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Quantum discord, as a measure of all quantum correlations, has been proposed as the key
resource in certain quantum communication tasks and quantum computational models without
containing much entanglement. Dakić, Vedral, and Brukner [Phys. Rev. Lett. 105, 190502 (2010)]
introduced a geometric measure of quantum discord (GMQD) and derived an explicit formula for
any two-qubit state. Luo and Fu [Phys. Rev. A 82, 034302 (2010)] introduced another form of
GMQD and derived an explicit formula for arbitrary state in a bipartite quantum system. However,
the explicit analytical expression for any bipartite system was not given. In this work, we give out
the explicit analytical expressions of the GMQD for a two-parameter class of states in a qubit-qutrit
system and study its dynamics for the states under various dissipative channels in the first time.
Our results show that all these dynamic evolutions do not lead to a sudden vanishing of GMQD.
Quantum correlations vanish at an asymptotic time for local or multi-local dephasing, phase-flip,
and depolarizing noise channels. However, it does not disappear even though t → ∞ for local
trit-flip and local trit-phase-flip channels. Our results maybe provide some important information
for the application of GMQD in hybrid qubit-qutrit systems in quantum information.
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1. Introduction

Quantum systems with quantum correlations, have some fundamental applications for quantum information process-
ing. However, entanglement does not describe all the aspects of the quantum correlations exhibited by a multipartite
quantum system. There are some other kinds of quantum correlations without entanglement that are also responsible
for the quantum advantages over their classical counterparts [1–10]. Aiming at capturing such correlations contained
in a bipartite quantum state, Ollivier and Zurek [11] introduced quantum discord as a measure of all quantum corre-
lations in 2001. Recently, quantum discord attracted a lot of attention. Unfortunately, quantum discord is difficult
to calculate and it is usually based on a numerical maximization procedure. There are few analytical expressions,
including some special cases [12–16]. For general two-qubit mixed states, the situation is more complicated. To avoid
this difficulty, Dakić et al. [17] introduced a geometric measure of quantum discord (GMQD) which measures the
quantum correlations of a quantum system in a given state through the minimal Hilbert-Schmidt distance between the
given state and a zero-discord state, and they derived an explicit formula for evaluating the GMQD for any two-qubit
state in 2010. Subsequently, Luo and Fu [18] introduced another form of GMQD and derived an explicit formula for
evaluating the GMQD for an arbitrary state in a bipartite quantum system. However, using this way, usually, it is
also difficult to calculate GMQD, and its explicit analytical expression for any bipartite system was not given.
Besides the characterization and quantification of quantum correlations, another important problem is the behavior

of these correlations under the action of decoherence. Recent results of the dynamics of the quantum correlation for
a certain class of states in a two-qubit system under the influence of common noise channels show that the quantum
correlations vanishes at asymptotic time. It maybe include a peculiar sudden change in behavior and is more resistent
to the action of the environment than entanglement [19–24]. Quantum correlations for multi-valued quantum system
is a new and immature research area. Ali [16] studied the quantum discord for a two-parameter class of states in a
2 ⊗ d system in 2010. For a qubit-qutrit (2 ⊗ 3) system, Ann [25] and Kan [26] studied its entanglement dynamics
under the influence of dephasing and depolarizing channels, respectively. Ali et al. [27, 28] and Ramzan et al. [29]
studied its entanglement dynamics under phase damping and amplitude damping channels. Karpat et al. investigated
its correlation dynamics under dephasing in 2011 [30]. All the states concerned in previous works are some classes of
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the states in a qubit-qutrit system.
In this paper, we devote to investigate the GMQD for a two-parameter class of states in a qubit-qutrit system and

the dynamics of GMQD under the influence of various dissipative channels [i.e., both two independent (multi-local)
and only one (local) dephasing, phase-flip, bit- (trit-) flip, bit- (trit-) phase-flip, and depolarizing channels] in the
first time. Analytical results are presented. Our results show that all these dynamic evolutions do not lead to a
sudden vanishing of GMQD. Quantum correlations vanish at an asymptotic time for local or multi-local dephasing,
phase-flip, and depolarizing noise channels. However, it does not disappear even though t→ ∞ for local trit-flip and
local trit-phase-flip channels.

