finding the two particles in the
allowed combination of states. Recent experimental de-
velopments in implementing quantum walks and using
quantum walk models to simulate and understand some
of the dynamics process in nature suggests that collec-
tive dynamics of many-particle system will very useful
for further studies.
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