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for each time step and each lattice site and prove that, under rather mild conditions, this leads to
classical behavior: With the same scaling as needed for a classical diffusion the position distribution
converges to a Gaussian, which is independent of the initial state. Our method is based on non-
degenerate perturbation theory and yields an explicit expression for the covariance matrix of the
asymptotic Gaussian in terms of the randomness parameters.
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I. INTRODUCTION

Quantum walks describe the time evolution of a single quantum particle with internal degrees of freedom, for which
both space and time are discrete. We study here the case where the underlying space is assumed to be an infinite
lattice of arbitrary dimension. The dynamical rule is given by a unitary operator composed of a coin operator acting
on the internal degree of freedom only, in a generally site-dependent way, and a fixed shift operator translating the
particle by finitely many lattice sites depending on its internal degree of freedom. We are interested in a situation
were the coin is varied randomly, as a way to model the imperfections of experimental realizations. If the distribution
of coins is highly peaked around a fixed one, we would expect to see a coherent walk with a linear increase of the
standard deviation with the number of time steps t, at least for some time. In the long run, however, the randomness
will be felt, and it is this regime we will study. Depending on where we put the random dependence we can distinguish
four cases, summarized in the following table, and discussed in turn below.

coin spatially

dependence fixed random

temporally σ ∼ t σ ∼ 1

fixed

temporally σ ∼
√
t σ ∼

√
t

random

Table I. The type of randomness of the coin operator determines the dependence of the standard deviation σ on the number
of time steps t of the quantum walk. The cases where the random coin operator is fixed in time respectively space have been
studied in the literature and it was shown that they lead to localization (σ ∼ 1) respectively diffusive behavior (σ ∼

√
t). Our

aim is to analyze the case where both types of randomness are combined and we prove that the asymptotic behavior of such
quantum walks is diffusive.

Coherent walks, i.e., walks without any randomness, have been found to be useful in search-like algorithms [Kem05,
Amb03, Amb07, CCJY09, FGG08], precisely because they spread faster than classical walks[Amb03], which have a
similar algorithmic use. They are also the simplest case of quantum simulators, since they can be understood as the
one-particle sector of so-called quantum cellular automata [SW], which are quantum systems on a lattice of infinitely
many interacting quantum particles. There has also been done a lot of experimental work to implement quantum
walks in a variety of physical setups, starting with cold atoms [KFC+09] and followed by experiments with trapped
ions [SMS+09, MSE+11, ZKG+10] and photons [SCP+10].

Temporal fluctuations are implemented by a walk operator that is random in time, which means that for every time
step a different walk operator has to be applied, keeping, however, the spatial translation invariance in each step. It is
clear that we have to take the expectation value over all possible sequences of time dependent coin operators in order
to model fluctuations of the coin parameters. This expectation value turns the formerly unitary time evolution into
a decoherent quantum channel. This model has been studied in a number of examples [CSB07, ADSS07, SBBH03,
BCA02, SK08, KBH06] and in great detail in [AVWW11, Joy11, HJ11] and it was shown that such a time evolution
generically leads to diffusive behavior of the quantum walk, which means that the standard deviation of the position
probability distribution grows proportionally to the square root of the number of time steps.

Spatial fluctuations of experimental parameters correspond to the case where the time evolution is still unitary,
and the same unitary in every step, but the coin operator is random in space. For continuous time, i.e., Hamiltonian
systems this is the well known Anderson model of disordered crystals, which exhibits localization. This means that
the Hamiltonian almost surely has purely discrete spectrum, and the position distribution does not spread at all.
The case of quantum walks on a one-dimensional lattice subject to spatial disorder has been studied in a number
of examples both numerically [LKBK10, OK11] and theoretically [Kon09b, Kon09a, JM10, ASW11]. These results
show that, at least in one-dimensional systems, spatial disorder implies dynamical localization, meaning that after
arbitrarily many time steps the quantum walker is confined to a finite region of the lattice, up to exponentially small
corrections.

In this paper we examine the case where both types of disorder appear simultaneously. Such quantum walks have
been studied numerically for example in [RSA+05] and [LKBK10] and the simulations indicate diffusive behavior.
We use the coin and shift decomposition mainly to have a precise meaning for independently identically distributed
randomness. For this setting we develop a general theory of the asymptotic position distribution and find diffusive
scaling. More precisely, the scaled limiting distribution is exactly gaussian and independent of the initial state. This
distinguishes the present case from only temporal randomness, where we get gaussianness only in every momentum
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component. Since momentum is conserved, a residual dependence on the initial state remains, and since the diffusion
constant depends on momentum, the resulting mixture of Gaussians is no longer a Gaussian.

Let us briefly outline the structure of this paper. We start in section II by the mathematical formulation of the
model, followed by the general examination in section III. We continue our discussion by the application to a variety
of examples in section IV. In section V we comment on generalizations of our results to the case of more general
quantum walks and we conclude in section VI by discussing some open problems left for future research.

II. MODELS OF QUANTUM WALKS WITH RANDOM COIN

Abstractly, quantum walks can be defined as a discrete time evolution of a quantum particle with internal state
space K moving with strictly finite propagation speed on a lattice Zs. Usually, one also assumes translation invariance
of the time evolution which then yields a structure theorem [AVWW11] for the class of all translation invariant and
possibly decoherent quantum walks. Hence, the underlying Hilbert space is H = `2(Zs) ⊗ K and quite commonly a
single time step is realized by a composition of a local coin operator C and a conditional translation operator called
(state-dependent) shift operator S. Throughout this paper we will assume that the shift operator S is given by a
unitarily implemented quantum channel, hence, if C is also unitarily implemented we can represent the quantum walk
by a unitary matrix W acting on `2(Zs)⊗K. We denote the unitary operators corresponding to the coin respectively
shift again by C respectively S, and hence, W = S ·C. To begin with we specify S and C in the case where both are
unitarily implemented.

We denote the elements of the standard basis of `2(Zs) ⊗ K by |x ⊗ i〉, where x ∈ Zs labels the positions and
i = 1, . . . ,dimK labels a basis of K such that S is given by

S|x⊗ i〉 = |x+ vi ⊗ i〉, (1)

with some vectors vi ∈ Zs. A single time step at time t is generated by the unitary operator

Wt = S · Ct , Ct =
⊕
x∈Zs

Ux,t ,

where Ux,t is a unitary matrix of dimension dimK depending on the time t and the lattice site x. Ideally, the coin
operator is translation invariant and constant in time, that is Ux,t = U . In this case we can write C = 1Zs ⊗ U and
it is well-known that this generically leads to ballistic behavior of the quantum walk, that is, the standard deviation
of the position distribution grows linearly with the number of time steps σ(t) ∼ t.

If the coin operator at a fixed time t is translation invariant, but varies in time, we have Ux,t = Ut. In this case,
the interpretation of fluctuating coin parameters corresponds to a lack of controllability of the unitary Ut. In other
words, instead of a deterministic sequence U1, . . . , Ut applied sequentially to an initial state we actually have to take
the expectation value over all possible sequences of time dependent coin operators. In fact, we cannot control which
coin operator happens at a certain time and according to quantum mechanics and its statistical nature we have to
repeat the experiment several times, each with a different sequence of coin operators, in order to extract the position
distribution of the quantum walk after a fixed number of time steps. Let us assume that the coins Ut are distributed
independently and identically in time according to some measure ν on U(K), the space of unitary operators on K.
We identify the underlying probability space Ω with U(K) and an element ω ∈ Ω uniquely determines an operator
Uω ∈ U(K)[Not]. With this notation we can describe a single time step of an observable A in the Heisenberg picture
by the application of a decoherent quantum channel according to

W(A) = S∗ ·E
ω

[(1Zs ⊗ U∗ω) ·A · (1Zs ⊗ Uω)] · S

where the expectation value is taken with respect to the probability distribution ν of the coin operators Uω ∈ U(K).
This case has been studied in [AVWW11, Joy11, HJ11] and it was shown that such a time evolution generically leads
to diffusive behavior, by which we mean that the standard deviation of the position distribution grows proportional
to the square root of the number of time steps σ(t) ∼

√
t.