2. Initial states, noise model and geometric measure of quantum discord

The class of states with real parameters in a hybrid qubit-qutrit (2⊗ 3) quantum system [31] are given by

ρbc(0) = a (|02〉〈02|+ |12〉〈12|) + b(|φ+〉〈φ+|+ |φ−〉〈φ−|+ |ψ+〉〈ψ+|) + c|ψ−〉〈ψ−|, (1)

where

|φ±〉 =
1√
2
(|00〉 ± |11〉),

|ψ±〉 =
1√
2
(|01〉 ± |10〉), (2)

and a, b, and c are three real parameters, and they satisfy the relation 2a + 3b + c = 1. |0〉 and |1〉 are the two
eigenstates of a two-level quantum system (qubit) or the eigenstates of a three-level quantum system (qutrit) with
the other eigenstate |2〉. The two-parameter class of states ρbc(0) can be obtained from an arbitrary state of a 2⊗ 3
quantum system by means of local quantum operations and classical communication (LOCC) [31].
Let us briefly recall the quantum discord of a bipartite state ρ in a Hilbert space HA ⊗HB. The quantum discord

D(ρAB), a measures of all quantum correlations, is defined as the difference between the total correlation and the
classical correlation [11, 15], that is,

D(ρAB) = I(ρAB)− C(ρAB), (3)

where

I(ρAB) = S(ρA) + S(ρB)− S(ρAB). (4)

Here, I(ρAB) represents the quantum mutual information (the total amount of correlations) of the two-subsystem
state ρAB. ρA(B) = trB(A)(ρ

AB) is the reduced density matrix for the subsystem A(B). S(ρ) = −tr(ρ log2 ρ) is the

von Neumann entropy of the system in the state ρ. The other quantity, C(ρAB), is interpreted [11, 32] as a measure
of the classical correlation of the two subsystems AB in the state ρAB and it is defined as the maximal information
that one can obtain, for example, about B by performing the complete measurement Πk on HA,

CB(ρ
AB) = sup

Πk

{

S(ρB)−
∑

k

PkS(ρ
B|k)

}

, (5)

where ρB|k = 1
Pk

(Πk ⊗ IB)ρ
AB(Πk ⊗ IB) is the postmeasurement state of B after obtaining the outcome k on A with

the probability Pk = tr((Πk ⊗ IB)ρ
AB(Πk ⊗ IB)). Πk is a set of one-dimensional projectors on HA.

We note that for a general mixed state, the (one-side) classical correlation of Eq.(5) may be asymmetric with respect
to the choice of subsystem to be measured (CA(ρ) 6= CB(ρ)), that is, the quantum discord in Eq.(3) is not symmetric
(DA(ρ) 6= DB(ρ)). However, it is known that DA(ρ), DB(ρ) ≥ 0, and DA(ρ) = DB(ρ) = 0 if and only if ρ is a
classical-quantum state, and ρ has the following expression:

ρAB =
∑

i,j

Pij |i〉A〈i| ⊗ |j〉B〈j|, (6)

where Pij is a probability distribution, and |i〉A and |j〉B are the orthonormal bases of system A and B, respectively.
GMQD: the geometric measure of quantum discord of the state ρ is given by [17]

DG(ρ) = min
χ

‖ρ− χ‖2, (7)
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where the minimum is taken over the set of zero-discord states [i.e., D(χ) = 0] and ‖ρ−χ‖2 = tr(ρ−χ)2 is the square
norm in the Hilbert-Schmidt space.
For any two-qubit state

ρAB =
1

4
[I ⊗ I +

3
∑

i=1

(xiσi ⊗ I + yiI ⊗ σi) +

3
∑

i,j=1

(rijσi ⊗ σj)], (8)

its GMQD is given by

DG(ρ) =
1

4
(‖X‖2 + ‖R‖2 − kmax), (9)

where σi are the Pauli spin matrices, X = (x1, x2, x3)
T , R is the matrix with elements rij , and kmax is the maximal

eigenvalue of the matrix K = XXT +RRT .
For a general bipartite system HA ⊗ HB, if we choose orthonormal basis sets in local Hilbert-Schmidt spaces of

Hermitian operators {Xi} and {Yj} (i = 1, · · · , d2A and j = 1, · · · , d2B), any bipartite state can be written as

ρ =
∑

ij

cijXi ⊗ Yj , (10)

where cij = tr(ρXi ⊗ Yj). Its GMQD can be expressed as [18]

DG(ρ) = tr(CCT )−max
A

tr(ACCTAT ), (11)

where C = (cij) and the maximum is taken over all dA × d2A-dimensional matrices A = (aki). aki = tr(|k〉〈k|Xi).
{|k〉} is any orthonormal base for HA. Here k = 1, 2, · · · , dA and i = 1, 2, · · · , d2A.
In our physical model of noise for a qubit-qutrit system (composed of a two-level subsystem A and a three-level

subsystem B), the two subsystems interact with their environments independently. The evolved states of the initial
density matrix of such a system when it is influenced by multi-local environments can be given compactly by