If on the other hand the coin operator is constant in time, at least for a large number of time steps, but inhomoge-
neous in space, we have Ux,t = Ux. Here, the time evolution after t time steps is generated by the t-fold concatenation
of W = SC, where C =

⊕
x Ux =

∑
x |x〉〈x| ⊗ Ux is the coin configuration generated by the unitary matrices Ux. If

now the fluctuation of the experimental parameters is only spatial one gets a unitary time evolution, but if on the
other hand there is a temporal fluctuation in C on a large time scale, comparable to the duration of a single run of
statistical data collection, one needs to take the expectation value over all possible spatial realizations of the coin
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operator C. Assuming again that the matrices Ux are distributed independent and identically according to some
measure ν on U(K) we can write the time evolution after t time steps as

Wt(A) = E
ω

(S∗ ·⊕
x

U∗ω(x)

)t
·A ·

(⊕
x

Uω(x) · S

)t ,
where the expectation is taken with respect to the spatial configurations of C, which mathematically corresponds
to the infinite product measure ν∞ of ν defined on the probability space

∏
Zs U(K). The one-dimensional case

H = `2(Z) ⊗ C2 was analyzed in [ASW11, JM10] and it was shown that such a time evolution yields Anderson
localization, that is, up to exponentially small corrections, the position distribution of the quantum walker has finite
support on the lattice Z under rather general assumptions on the distribution ν. Those results also apply to the case
where we do not average over all possible spatial configurations, in other words, almost all possible configurations
already show Anderson localization and large-scale temporal fluctuations are not required for localization.

In this paper we will analyze the combination of the former mentioned cases. Fluctuations of the coin parameters are
now assumed to happen in space as well as in time on the scale of a single time step. Mathematically, this means that
the t-fold time evolution of a single run of the experiment is given by the unitary operator Wt · . . . ·W1 = SCt · . . . ·SC1.
Similarly to the other models we have to take the expectation with respect to the distribution of the coin operators,
but now in space and time. A crucial assumption we impose on our model is again that the coins are independent
and identically distributed both in time and space according to a measure ν on U(K). Consequently, one time step of
the evolution can be written as

W(A) = S∗C(A)S , (2)

where S denotes the unitary shift operator and C the decoherent coin operator stemming from the expectation value
with respect to all possible coin realizations. The action of the averaged coin operator C on a generic operator
A =

∑
x,y |x〉〈y| ⊗Axy can be written as

C

(∑
x,y

|x〉〈y| ⊗Axy

)
=
∑
x,y

|x〉〈y| ⊗
(
δxy

∫
ν(dω)U∗ωAxyUω (3)

+(1− δxy)Ũ∗AxyŨω

)
, Ũ =

∫
ν(dω)Uω .

Now since the distribution ν is independent of the lattice site x it follows that W itself is a translation invariant
operator. This is similar to the model considered in [AVWW11], the crucial difference being that there the existence
of a Kraus decomposition of W in terms of translation invariant Kraus operators was assumed. This, however, is not
the case in this model, where a Kraus decomposition is given by the Kraus operators corresponding to all possible
realizations of coin operators, which is a decomposition into non-translation invariant Kraus operators. We will further
develop our method used in [AVWW11] in order to cope also with the case of fluctuations in space and time and
prove that this in fact leads to diffusive behavior.

III. THE PERTURBATION METHOD

Our goal is to determine the scaling of the standard deviation σ(t) of the position probability in time, in particular
to distinguish between ballistic (σ(t) ∼ t) and diffusive (σ(t) ∼

√
t) behavior. Using perturbation theory we compute

the asymptotic limit t→∞ of the position distribution.
We start this section with a description of the general theory we are going to apply to quantum walks according

to (2) and (3). Since our method is based on perturbation theory of infinite dimensional operators we need to verify
analyticity of the series expansions explicitly. This is done in the second part of this section. The actual analysis of
our quantum walk model is postponed to the third part of this section, where we summarize our results.

A. General Theory

Similarly to the approach in [AVWW11] we compute the characteristic function of the position distribution of the
quantum walk with initial state ρ0 after t time steps scaled by ε

Ct,ε(λ) = tr(ρ0W
t(eiελ·Q)) (4)
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and determine the limit C(λ) = lim
t→∞

Ct,ε(λ), where ε is either chosen as 1/t in ballistic scaling or 1/
√
t in diffusive

scaling. The method we are going to incorporate is based on perturbation theory of bounded operators [Kat95]. The
idea is to introduce a similarity transform

φ : B(H)−→B(H) (5)

A 7−→ φ(A) = AeiελQ

and define the operator

Wε := φ−1 ◦W ◦ φ (6)

on B(H), i.e. Wε(A) := W(Aeiελ·Q)e−iελ·Q, and rewrite

Wt(eiελ·Q) = Wt
ε(1)eiελ·Q . (7)

When inserting this into C(λ) we can neglect the factor eiελ·Q since ρ0 is a trace-class operator and hence

C(λ) = lim
t→∞

tr
(
ρ0W

t
ε(1)eiελ·Q) = tr

(
lim
t→∞

(
ρ0W

t
ε(1)eiελ·Q)) (8)

= tr
(

lim
t→∞

(
Wt

ε(1)
)

lim
t→∞

(
ρ0e

iελ·Q))
= tr

(
ρ0 lim

t→∞
Wt

ε(1)
)
.

In (8) we assumed that the limit of Wt
ε(1) for t → ∞ exists in operator norm with appropriate scaling of ε. In

fact, our goal is to determine this limiting operator via perturbation theory and by inserting it into (8) we get the
characteristic function of the asymptotic distribution of W and ρ0. We interpret ε as a perturbation parameter, so
we act with a high power of the perturbed operator Wε on the eigenvector 1 of the unperturbed operator W = W0.

Before we deepen our analysis let us sketch the results to be expected. The operator Wε approaches W as ε→ 0.
Moreover, the perturbed eigenvector Aε, obeying Wε(Aε) = µεAε, approaches 1 as ε→ 0, hence, we expect

Wt
ε(1) −→

t→∞
µtε1 . (9)

Consequently, the characteristic function is given by C(λ) = limt→∞ µtε, which, in contrast to the case considered in
[AVWW11], is always independent of the initial state ρ0. From the perturbation expansion µε = 1+µ′ε+µ′′ε2/2+ . . .
with µ′ = iv · λ and µ′′ = −λT ·D · λ we get in ballistic scaling ε = 1/t the characteristic function

C1/t(λ) = eiv·λ , (10)

which is the characteristic function of a point mass at v corresponding to a constant drift with velocity v. If µ′ = 0
we can look at the diffusive scaling ε = 1/

√
t of W which yields

C1/
√
t(λ) = e−λ

T ·D·λ (11)

corresponding to a position distribution which is a Gaussian with covariance matrix D.

B. Analytic Perturbation Theory for Quantum Walks

To begin with let us put this problem rigorously into the context of perturbation theory. It is convenient to consider
vectors ψ =

∑
x |x〉〈x| ⊗ψx ∈ `2(Zs)⊗K as functions ψ : x 7→ ψx, in other words, we identify `2(Zs)⊗K with the set

`2(Zs,K) of all K-valued square summable functions on Zs. Then, a translation by a vector y ∈ Zs on `2(Zs) ⊗ K,
which we denote by Ty, can be defined via Tyψ : x 7→ ψx−y. With the help of these Ty we define translations of
bounded operators A ∈ B(`2(Zs) ⊗ K) by τy(A) = TyAT

∗
y and denote the set of all translation invariant bounded

operators on `2(Zs)⊗K by TK,s ⊂ B(`2(Zs)⊗K). The defining equation for TK,s is

A ∈ TK,s ⇔ τy(A) = A ∀ y ∈ Zs . (12)

Now, let us argue why TK,s constitutes a vector space on which Wε acts, which is expressed by τy ◦Wε = Wε ◦ τy
for all y ∈ Zs. Indeed, though the similarity transform φ on B(`2(Zs)⊗ K) does not preserve translation invariance,
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more precisely τy ◦ φ = eiελ·yφ ◦ τy, the operator Wε = φ−1 ◦W ◦ φ commutes with translations τy due to the fact
that W preserves translation invariance and the two appearing phase factors cancel each other.