ρAB
bc (t) =

2
∑

i=1

3
∑

j=1

FB
j E

A
i ρ

AB
bc (0)EA†

i F
B†
j . (12)

Here, the operators EA
i and FB

j are the Kraus operators which are used to describe the noise channels acting on the

qubit A and the qutrit B, respectively. They satisfy the completeness relations
∑2

i E
A†
i EA

i = I and
∑3

j F
B†
j FB

j = I
for all t.

3. Geometric measure of quantum discord for qubit-qutrit systems

It is important to consider the behavior of quantum correlations under the action of decoherence. In this section,
we investigate what happens to the quantum correlations (i.e., GMQD) in a qubit-qutrit system under common noise
channels for qubit (qutrit): dephasing, phase-flip, bit-(trit-) flip, bit-(trit-) phase-flip, and depolarizing channels. The
Kraus operators describing these channels for a single qubit A and a single qutrit B are presented in Appendix. The
time-dependent parameters are defined as γA = 1− e−tΓA and γB = 1− e−tΓB , γA, γB ∈ [0, 1] and ΓA (ΓB) denotes
the decay rate of the subsystem A (B). The two specific environment noise situations will be considered: (i) local
and (ii) multi-local. In the case (i), only one part of a qubit-qutrit system (S) interacts with its environment. In the
case (ii), both the two parts of S interact with their local environments, independently.
We choose 4 Hermitian matrices for each HA,

X1 =
1√
2

(

1 0
0 1

)

, X2 =
1√
2

(

0 1
1 0

)

, X3 =
1√
2

(

0 −i
i 0

)

, X4 =
1√
2

(

1 0
0 −1

)

, (13)
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and 9 matrices Hermitian matrices for each HB,

Y1 =
1√
3





1 0 0
0 1 0
0 0 1



 , Y2 =
1√
2





0 1 0
1 0 0
0 0 0



 , Y3 =
1√
2





0 −i 0
i 0 0
0 0 0



 ,

Y4 =
1√
2





1 0 0
0 −1 0
0 0 0



 , Y5 =
1√
2





0 0 1
0 0 0
1 0 0



 , Y6 =
1√
2





0 0 −i
0 0 0
i 0 0



 ,

Y7 =
1√
6





1 0 0
0 1 0
0 0 −2



 , Y8 =
1√
2





0 0 0
0 0 1
0 1 0



 , Y9 =
1√
2





0 0 0
0 0 −i
0 i 0



 . (14)

Any orthogonal base for HA can written as

|θq〉 = cos θ|0〉+ eiϕ sin θ|1〉,
|θ⊥〉 = sin θ|0〉 − eiϕ cos θ|1〉. (15)

The matrix A = (aki) in Eq.(11) with the matrix elements: aki = tr(|k〉〈k|Xi). Here, {|k〉} is any orthonormal base
for HA shown in Eq.(15), and Xi is a set of Hermitian matrices for HA shown in Eq.(13). The matrix can be presented
as

A =
1√
2

(

1 sin 2θ cosϕ sin 2θ sinϕ cos 2θ
1 − sin 2θ cosϕ − sin 2θ sinϕ − cos 2θ

)

. (16)

(1) Channel without noise. The coefficient elements cij = tr(ρXi ⊗ Yj) of the matrix C in Eq.(11) are given by

c11 =
1√
6
,

c17 = −2− 9b− 3c

2
√
3

,

c22 = c33 = c44 =
1

2
(b− c), (17)

and all the remaining matrix elements are zero.
By replacing the factors A and C = (cij) in Eq.(11) with Eqs.(16) and (17), respectively (that is, DG is the function

of θ and ϕ), and calculating the minimum of DG over θ and ϕ, we obtain the GMQD for the qubit-qutrit systems
under a channel without noise, that is

DG(ρ
AB) =

1

2
(b− c)2. (18)

(2) Multi-local dephasing channel. The coefficient matrix elements cij are given by

c11 =
1√
6
,

c17 = − 1

2
√
3
(2− 9b− 3c),

c22 = c33 =
1

2
(b− c)

√

(1− γA)(1− γB),

c44 =
1

2
(b− c), (19)

and all the remaining matrix elements are zero.
By replacing the factors A and C = (cij) in Eq.(11) with Eqs.(16) and (19), respectively, and calculating the

minimum of DG over θ and ϕ, we obtain the GMQD for the qubit-qutrit systems under a multi-local dephasing
channel, that is

DG(ρ
AB)1 =

1

2
(b − c)2(1− γA)(1− γB). (20)
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FIG. 1: Dynamics of GMQD for the system undergoing the multi-local dephasing noise. γ is the time-dependent parameter
and γA = 1− e−tΓA , γB = 1− e−tΓB .