The analysis of translation invariant operators A ∈ TK,s and maps acting on TK,s is much simplified by introducing
the Fourier transform on `2(Zs)⊗K via

(Fψ)(p) = (2π)−
s
2

∑
x∈Zs

eix·pψx , p ∈ [0, 2π)s. (13)

Then each A ∈ TK,s becomes a multiplication operator in Fourier space, i.e. it exists a unique matrix valued function
p 7→ A(p) ∈ B(K) such that (FAψ)(p) = A(p)ψ(p) [SW71], and vice versa. This leads to the following sesqui-linear
form on TK,s

〈A|B〉 :=
1

(2π)s

∫
[0,2π)s

dsp
1

dimK
trKA

∗(p)B(p) , (14)

which in fact is even a scalar product turning TK,s into a separable Hilbert space. Another way of interpreting (14) is
to observe that a translation invariant bounded operator A ∈ TK,s is fully characterized by its matrix entries at the
origin, i.e. if we expand A in position basis as A =

∑
x,y∈Zs |x〉〈y| ⊗ Axy with Axy ∈ B(K) then Axy = A0,x−y. The

corresponding multiplication operator in Fourier space is now given by A(p) =
∑
x∈Zs e

ip·xAx0 and therefore we get
the alternative expression

〈A|B〉 = 1
dimK

∑
x∈Zs

trKA
∗
x0Bx0 , (15)

which is finite since A and B are bounded operators. We denote the norm on TK,s induced by this scalar product by
‖.‖, thus, ‖A‖2 = 〈A|A〉 for all A ∈ TK,s.

Now, after we have introduced the Hilbert space TK,s we consider the specific form of quantum walks according
to (1), (2) and (3). The shift operator S is represented in momentum space by conjugation with the p-dependent
dimK-dimensional matrix

S(p) =


eiv1·p 0 . . .

0
. . .

... eivdimK·p

 , (16)

hence, the operator W acts on a translation invariant bounded operator A(p) in the following way.

W(A)(p) = S(p)∗
(∫

ν(dω)U∗ωA0Uω (17)

+Ũ∗(A(p)−A0)Ũ
)
S(p)

In this equation A0 denotes the p-independent term in A(p), which can be represented as A0 = (2π)−s
∫
dspA(p).

The modified operator Wε is now given by

Wε(A)(p) = S(p)∗
(∫

ν(dω)U∗ωA0Uω (18)

+Ũ∗(A(p)−A0)Ũ
)
S(p+ ελ) .

where the momentum shift of ελ arises from the definition of the perturbed walk operator Wε and the fact that the
coin operator C commutes with eiελ·Q, together with the equation

eiελQS(p)e−iελQ = S(p+ ελ) . (19)

Our goal is to apply non-degenerate perturbation theory to the operator Wε, in particular, the aim is to determine
the first and second order equations of the perturbation theory in ε. The correctness of the results obtained by
equating coefficients of powers of ε is in fact non-trivial since Wε is defined on an infinite dimensional Hilbert space
TK,s. Hence, we first have to establish analyticity of Wε, the eigenvector Aε and the corresponding eigenvalue µε
with Aε → 1 and µε → 1 as ε → 0. This can be done by using the following theorem, which is an adaption of the
well-known theorem of Kato and Rellich [Kat95, RS78] to our setting.
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Theorem III.1 (Kato-Rellich). Assume that the operator Wε is bounded on TK,s and the limit of the difference
quotient

lim
∆→0

Wε+∆ −Wε

∆
,

which we then call the derivative of Wε at ε, exists in operator norm for all ε in an open subset of C containing the
origin. If the eigenvalue equation W(1) = 1 of the unperturbed operator W = W0 is non-degenerate, then, for small
enough ε, there exists an analytic eigenvector Aε with analytic and non-degenerate eigenvalue µε such that Aε → 1

and µε → 1 as ε→ 0.

For a proof of this theorem we refer to [Kat95, RS78]. Now, we are left to prove that Wε is bounded, differentiable
and the eigenvalue 1 of W is non-degenerate. In order to ensure the non-degeneracy of the perturbation theory we
assume that some power of W is strictly contractive on the orthogonal complement of 1. Below we identify a class of
quantum walks W which are strictly contractive on their own, i.e. ‖W(A)‖ < ‖A‖ for all A ⊥ 1.

The following proposition in conjunction with theorem III.1 assures the analyticity of the perturbation theory of
Wε.

Proposition III.2. Let W be a quantum walk according to equations (1), (2) and (3) and Wε be defined by (6).
Assume that some power of W is strictly contractive on {1}⊥, that is, there exists n ∈ N such that ‖Wn(A)‖ < ‖A‖
for all A ⊥ 1. Then we have the following conclusions:

i) The derivative of Wε exists in operator norm for all ε ∈ C.

ii) For all ε ∈ C the operator Wε is bounded with ‖Wε‖op ≤ max
i
|eiελ·vi |.

iii) The eigenvalue 1 of W is non-degenerate.

Proof. It is easy to check that the operator W′
ε defined via its Fourier transform

W′
ε(A)(p) = Wε(A)(p) · iΛ ,

where Λ is the dimK-dimensional diagonal matrix with matrix entries λ · vi on the diagonal, is indeed the operator
norm limit of the difference quotient

lim
∆→0

Wε+∆ −Wε

∆
,

which proves i).
By (16) we have S(p+ ελ) = S(p) · S(ελ), which implies

〈Wε(A)|Wε(A)〉 = 〈W(A)|W(A)S(ελ)S∗(ελ)〉 ≤ max
i
|eiελ·vi |2〈W(A)|W(A)〉,

and hence, by the basic definition of the operator norm, we have ‖Wε‖op ≤ max
i
|eiελ·vi |‖W‖op. Now, ii) follows from

‖W‖op = 1, which we prove next.
By writing W(A) = S∗C(A)S and observing that S is unitary we get ‖W(A)‖ = ‖C(A)‖, and hence ‖W‖op =

‖C‖op. We denote the first part of the coin operator in (3) by T , that is,

T (A) =

∫
ν(dω)U∗ωAUω

and hence

C(A)(p) = T (A0) + Ũ∗(A(p)−A0)Ũ .

The Hilbert space TK,s can be decomposed into a direct sum of two orthogonal subspaces T0 and T ⊥0 defined via

T0 = {A ∈ TK,s : A = A0} (20)

T ⊥0 = {A ∈ TK,s : A0 = 0} .

Clearly, C(T0) ⊂ T0 and C(T ⊥0 ) ⊂ T ⊥0 , from which it also follows that W(T0) ⊥W(T ⊥0 ). Hence,

‖W‖op = ‖C‖op = max{‖T‖op, ‖Ũ∗.Ũ‖op} ,
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where we consider T respectively Ũ∗.Ũ as map on T0 respectively T ⊥0 . First, let us note that

‖T (A)‖2 ≤ 1

dimK

∫ ∫
ν(dω)ν(dω′)|trKU∗ωA∗UωU∗ω′AUω′ |

≤ 1

dimK

∫ ∫
ν(dω)ν(dω′)

√
trKA∗A

√
trKA∗A

= ‖A‖2 ,

in other words, ‖T‖op ≤ 1. Now, let A and B be positive operators on K, then we have

trKAB ≤ ‖A‖op · trKB ,

and hence, by applying this inequality to trKC(A)∗C(A), we get

trKŨ
∗A∗Ũ Ũ∗AŨ = trKŨ Ũ

∗A∗Ũ Ũ∗A (21)

≤ ‖Ũ Ũ∗‖op · trKA∗Ũ Ũ∗A
≤ ‖Ũ Ũ∗‖2op · trKAA∗

≤ ‖Ũ‖4op · trKAA∗ .

Clearly, ‖Ũ‖op ≤
∫
ν(dω)‖Uω‖op = 1 which finally proves ‖Ũ∗.Ũ‖op ≤ 1, and hence, ‖C‖op ≤ 1.

Any eigenvector of W is also an eigenvector of Wn with eigenvalue raised to the n-th power, hence, the contractivity
of Wn yields statement iii).

Of course, the contractivity of W or a power of it depends on the probability distribution ν of the coin operators Uω.
In particular, the operator W itself is strictly contractive if the operators U∗ω′Uω with ω′, ω ∈ Ω fulfill the following
definition.

Definition III.3. A set of matrices {Mi : i ∈ I}, where I is an index set and each Mi acts on K, is said to be
irreducible if any invariant subspace is trivial, that is, if S is a subspace of K such that MiS ⊂ S for all i ∈ I, then
we must have S = {0} or S = K.

Proposition III.4. Let W be a quantum walk according to equations (1), (2) and (3). If the coin operators Uω on
which the measure ν is supported are such that the set {U∗ω′Uω : ω, ω′ ∈ Ω} is irreducible on K, then W is strictly
contractive on {1}⊥, that is, ‖W(A)‖ < ‖A‖ for all A ⊥ 1.