Its dynamics is shown in Fig.1. In the paper, we consider the parameters c 6= b, that is, the initial state is a quantum
correlation state.
(3) Multi-local phase-flip channel. The coefficient matrix elements cij are given by

c11 =
1√
6
,

c17 = − 1

2
√
3
(2 − 9b− 3c),

c22 = c33 =
1

2
(b− c)(1 − γA)(1 − γB),

c44 =
1

2
(b− c), (21)

and all the remaining matrix elements are zero.
By replacing the factors A and C = (cij) in Eq.(11) with Eqs.(16) and (21), respectively, and calculating the

minimum of DG over θ and ϕ, we obtain the GMQD for the system, that is

DG(ρ
AB)2 =

1

2
(b − c)2(1− γA)

2(1− γB)
2. (22)

Its dynamics is shown in Fig.2.
(4) Multi-local bit- (trit-) flip channel. The coefficient matrix elements cij are given by

c11 =
1√
6
,

c17 =
1

2
√
3
(2 − 9b− 3c)(γB − 1),

c22 = −1

6
(b − c)(2γB − 3),

c25 = c28 =
1

6
(b− c)γB,

c33 =
1

6
(b− c)(2γB − 3)(γA − 1),

c36 = −c39 =
1

6
(b − c)(γA − 1)γB,

c44 =
1

2
(b− c)(γB − 1)(γA − 1), (23)
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FIG. 2: Dynamics of GMQD for the system undergoing the multi-local phase-flip and depolarizing noises.

and all the remaining matrix elements are zero.
By replacing the factors A and C = (cij) in Eq.(11) with Eqs.(16) and (23), respectively, and calculating the

minimum of DG over θ and ϕ, we obtain the GMQD for the system, that is

DG(ρ
AB)3 =

1

12
(b− c)2(1− γA)

2(6 + 5(γB − 2)γB). (24)

Its dynamics is shown in Fig.3.
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FIG. 3: Dynamics of GMQD for the system undergoing the multi-local bit- (trit-) flip noise.
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(5) Multi-local bit- (trit-) phase-flip channel. The coefficient matrix elements cij are given by

c11 =
1√
6
,

c17 =
1

2
√
3
(2− 9b− 3c)(γB − 1),

c22 =
1

6
(b − c)(2γB − 3)(γA − 1),

c25 = c28 =
1

12
(b− c)(γA − 1)γB,

c33 = −1

6
(b− c)(2γB − 3),

c36 = −c39 =
1

12
(b − c)γB,

c44 =
1

2
(b − c)(γB − 1)(γA − 1), (25)

and all the remaining matrix elements are zero.
By replacing the factors A and C = (cij) in Eq.(11) with Eqs.(16) and (25), respectively, and calculating the

minimum of DG over θ and ϕ, we obtain the GMQD for the system, that is

DG(ρ
AB)4 =

1

24
(b − c)2(1 − γA)

2(12 + γB(9γB − 20)). (26)

Its dynamics is shown in Fig.4.

0.0

0.5

1.0
ΓA

0.0

0.5

1.0ΓB

0.0

0.5

1.0

2 DG HΡL4

Hb- cL2

FIG. 4: Dynamics of GMQD for the system undergoing the multi-local bit- (trit-) phase-flip noise.

(6) Multi-local depolarizing channel. The coefficient matrix elements cij are given by

c11 =
1√
6
,

c17 =
1

2
√
3
(2 − 9b− 3c)(γB − 1),

c22 = c33 = c44 =
1

2
(b − c)(1− γA)(1 − γB). (27)

all the remaining matrix elements are zero.
By replacing the factors A and C = (cij) in Eq.(11) with Eqs.(16) and (27), respectively, and calculating the

minimum of DG over θ and ϕ, we obtain the GMQD for the system, that is

DG(ρ
AB)5 =

1

2
(b − c)2(1− γA)

2(1− γB)
2. (28)
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Its dynamics is shown in Fig.2.
(7) Local qubit noise only. Consider γB = 0, the GMQD can be calculated as