Proof. Suppose the set {U∗ω′Uω : ω, ω′ ∈ Ω} is irreducible. It follows from the singular value decomposition of Ũ that
there exist normalized vectors φ, ψ ∈ K such that

‖Ũ‖op = 〈φ|Ũψ〉 =

∫
ν(dω)〈φ|Uωψ〉 ,

and hence, if ‖Ũ‖op = 1 we must have 〈φ|Uωψ〉 = 1 for all ω. This implies 〈φ|U∗ω′Uωφ〉 = 1, hence, φ is an eigenvector
of U∗ω′Uω for arbitrary ω and ω′, which is forbidden since the set {U∗ω′Uω : ω, ω′ ∈ Ω} is assumed to be irreducible.

Consequently, ‖Ũ‖op < 1 and by (21) ‖Ũ∗.Ũ‖op < 1.
Now, let A be p-independent, i.e. A0 = A, such that A ⊥ 1. Assume ‖T (A)‖ = ‖A‖, where T denotes the diagonal

part of C, that is, T (A) =
∫
ν(dω)U∗ωAUω. This implies∫ ∫

ν(dω)ν(dω′)trKU
∗
ω′A

∗Uω′U
∗
ωAUω = trKA

∗A .

On the other hand, we can estimate∫ ∫
ν(dω)ν(dω′)trKU

∗
ω′A

∗Uω′U
∗
ωAUω ≤

∫ ∫
ν(dω)ν(dω′)|trKU∗ω′A∗Uω′U∗ωAUω|

=

∫ ∫
ν(dω)ν(dω′)|trKA∗(UωU∗ω′)∗AUωU∗ω′ |

≤
∫ ∫

ν(dω)ν(dω′)
√

trKA∗A
√

trKA∗A = trKA
∗A .
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It follows from ‖T (A)‖ = ‖A‖ that this inequality is actually an equality, hence, we must have

|trKA∗(UωU∗ω′)∗AUωU∗ω′ | = trKA
∗A ,

which, by the Cauchy-Schwarz inequality, means that A and (UωU
∗
ω′)
∗AUωU

∗
ω′ must be proportional for arbitrary ω

and ω′. Thus, (UωU
∗
ω′)
∗AUωU

∗
ω′ = cω,ω′ ·A with |cω,ω′ | = 1 and

‖T (A)‖2 =
1

dimK

∫ ∫
ν(dω)ν(dω′)trKU

∗
ω′A

∗Uω′U
∗
ωAUω =

1

dimK
trKA

∗A

∫ ∫
ν(dω)ν(dω′)cω,ω′ .

The assumption ‖T (A)‖ = ‖A‖ entails cω,ω′ = 1 for all ω, ω′. Thus, A commutes with UωU
∗
ω′ and since those are

irreducible it follows that A = a · 1. This contradicts the assumption A ⊥ 1, hence, ‖T (A)‖ < ‖A‖.

C. Asymptotic Position Distribution via First and Second Order Perturbation Theory

Before we start to analyze the first and second order perturbation theory of Wε to determine the asymptotic
position distribution of quantum walks we have to explain why

Wt
ε(1)→ µtε1

as t→∞ and ε→ 0. First of all, we can write 1 = Aε + (1−Aε) and obtain Wt
ε(1) = Wt

ε(Aε) + Wt
ε(1−Aε). With

the operator norm estimate ‖Wε‖op ≤ 1, which is valid for ε ∈ R, we get

‖Wt
ε(1)− µtεAε‖ ≤ ‖1−Aε‖

and consequently Wt
ε(1)→ µtεAε with ε→ 0 and the assertion follows from Aε → 1 as ε→ 0.

The ballistic respectively diffusive scaling of the position distribution in the asymptotic limit is determined by the
first respectively second order of the perturbed eigenvalue µε = 1 + εµ′ + ε2/2µ′′ + . . ., see also [AVWW11]. And
indeed, in ballistic scaling, i.e. ε = 1/t we get the asymptotic limit of the characteristic function

C(λ) = lim
t→∞

µt1/t = lim
t→∞

(
1 +

µ′

t
+ . . .

)t
= eµ

′
. (22)

If, however, the first order is zero µ′ = 0 we may consider the diffusive scaling ε = 1/
√
t of the position distribution

and get

C(λ) = lim
t→∞

µt
1/
√
t

= lim
t→∞

(
1 +

µ′′

2t
+ . . .

)t
= e

µ′′
2 . (23)

Remark III.5. In contrast to the case considered in [AVWW11], where for some models a dependence on the initial
state ρ0 was observed, we see that for the present model the initial state ρ0 is irrelevant.

Now we have all necessary tools to compute the asymptotic position distribution. The first order correction µ′ can
be determined from the first order relation obtained from equating coefficients in Wε(Aε) = µεAε, which reads

W′(1) + W(A′) = µ′1+A′ , (24)

where W′ denotes the derivative of Wε at ε = 0. The solution to the eigenvector problem Wε(Aε) = µεAε is
in general not unique. A common choice for Aε is to fix the scalar product of the perturbed eigenvector with the
unperturbed eigenvector in the following way

〈1|Aε〉 = 1 ⇒ 〈1|A(n)〉 = 0 ,∀n ∈ N ,

where A(n) denotes the n-th order correction of the eigenvalue Aε. That is, Aε can be expressed as

Aε =

∞∑
n=0

A(n) ε
n

n!
.

Fixing the scalar product in this way does not harm analyticity of the Aε, at least for small enough ε, since the scalar
product of an unnormalized vector with 1 is an analytic function in ε which is non-zero for small ε.
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The standard approach to determine the higher order corrections to the unperturbed eigenvalue 1 is to expand the
equation Wε(Aε) = µεAε into a power series in ε and then take the scalar product with the unperturbed eigenvector
1. The choice 〈1|Aε〉 = 1, which is equivalent to 〈1|A(n)〉 = 0, implies 〈1|W(A(n))〉 = 〈1|C(A(n))〉 = 0 for all n > 0,
thus, some terms in the power series expansion of the eigenvector equation already vanish when taking the scalar
product with 1.

By (16) and Wε(A)(p) = S(p)∗C(A)(p)S(p+ ελ) we can express the derivative of Wε at ε = 0 as

W′(A)(p) = W(A)(p) · iΛ , Λ =


v1 · λ 0 . . .

0
. . .

... vdimK · λ

 ,

which leads to the following expression for the first order correction to the eigenvalue

µ′ = 〈1|W′(1)〉 =
1

(2π)s

∫
dsp

1

dimK
trKW′(1) (25)

=
1

dimK
∑
i

iλ · vi = iλ · ṽ ,

where ṽ is the average of all shift vectors vi. The vector ṽ is closely related to the index indS of the unitary shift
operator S, see [GNVW12] for a detailed discussion of this quantity. By definition we have

indS =
∑
i

vi (26)

and consequently ṽ = (dimK)−1indS. Clearly, the characteristic function in ballistic scaling is given by C(λ) = eiλ·ṽ,
which is the characteristic function of a point mass at position ṽ. This represents a constant drift of the particle in
the direction of indS. It should be noted, that the constant drift is not a ballistic behavior due to the quantumness
of the walk. Rather, ṽ represents the part of the shift operator, which is not conditioned on the coin state. That
is, in an extreme case one may consider a one-dimensional quantum walk with two-dimensional internal state space
K = C2, where v1 = v2, i.e. where the shift does not depend on the coin states at all. A ballistic spreading due to
the quantumness of the walk does therefore not exist in this model. See remark III.6 below for how to investigate the
diffusive order when ṽ 6= 0.

Remark III.6. If indS 6= 0 we may subtract the constant drift according to µ′ = iλ · ṽ from the position variable and

consider the asymptotic distribution of Q̃ = Q− ṽ · t. The characteristic function is given by

Ct,ε(λ) = trρ0W
t(eiελ·Q̃) = trρ0e

−iεtλ·ṽWt(eiελ·Q) ,

and hence we have to consider the modified operator W̃ε(A) = e−iελ·ṽW(Aeiελ·Q)e−iελ·Q = e−iελ·ṽWε(A). The
eigenvalue µ̃ε is now just given by µ̃ε = e−iελ·ṽµε, thus

µ̃ε =

(
1− µ′ε+

µ′2

2
ε2 + . . .

)(
1 + µ′ε+

µ′′

2
ε2 + . . .

)
= 1 +

µ′′ − µ′2

2
ε2 + . . . ,

which shows that µ̃′ = 0.

In the following we assume µ′ = 0 and look at the diffusive scaling of the position distribution. To this end we need
to determine the second order of the equation Wε(Aε) = µεAε, which reads

W′′(1) + 2W′(A′) + W(A′′) = µ′′1+ 2µ′A′ +A′′ . (27)

The second order derivative of the walk operator amounts to W′′(A)(p) = W′(A)(p) · iΛ = −W(A)(p) · Λ2. Again,
by taking the scalar product with the unperturbed eigenvector we get

µ′′ = 〈1|W′′(1)〉+ 2〈1|W′(A′)〉 (28)

=
1

(2π)s

∫
dsp

1

dimK
trK (W′′(1) + 2iW(A′)(p) · Λ)

=
1

dimK
∑
i

−(λ · vi)2 +
1

(2π)s

∫
dsp

2i

dimK
trK (−W′(1) +A′(p)) · Λ

=
1

dimK
∑
i

(λ · vi)2 +
1

(2π)s

∫
dsp

2i

dimK
trKA

′(p) · Λ ,
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where we have used (24) at the fourth step and W′(A)(p) = W(A)(p) · iΛ in every step. Next, we use (24) to eliminate
A′ in this equation. Using µ′ = 0 and W′(1)(p) = iΛ we get

W(A′)(p)−A′(p) = −iΛ

and from µ′ = 0, which is equivalent to trKΛ = 0, it follows that 〈1|Λ〉 = 0. Since the eigenvalue 1 of W is non-
degenerate we can invert W− id on {1}⊥ and apply it to Λ ∈ {1}⊥. Denoting the pseudo-inverse by (W− id)−1 we
get the following expression for A′.

A′(p) = −i(W − id)−1(Λ)(p) . (29)

Hence, the second order correction µ′′ can be written as

µ′′ =
1

dimK
∑
i

(λ · vi)2 +
2

dimK
1

(2π)s

∫
dsp trK(W − id)−1(Λ)(p) · Λ . (30)

Note that the dependence of Λ on the variable λ makes µ′′ a quadratic form in λ which defines a symmetric matrix
D via µ′′ = −λT ·D · λ. It is easy to see that the position distribution corresponding to the characteristic function

C(λ) = e
µ′′
2 is a Gaussian with covariance matrix D.

The following theorem summarizes the results of this section.

Theorem III.7. Let W be a quantum walk as defined in (1), (2) and (3). Suppose for some n ∈ N the power Wn

is strictly contractive on {1}⊥. Then:

i) ballistic scaling: the random variable Q/t, converges to a point measure at ṽ = 1
dimK indS.

ii) diffusive scaling: assuming ṽ = 0 the random variable Q/
√
t, converges to a Gaussian with covariance matrix

D. The defining equation for D is µ′′ = −λT ·D ·λ with µ′′ from (30). Explicitly, the matrix elements of D are
given by the formula

Dαβ =
1

dimK
∑
i

vi,αvi,β +
2

(2π)s

∫
dsp

1

dimK
trKRαβ(p) , α, β = 1, . . . , s , (31)

where vi,α denotes the α component of the vector vi and Rαβ(p) is defined via

Rαβ(p) =
1

2

(
(W − id)−1(Λα)(p) · Λβ + (W − id)−1(Λβ)(p) · Λα

)
. (32)

The diagonal matrices Λα are given by (Λα)ij = δij vi,α.

Of course, for the asymptotic position distribution in diffusive scaling to be well-defined it is necessary that the
covariance matrix D is positive. This is indeed the case, which we prove now.

Proposition III.8. Given the assumptions of theorem III.7 the covariance matrix D is positive, i.e., −µ′′ ≥ 0 for
all λ.

Proof. The proof is similar to, though simpler than, the proof of the positivity of the covariance matrix for the models
considered in [AVWW11]. According to (28) we have

−µ′′ = −〈1|W′′(1)〉 − 2〈1|W′(A′)〉
= 〈Λ|Λ〉+ 2〈iΛ|W(A′)〉
= 〈A′ −W(A′)|A′ −W(A′)〉+ 2〈A′ −W(A′)|W(A′)〉
= 〈A′|A′〉 − 〈W(A′)|W(A′)〉 ,

where we have used W′(A)(p) = W(A)(p) · iΛ, W′′(A)(p) = −W(A)(p) · Λ2, iΛ = A′(p) −W(A′)(p) and the fact
that A′ and W(A′) are skew-hermitian, which follows from (29) and the fact that W(A)∗ = W(A∗) for arbitrary A.
According to Proposition III.2 we have ‖W‖op ≤ 1, which proves −µ′′ ≥ 0.

For practical applications it is usually sufficient to give a good approximation to the covariance matrix D. Such an
approximation can be obtained by a power series expansion of the pseudo-inverse (W − id)−1. Indeed, if there exist
n ∈ N such that ‖Wn‖op < 1 we have the following convergent power series expansion for the pseudo inverse.

(W − id)−1 = −
∑
k∈N0

Wk on the subspace {1}⊥ (33)

This gives us the following corollary, which can be used to approximate the numbers Rαβ and the covariance matrix
D.
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Corollary III.9. Given the assumptions of theorem III.7 and ṽ = 0 we have the convergent power series expression

Rαβ(p) = −1

2

∑
k∈N0

(
Wk(Λα)(p) · Λβ + Wk(Λβ)(p) · Λα

)
. (34)

Proof. Let n ∈ N be the smallest natural number such that Wn is strictly contractive on {1}⊥. The convergence of
the Neumann series for (W − id)−1 can be seen from

−
∑
k∈N0

Wk = −
n−1∑
l=0

∞∑
r=0

Wl+r·n .

The assertion follows from 〈1|Λ〉 = ṽ = 0.

IV. EXAMPLES

In this section we apply our theory to five models of randomness and calculate their ballistic and diffusive scaling.
Continuous as well as discrete distributions on the coin operations are considered and we also include an example in
two dimensions. In all cases the irreducibility condition of proposition III.4 is violated, so we have to look at higher
powers of the walk operator W to show simplicity of the eigenvalue 1.

A. Coins with Zero Mean Ũ

In this subsection we assume that ν is such that Ũ =
∫
ν(dω)Uω = 0. Thus C(A) = C(A0) =

∫
ν(dω)U∗ωA0Uω,

where we again have abbreviated (2π)−s
∫
dpA(p) = A0. If the operator Wn is strictly contractive for some n ∈ N,

theorem III.7 is applicable and we can look at the second order correction µ′′ in order to determine the diffusive
scaling of the position distribution. Without loss of generality we assume µ′ = 0, see remark III.6, such that the first
order of the eigenvalue problem reads W(A′)(p)−A′(p) = −iΛ. Using W(A)(p) = S∗(p)C(A0)S(p), we get

S∗(p)C(A′0)S(p)−A′(p) = −iΛ

and since Λ commutes with S(p), this is equivalent to

C(A′0) + iΛ = S(p)A′(p)S∗(p) .

Now, since the left-hand-side of this equation is independent of p, so is the right-hand-side. Hence, the matrix elements

of A′(p) are given by 〈i|A′(p)|j〉 = ãije
i(vj−vi)·p with ãij ∈ C. Let Ã′ denote the matrix with entries ãij , in other

words, A′(p) = S∗(p)Ã′S(p). Then, Ã′ can be determined from the p-independent equation

C(P (Ã′))− Ã′ = −iΛ ,

where P (Ã′) is defined as

〈i|P (Ã′)|j〉 =

{
ãij , if vi = vj

0 , if vi 6= vj
.

B. Hadamard Walk with Random Reflections at Lattice Sites

A simple example to demonstrate our techniques is the Hadamard walk on `2(Z)⊗C2 which is distorted by random
reflections. Similar models have previously been studied numerically in [RSA+05, PR11]. The intuitive picture is
that at each time step some links between the lattice points are broken such that the walker cannot pass them but
is reflected. These reflections can be thought of as flips of the internal degree of freedom followed by the usual shift.
Hence, the reflections can be implemented by the Pauli operator σx which is applied with probability 1 − w for
w ∈ (0, 1) at each lattice site.
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The basic Hadamard walk is given by the unitary WH = S ·C, where the coin C = 1⊗H and shift operator S are
defined with respect to a basis |±〉 of C2 by

H =
1√
2

(
1 1

1 −1

)
, S|x⊗±〉 = |x± 1⊗±〉 . (35)

The Pauli operator σx acts like a bit flip on |±〉, i.e. σx|±〉 = |∓〉. Following the above, the measure νw on U(2) is a
convex combination of the point measures ∆H respectively ∆σx supported on H respectively σx.