D
(1)
G (ρAB)6 =

1

2
(b− c)2(1− γA),

D
(2)
G (ρAB)6 =

1

2
(b− c)2(1− γA)

2. (29)

Here D
(1)
G (ρAB)6 corresponds to dephasing channel, and D

(2)
G (ρAB)6 corresponds to phase-flip, bit-flip, bit-phase-flip

or depolarizing channels. The dynamics of GMQD for these cases are shown in Fig.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ΓA

2
D

G
HΡ
L 6

Hb
-

cL
2

FIG. 5: Dynamics of GMQD for the system undergoing the various local noises which act on the qubit alone. The solid and
short-dashed lines correspond to dephasing and phase-flip (or bit-flip, bit-phase-flip, depolarizing) noises, respectively.

(8) Local qutrit noise only. Consider γA = 0, the GMQD can be calculated as

D
(1)
G (ρAB)7 =

1

2
(b − c)2(1− γB),

D
(2)
G (ρAB)7 =

1

2
(b − c)2(1− γB)

2,

D
(3)
G (ρAB)7 =

1

12
(b− c)2(6 + 5(γB − 2)γB),

D
(4)
G (ρAB)7 =

1

24
(b− c)2(12 + γB(9γB − 20)). (30)

Here D
(1)
G (ρAB)7, D

(2)
G (ρAB)7, D

(3)
G (ρAB)7, and D

(4)
G (ρAB)7 corresponds to dephasing, phase-flip (or depolarizing),

trit-flip, and trit-phase-flip channels, respectively. The dynamics of GMQD for these cases are shown in Fig.6.
Eqs.(29) and (30) show that the environment, which acts on the qubit alone and causes phase-flip, bit-flip, bit-phase-

flip, and depolarizing, affects the GMQD of a hybrid qubit-qutrit system in the same way. However, if the environment
acts on the qutrit alone, only the phase-flip and depolarizing channels affect the GMQD of the qubit-qutrit system in
the same way.

4. Discussion and Conclusion

Quantum discord D for a two-parameter class of states in a hybrid qubit-qutrit system was discussed by Ali [16]
in 2010. We have studied GMQD and its dynamics under the influence of various dissipative channels, including
local and multi-local dephasing, phase-flip, bit- (trit-) flip, bit- (trit-) phase-flip, and depolarizing channels, in the
first time. Moreover, the explicit analytical expressions were gave out. Our results show that environment, which
causes dephasing, phase-flip, bit- (trit-) flip, bit- (trit-) phase-flip, and depolarizing of a qubit-qutrit system, affects
the quantum correlations of a hybrid qubit-qutrit system in very different ways. All these dynamic evolutions do
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0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 6: Dynamics of GMQD for the system undergoing the various local noises which act on the qutrit alone. The solid, dashed,
short-dashed and dashed-dotted lines correspond to dephasing, phase-flip ( or depolarizing), trit-flip, and trit-phase-flip noises,
respectively.

not lead to a sudden vanishing of GMQD. Quantum correlations vanish at asymptotic time for local or multi-local
dephasing, phase-flip, and depolarizing noise channels, while it cannot be destroyed completely even though t → ∞
for local trit-flip and local trit-phase-flip channels. The states shown in Eq.(1) with a = 0 (that is, c = 1 − 3b) are
equivalent to Werner states [35] in 2⊗ 2 system with different noise channels. Compared with the states in two-qubit
systems, their quantum correlation all vanishes at a asymptotic time and can not occurs quantum correlation sudden
death and sudden birth under an arbitrary Markovian dynamics [19, 21, 22]. This phenomenon maybe provide some
important information for the application of GMQD in hybrid qubit-qutrit systems in quantum information.
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Appendix A: Various dissipative channels

Dephasing channels: the set of Kraus operators for a single qubit A that reproduces the effect of a dephasing
channel are given by [33]

EA
1 =

(

1 0
0

√
1− γA

)

⊗ I3, EA
2 =

(

0 0
0

√
γA

)

⊗ I3, (A1)

and those for a single qutrit B can be written as [25]

FB
1 = I2 ⊗





1 0 0
0

√
1− γB 0

0 0
√
1− γB



 , FB
2 = I2 ⊗





0 0 0
0

√
γB 0

0 0 0



 , FB
3 = I2 ⊗





0 0 0
0 0 0
0 0

√
γB



 . (A2)