νw = w ∆H + (1− w) ∆σx (36)

According to equation (2) the walk operator is given by W(A) = S∗C(A)S with shift operator S as in (35) and coin
operator

C(A) =
∑
x,y

|x〉〈y| ⊗
(
δxy (wHAxyH + (1− w)σxAxyσx) + (1− δxy) ŨAxyŨ

)
(37)

where Ũ = wH + (1 − w)σx. To apply our theory to this particular model, the model has to satisfy the conditions
of theorem III.2. Since the set {U∗ω′Uω} = {Hσx, σxH} is not irreducible we have to look at higher powers of W in
order to ensure the non-degeneracy of the eigenvalue 1.

Lemma IV.1. Let w ∈ (0, 1) and W = S∗CS, with C according to (37) and S according to (35). Then W2 is
strictly contractive on {1}⊥.

Proof. We decompose the coin operator again into diagonal part T and conjugation with Ũ , i.e.,

C(A) = T (A0) + Ũ∗(A−A0)Ũ .

The operator Ũ = wH + (1 − w)σx is a convex combination of two unitary irreducible operators. Since Ũ is also

hermitian we get an estimate for its operator norm by considering its eigenvalues. It is easy to see that ‖Ũ‖op = 1
implies the existence of a common eigenvector of H and σx, which is a contradiction to their irreducibility. Hence,

‖Ũ‖op < 1 for all w ∈ (0, 1).
The diagonal part T satisfies the eigenvalue equation T (σy) = −σy, hence, ‖T‖op = 1. Similar to the proof

of proposition III.2 we define the orthogonal subspaces T0 and T0 according to (20). Note that C(T0) ⊂ T0 and
C(T ⊥0 ) ⊂ T ⊥0 . It is easy to verify the relations ‖W2(A)‖ = ‖C(W(A))‖ and ‖C(A)‖2 = ‖C(A0)‖2 + ‖C(A−A0)‖2,
hence, the existence of A ⊥ 1 with ‖W2(A)‖ = ‖A‖ implies A,W(A) ∈ T0. Writing A as a linear combination of the
Pauli operators A = axσx + ayσy + azσz we get the relation

W(A) = w (axσz − ayS∗σyS + azS
∗σxS) + (1− w)(axS

∗σxS − ayS∗σyS − azσz) . (38)

Hence, W(A) ∈ T0 requires ay = 0 and w az + (1−w) ax = 0. Consequently, we have W(A) = (w ax − (1−w) az)σz
and therefore ‖W(A)‖2 = |w ax − (1−w) az|2 ≤ (w2 + (1−w)2) · (|ax|2 + |az|2) < |ax|2 + |az|2 = ‖A‖2, which proves
the assertion.

According to (25) the ballistic order vanishes, i.e. µ′ = 0. The diffusive order can then be derived from equation (30)
and corollary III.9. The result is depicted in figure 1 and shows that for the completely localized walk, i.e. w = 0, the
position probability becomes a point measure at the origin whereas for the usual Hadamard walk the diffusion constant
D diverges. The red points in the figure correspond to an approximation to the diffusion constant by calculating the
variance of the position probability distributions after 100 time steps. For w ≤ 0.6 the variance data points are in
good agreement with the diffusion constant, for larger w, however, there is a clearly visible deviation of finite time
variance and diffusion constant. This is the fingerprint of a generic behavior: when approaching a ballistic quantum
walk, here w → 1, the time scale, at which the crossover from ballistic to diffusive behavior happens, diverges. Hence,
approximations with a fixed number of time steps become worse and worse in the limit w → 1.

The plot in figure 1 also shows a comparison of the diffusion constant and the guess w/(1−w) by Romanelli et al.
for the model considered in [RSA+05]. The diffusion constant for our example shows a similar functional dependence
on w, though there are small deviations.
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Figure 1. The diffusion constant of the one-dimensional quantum walk with random reflections as a function of the probability
w. The blue curve shows an approximation of the diffusion constant evaluated according to corollary III.9 for different values of
w. The red dots show the variances of the position distribution for t = 100 and the green line shows the guess D = w/(1−w)
by Romanelli et al. for a similar model considered in [RSA+05].

C. Hadamard Walk with Dephasing

The Hadamard walk with dephasing is given by a modification of the local coin operator H in WH = S · 1 ⊗H,
with S and H according to (35). We modify the coin H by an additional random relative phase shift between the
states |+〉 and |−〉

Hϕ =
1√
2

(
eiϕ eiϕ

e−iϕ −e−iϕ

)
.

Note that, by introducing the Pauli operators σx, σy and σz, we can write Hϕ = eiϕσzH. This phase shift is assumed
to happen independently and identically in time and space, in other words, the phase ϕ is chosen for each lattice site
and in each time step according to a fixed probability measure ν on [−π, π). In Fourier space we have the following
expression for the Hadamard walk with dephasing:

W(A)(p) = S∗(p)C(A)S(p) , C(A) =

∫
ν(dϕ)He−iϕσz ·A0 · eiϕσzH + H̃∗(A−A0)H̃ (39)

Here, H̃ denotes the operator H̃ =
∫
ν(dϕ) eiϕσzH. In the following we set rn = |

∫
ν(dϕ)eiϕn| and θn =

arg
∫
ν(dϕ)eiϕn and note that C only depends on rn and θn for n = 1, 2 and not on the actual form of the dis-

tribution ν(dϕ), see (40) and (41).
It is easy to see that

H∗ϕ′Hϕ = Hei(ϕ−ϕ′)σzH = ei(ϕ−ϕ′)σx =

(
cos(ϕ− ϕ′) i sin(ϕ− ϕ′)
i sin(ϕ− ϕ′) cos(ϕ− ϕ′)

)
,

which shows that the set of matrices H∗ϕ′Hϕ is reducible. Nonetheless, we can apply theorem III.7 after we prove that

W2 is strictly contractive on {1}⊥.

Lemma IV.2. Let W be according to (39) and ν such that r1, r2 < 1. Then W2 is strictly contractive on {1}⊥.

Proof. We write the coin operator as C(A) = T (A0) + H̃∗(A − A0)H̃ and express the dephasing in the maps T

and conjugation by H̃ in the basis {1, σx, σy, σz} of Pauli operators. The dephasing in T corresponds to the matrix
representation

A 7→
∫
ν(dϕ)e−iϕσz ·A · eiϕσz −→


1 0 0 0

0 r2 cos θ2 −r2 sin θ2 0

0 r2 sin θ2 r2 cos θ2 0

0 0 0 1

 (40)
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Figure 2. (a) shows a plot of the diffusion constant D depending on the width δ of the interval Iδ from which the phase ϕ is
chosen with uniform probability. For the plot shown in (b) we fixed δ = π/8 and computed the position distribution after 10
(green), 30 (blue), and 80 (black) time steps with initial state ρ0 = 2−1

1. For better comparison with the asymptotic position
distribution (red-dashed line) the average over two neighboring lattice sites was computed such that the finite time step position
distributions are non-zero everywhere.

and the dephasing in the conjugation by H̃ has matrix representation

A 7→
∫
ν(dϕ)e−iϕσz ·A ·

∫
ν(dϕ′)eiϕ′σz −→ r2

1 ·


1 0 0 0

0 cos 2θ1 − sin 2θ1 0

0 sin 2θ1 cos 2θ1 0

0 0 0 1

 . (41)

Clearly, if r1 < 1 the conjugation by H̃ is strictly contractive. If r2 < 1 we have that T is strictly contractive on the
subspace spanned by σx and σy. The operator σz is mapped to σx by T , and hence, S∗T (σz)S ∈ T ⊥0 , which proves
‖W2(A)‖ < ‖A‖ for all A ⊥ 1.

Since indS = 0, the ballistic scaling yields a point measure at the origin as asymptotic position distribution. For
the asymptotic position distribution in diffusive scaling we need to solve the equation

W(A′)(p)−A′(p) =

(
−i 0

0 i

)
,

which we do by numeric approximation according to corollary III.9. For concreteness let us consider a family of
measures νδ on [−π, π), indexed by δ ∈ [0, π), and defined via

νδ(dϕ) =
1

2δ
χIδ(ϕ)dϕ .