The time-dependent parameters are defined as γA = 1 − e−tΓA and γB = 1 − e−tΓB . Here γA, γB ∈ [0, 1]. ΓA (ΓB)
denotes the decay rate of the subsystem A (B).
Phase-flip channels: the Kraus operators describing the phase-flip channel for a single qubit A are given by [33]

EA
1 =

√

1− γA

2

(

1 0
0 1

)

⊗ I3, EA
2 =

√

γA

2

(

1 0
0 −1

)

⊗ I3, (A3)
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and those for a single qutrit B can be written as

FB
1 = I2 ⊗

√

1− 2γB
3
I3, F

B
2 = I2 ⊗

√

γB

3





1 0 0
0 e−i2π/3 0
0 0 ei2π/3



 , FB
3 = I2 ⊗

√

γB

3





1 0 0
0 ei2π/3 0
0 0 e−i2π/3



 , (A4)

where γA = 1 − e−tΓA , γB = 1 − e−tΓB , and γA, γB ∈ [0, 1]. ΓA (ΓB) represents the decay rate of the subsystem A
(B).
Bit-(Trit-) flip channels: the Kraus operators describing the bit-flip channel for a single qubit A are given by [33]

EA
1 =

√

1− γA

2

(

1 0
0 1

)

⊗ I3, EA
2 =

√

γA

2

(

0 1
1 0

)

⊗ I3, (A5)

and those for a single qutrit B can be written as

FB
1 = I2 ⊗

√

1− 2γB
3





1 0 0
0 1 0
0 0 1



 , FB
2 = I2 ⊗

√

γB

3





0 0 1
1 0 0
0 1 0



 , FB
3 = I2 ⊗

√

γB

3





0 1 0
0 0 1
1 0 0



 , (A6)

where γA = 1− e−tΓA , γB = 1− e−tΓB , and γA, γB ∈ [0, 1].
Bit-(Trit-) phase-flip channels: the Kraus operators describing the bit-phase flip channel for a single qubit A are

given by [33]

EA
1 =

√

1− γA

2

(

1 0
0 1

)

⊗ I3, EA
2 =

√

γA

2

(

0 −i
i 0

)

⊗ I3, (A7)

and those for a single qutrit B can be written as

FB
1 = I2 ⊗

√

1− 2γB
3
I3, FB

2 = I2 ⊗
√

γB

6





0 0 ei2π/3

1 0 0
0 e−i2π/3 0



 ,

FB
3 = I2 ⊗

√

γB

6





0 0 e−i2π/3

1 0 0
0 ei2π/3 0



 , FB
4 = I2 ⊗

√

γB

6





0 e−i2π/3 0
0 0 ei2π/3

1 0 0



 ,

FB
5 = I2 ⊗

√

γB

6





0 ei2π/3 0
0 0 e−i2π/3

1 0 0



 , (A8)

where γA = 1− e−tΓA , γB = 1− e−tΓB , and γA, γB ∈ [0, 1].
Depolarizing channels: the set of Kraus operators that reproduces the effect of the depolarizing channel for a single

qubit A are given by [33]

EA
1 =

√

1− 3γA
4
I6, EA

2 =

√

γA

4
σ1 ⊗ I3, EA

3 =

√

γA

4
σ2 ⊗ I3, EA

4 =

√

γA

4
σ3 ⊗ I3, (A9)

where σi (i = 1, 2, 3) are the three Pauli matrices. The Kraus operators describing a single-qutrit depolarizing noise
are given by [? ]

FB
1 = I2 ⊗

√

1− 8γB
9
I3, FB

2 = I2 ⊗
√
γB

3
Y, FB

3 = I2 ⊗
√
γB

3
Z,

FB
4 = I2 ⊗

√
γB

3
Y 2, FB

5 = I2 ⊗
√
γB

3
Y Z, FB

6 = I2 ⊗
√
γB

3
Y 2Z,

FB
7 = I2 ⊗

√
γB

3
Y Z2, FB

8 = I2 ⊗
√
γB

3
Y 2Z2, FB

9 = I2 ⊗
√
γB

3
Z2, (A10)

where

Y =





0 1 0
0 0 1
1 0 0



 , Z =





1 0 0
0 ei2π/3 0
0 0 e−i2π/3



 , (A11)
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and γA = 1− e−tΓA , γB = 1− e−tΓB , γA, γB ∈ [0, 1].
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[17] Dakić B., Vedral V., Brukner Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105,

190502 (2010)
[18] Luo S.L., Fu S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)
[19] Werlang T., Souza S., Fanchini F.F., Villas Boas C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80,

024103 (2009)
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