Here, χIδ denotes the characteristic function of the set Iδ = [−δ, δ) and dϕ the Lebesgue measure. The measures νδ
represent uniform distributions of ϕ on Iδ and figure 2 shows a plot of the diffusion constant and a comparison of the
position distribution for a finite number of time steps with the asymptotic position distribution.

D. Quantum Walk with Continuous Coin Distribution

One of the goals of this paper is to take into account fluctuations of the coin operators in space and time as they
occur in experiments. However, in most examples up to now, discrete distributions of the coin operators have been
studied. For a model of realistic noise sources in experiments it seems to be more appropriate to assume a continuous
distribution around some specific coin operation. Let us therefore consider a quantum walk on `2(Z) ⊗ C2 with the
shift according to (35) and coin operator constructed from the following 2π-periodic family of unitary matrices

Ur =

(
cos r sin r

sin r − cos r

)
, (42)
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for which Uπ/4 = H, is the Hadamard coin (35), whereas Uπ/2 = σx and U0 = σz. Taking on the idea of random
fluctuations around some target coin operator, we consider a gaussian probability distribution on I(r0) = [r0−π, r0+π]
around some point r0 ∈ R. The measure on the parametrization space is then given by

ν(X) =
1

N

∫
X

e−
(r−r0)2

σ2 dr, (43)

where X is a Borel set on I(r0), dr is the usual Lebesgue measure and the normalization N is chosen such that the
measure is normalized on I(r0). Now we can write the coin operator as

C(A) =
∑
x,y

|x〉〈y| ⊗

δx,y ∫
I(r0)

1

N
dr e−

(r−r0)2

σ2 U∗rAxyUr + (1− δx,y)Ũ∗AxyŨ

 , (44)

where

Ũ =

∫
I(r0)

ν(dr)Ur =

∫
I(r0)

1

N
dr e−

(r−r0)2

σ2 Ur.

A straightforward calculation shows [Ur, Ur′ ] = −2i sin(r − r′)σy, hence {Ur} is irreducible whereas the set {U∗r′Ur}
is reducible. Nonetheless, W2 is strictly contractive on {1}⊥, as the following lemma shows.

Lemma IV.3. Let W = S∗CS be a quantum walk with C according to (44) and S according to (35), then W2 is
strictly contractive on {1}⊥.

Proof. Since the set {Ur} is irreducible and all Ur are hermitian we can exclude that Ũ has eigenvalues of modulus

one and it follows that ‖Ũ‖op < 1. This proves the contractivity of the map corresponding to conjugation by Ũ .
Again, using Pauli operators as a basis for the set of two-dimensional matrices it is easy to see that

U∗r σxUr = − cos 2r σx + sin 2r σz , U∗r σyUr = −σy , U∗r σzUr = sin 2r σx + cos 2r σz .

Taking the expectation value of these equations with respect to the probability distribution ν shows that the diagonal
part of C, which we denote again by T , is strictly contractive on σx and σz. The assertion follows from the fact that
the conjugation with the shift operator S maps σy to T ⊥0 .

The shift operator satisfies indS = 0, such that according to (25) µ′ = 0 which means that the ballistic order
vanishes. Hence, the characteristic function in diffusive scaling is well-defined and yields a Gaussian. The position
probability distribution can be calculated by the inverse Fourier transform resulting again in a Gaussian. For a finite
number of t = 200 time steps the position probability distribution for a coin operator peaked at the Hadamard coin
Uπ/4 = H is depicted in figure 3 (b) for σ ∈ {0.01, 0.1, 0.2, 1, 2}. It is apparent that for small σ the distribution
looks like the one of the usual Hadamard coin plus some gaussian background. This is again an indication that for
decreasing σ, i.e. coin distributions with decreasing width, the crossover from ballistic to diffusive behavior happens

at later times. Indeed, since the gaussian measure (43) converges weakly to a point measure, i.e. ν
w−→ δr0 for σ → 0,

we expect a divergent diffusion constant as the translation invariant and unitary quantum walk with coin Ur0 exhibits
ballistic behavior.

Figure 3 (a) depicts the diffusion constant D as a function of σ ∈ (0, 1] and r0 ∈ [0, 2π]. Apparently, D < ∞ for
σ > 0 independent of the coin at which the distribution is peaked. The symmetry around r0 = π comes from the fact
that we have Uπ+r = σzUπ−rσz. By Σz we denote the operator on `2(Zs)⊗K corresponding to the Fourier transform
σz. Since Σz commutes with the shift S we have the relation S∗ΣzC(Σze

iελ·QΣz)ΣzS = ΣzS
∗C(eiελ·Q)SΣz. Denoting

the walk operator with additional Σz rotations by W̃, i.e. W̃(A) = S∗ΣzC(ΣzAΣz)ΣzS we get the relation

W̃t(eiελ·Q) = ΣzW
t(eiελ·Q)Σz .

Changing the parameter from r0 = π + r to r0 = π − r is equivalent to changing the initial state from ρ0 to Σzρ0Σz.
Since the characteristic function in the asymptotic limit does not depend on the initial state ((22) and (23)), the
diffusion constant is independent of the above change of r0. The periodic dependence on r0 reflects the periodicity of
the Ur. The minima on the slices with σ fixed are the ones where the peak of the gaussian measure (43) is at Ur0 = σx,
the reason being that the unitary and translation invariant quantum walk with coin σx shows no propagation at all.
The maxima correspond to r0 ∈ {0, π} where the measure is peaked around σz.
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Figure 3. Plot (a) shows the diffusion constant D as a function of σ ∈ (0, 1] and r0 ∈ [0, 2π]. For every fixed σ the diffusion
constant has a peak at r0 ∈ {0, π} (yellow line) which correspond to measures peaked around ±σz coins. The minima occur at
r0 = π/2, 3π/2 (blue line) where the random coins are peaked around σx. The diffusion constant of a quantum walk peaked at
the Hadamard coin can be found at r0 = π/4 (red line) and dephased variants of it at r0 = kπ/4, k ∈ Z. Plot (b) shows the
position probability distribution of the quantum walk with gaussian distribution peaked at the Hadamard coin H for a number
of t = 200 time steps in diffusive scaling. Again, the average over two neighboring lattice sites was computed in order to remove
the oscillating behavior of the probability distributions. The different plots correspond to σ = 2 (orange), σ = 1 (blue), σ = 0.2
(red), σ = 0.1 (magenta), and σ = 0.01 (green). What can be seen is that for σ → 0, where the gaussian measure converges
weakly to the point measure at the Hadamard coin, the diffusion constant diverges, which explains the Hadamard like position
probability for σ = 0.01. Nevertheless for t→∞ it becomes gaussian, as long as σ > 0.

E. Quantum Walks in Two Dimensions

For a quantum walk on a two-dimensional lattice, the Hilbert space is `2(Z2) ⊗ K. That is, the position is given
by two-component vectors x = (x1, x2). We consider a four-dimensional coin space K ∼= C4 ∼= C2 ⊗ C2. The shift
operator conditioned on the internal degree of freedom is given by

S(p) =


eiv↑·p 0 . . .

0 eiv↓·p

... eiv←·p

eiv→·p

 , p = (p1, p2) , (45)

where v↑ = (1, 0), v↓ = (−1, 0), v← = (0,−1) and v→ = (0, 1). The explicit example we are going to consider is a
quantum walk with coin operation constructed from the set of unitaries {U1 = H ⊗ H, U2 = σx ⊗ 1}, where U1 is
applied with probability (1 − w) and U2 occurs with probability w. In order to apply theorem III.7, some power of
the walk operator W must be strictly contractive on the subspace {1 ⊗ 1}⊥. Apparently, W itself is not strictly
contractive on {1⊗1}⊥ because the p-independent operator 1⊗H is an eigenvector of C with eigenvalue 1. Moreover,
the coins U1 and U2 are reducible. Denoting the eigenvectors of H by |±〉 it is easy to see that the two dimensional
subspaces C2⊗|±〉 are invariant subspaces for U1 and U2. To confirm the applicability of theorem III.7 we now prove
that W2 is strictly contractive.

Lemma IV.4. Let w ∈ (0, 1) and W = S∗CS, with S according to (45) and C be defined by the coins U1 = H ⊗H
and U2 = σx ⊗ H of which U1 is applied with probability 1 − w and U2 is applied with probability w. Then W2 is
strictly contractive on {1⊗ 1}⊥.

Proof. Although the coins U1 and U2 are reducible we can exclude the existence of a common eigenvector by calculating
the determinant of their commutator. If there is a common eigenvector this determinant equals zero, but since we
have det[U1, U2] = −1 ·det[H,σx] = −2 such an eigenvector cannot exist. This already proves that the operator norm

of the hermitian matrix Ũ = (1−w)U1 +wU2 is strictly less than 1, hence, conjugation by Ũ is a strictly contractive
map.

Again, let T denote the diagonal part of the coin operator C, i.e.,

T (A0) = (1− w)H ⊗H ·A0 ·H ⊗H + w σx ⊗ 1 ·A0 · σx ⊗ 1 .
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By choosing an orthonormal operator basis for T0 and calculating the action of T with respect to this basis one
confirms that T is a hermitian map. Clearly, ‖T‖op = 1 and in order to verify the contractivity of W2 we have to
consider the eigenvectors of T which are orthogonal to 1 ⊗ 1 and have eigenvalues ±1. It is sufficient to prove that
conjugation by S maps these eigenvectors to vectors with non-zero overlap with the subspace T ⊥0 . These eigenvectors
have to be common eigenvector of the maps corresponding to conjugation with U1 and U2, hence, we find exactly
1⊗H, σy ⊗ 1 and σy ⊗H as eigenvectors with eigenvalues ±1. It is easy to see that the only vectors in T0 which are
mapped to T0 again are all 4-dimensional diagonal matrices, which proves the assertion.

The argument of the characteristic function is a two-dimensional vector λ = (λ1, λ2)T , hence,

Λ =


λ1 0 . . .

0 −λ1

... −λ2

λ2

 . (46)

Since
∑
i vi = 0, the ballistic order is zero by (25), the second order correction µ′′ can be written as quadratic form

in λ

µ′′ = −λT ·D · λ, (47)

with the covariance matrix D. By theorem III.7 we can compute the matrix elements of D via (31) and (32). We use
again corollary III.9 to get a numerical approximation of D.

The asymptotic probability distribution can be computed via the characteristic function

C(λ) = e−
1
2λ

TDλ (48)

and the probability at position x = (x1, x2) is given by its inverse Fourier transform

P (x) =
1

(2π)2

∫
R2

dλ C(λ)e−iλx (49)

=
1

(2π)2

∫
R2

dλ e−
1
2λ

TDλ−ixλ

=
1

2π
√

detD
e−

1
2x
TD−1x ,

see e.g. [NO98], with

D−1 =
1

detD

(
D22 −D12

−D12 D11

)
.

The asymptotic probability distribution for our example is illustrated in figure 4 for two different values of w. Here
U1 = H ⊗ H renders a Hadamard-walk in two dimensions and U2 = σx ⊗ 1 yields propagation strictly along the
diagonal. The coin U2 in combination with U1 leads to significantly increased spreading in the diagonal direction and
reduced spreading in the anti-diagonal direction.

V. GENERALIZATIONS

Although the vast majority of literature considers quantum walks which are a composition of a single coin and
a single shift operator we will briefly comment on more general models of quantum walks. A way to characterize
quantum walks more abstractly is to define them to be discrete time evolutions on a lattice H = `2(Zs) ⊗ K, which
are local and translation invariant. This definition is clearly satisfied if several quantum walks Wi are concatenated
and considered as a single time step W given by

W = Wn ◦ . . . ◦W1 . (50)

More precisely, we assume that each Wi is a quantum walk according to (2), which means it can be written as

Wi(A) = S∗i Ci(A)Si ,
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Figure 4. Contour plots of the asymptotic position probability distributions of the quantum walk with coins U1 = H ⊗ H
and U2 = σx ⊗ 1 with probabilities {(1 − w), w} for (a): w = 0.1 and (b): w = 0.9. The coin U1 alone would lead to a
two-dimensional Hadamard walk, but U2 incorporates propagation strictly along the diagonal.

where Ci is a, possibly decoherent, coin operator and Si is a unitary state dependent shift operator. For this
generalized model of quantum walks we have the following proposition, which also covers the extremal case where
several unitary quantum walks are concatenated with one decoherent quantum walk.

Proposition V.1. Let W be a generalized quantum walk according to (50). If at least one Wi is strictly contractive
on {1}⊥ we can apply perturbation theory to the eigenvector equation Wε(Aε) = µεAε to determine the asymptotic
position distribution of W. In particular, let indSi denote the index of Si according to (26), the asymptotic position
distribution of W in ballistic scaling is given by a point measure at (dimK)−1

∑n
i=1 indSi.

Proof. Clearly, W satisfies W(1) = 1 and since W maps 1 and {1}⊥ to orthogonal subspaces it follows that W is
strictly contractive on {1}⊥ if at least one of the Wi is strictly contractive on {1}⊥. Hence, the non-degeneracy of
the eigenvalue 1 of W is assured.

The proof of the analyticity of Wε is similar to the case in theorem III.7, hence, Wε satisfies the requirements
of the Kato-Rellich theorem III.1. This implies that the asymptotic behavior of W can be determined using our
perturbation method.

The first order of the power series expansion of Wε(Aε) = µεAε reads

W′
n ◦ . . . ◦W1(1) + . . .+ Wn ◦ . . . ◦W′

1(1) = µ′1+A′ −W(A′)

and since Wi(1) = 1 and W′
i(A)(p) = Wi(A)(p) · iΛi this simplifies to

iΛn + i

n−2∑
i=1

Wn ◦ . . . ◦Wn−i(Λn−i−1)(p) = µ′1+A′(p)−W(A′)(p) .

The scalar product of this equation with the unperturbed eigenvector 1 yields again

µ′ =
i

dimK

n∑
i=1

tr(Λi) = λ · i

dimK

n∑
i=1

indSi .

The diffusive scaling of W can also be determined by equating coefficients of the perturbation expansion. Of
course, the equations get more involved, but the general structure of the problem is the same. For example, the
second order correction µ′′ to the eigenvalue µε is again a quadratic form in λ with constant coefficients and the
asymptotic distribution in diffusive scaling is just a Gaussian independent of the initial state ρ0.

To illustrate this, consider a concatenation two quantum walks W = W2 ◦W1. The second order equation reads

W(A′′) + 2W′
2 ◦W1(A′) + 2W2 ◦W′

1(A′) + W′′
2 (1) + W2 ◦W′′

1 (1) + 2W′
2 ◦W′

1(1) = µ′′1+ 2µ′A′ +A′′

and by assuming µ′ = 0 and taking the scalar product with 1 again, we get

µ′′ =
1

(2π)s dimK

∫
dpstr(−W2(Λ2

1)(p)−Λ2
2−2W2(Λ1)(p) ·Λ2 +2i(W2(W1(A′)(p) ·Λ1)(p)+W2(W1(A′))(p) ·Λ2)) ,

which is a quadratic form in λ with no further parameter dependencies.
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VI. CONCLUSION

We have shown that quantum walks with spatio-temporal fluctuations of the local coin operator exhibit, under
rather mild assumptions, diffusive behavior in the long-time limit. Our method provides complete information about
the asymptotic position distribution of the considered quantum walk and, though the appearing equations may not
be solvable in a simple manner, an approximation to the solution can always be found by computing a truncation of
a power series expression for the exact solution.

The model of quantum walks with spatio-temporal coin fluctuations considered exhibits two generic features. First,
the asymptotic position distribution in ballistic scaling is always given by a point measure. Secondly, for the asymptotic
position distribution in diffusive scaling we get a Gaussian which is independent of the initial state.

One crucial assumption in our model is that the coins at different lattice sites and at different times are distributed
identically and independently. Correlations of the coins in space or time have been studied in the literature and it was
found that they can lead to different phenomena like ballistic or sub-ballistic behavior or even localization. However,
a complete theory, combining correlations in time and space and providing sufficiently general criteria for different
kinds of asymptotic behavior, is still missing.

The second assumption is of a more technical nature and concerns the irreducibility of the coin operators. This is
similar to the case considered in [AVWW11], where it was also shown that the extremest form of reducibility, namely
commuting coin operators, leads again to ballistic behavior. Our method can, in principle, also be applied to quantum
walks with spatio-temporal coin fluctuations and reducible coins by using degenerate perturbation theory.
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