arXiv:1103.1904v1 [quant-ph] 9 Mar 2011

Adiabatic quantum optimization with qudits
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Abstract. Most realistic solid state devices considered as qubits are not
true two-state systems but multi-level systems. They can approximately
be considered as qubits only if the energy separation of the upper energy
levels from the lowest two is very large. If this condition is not met, the
upper states may affect the evolution and therefore cannot be neglected.
Here, we consider devices with double-well potential as basic logical el-
ements, and study the effect of higher energy levels, beyond the lowest
two, on adiabatic quantum optimization. We show that the extra lev-
els can be modeled by adding additional (ancilla) qubits coupled to the
original (logical) qubits. The presence of these levels is shown to have
no effect on the final ground state. We also study their influence on the
minimum gap for a set of 8-qubit spin glass instances.

1 Introduction

Quantum information processing has been one of the fastest growing in-
terdisciplinary research areas over the past decade, with the promise of
revolutionizing the concept and possibilities of future computation [1].
Unlike classical information processing in which information is stored as
classical states of the classical bits, in quantum information processing,
information is stored as quantum states of qubits which are two-state
quantum systems representing the basic logical elements of quantum in-
formation. Most realistic devices, however, are not ideal two-state sys-
tems. Therefore, the ideal two-state (qubit) model, commonly used in
quantum information, is only an approximation to their true quantum
behavior. For example, all superconducting qubits, whether charge [2],
hybrid [3], phase [4], or flux [5-8] qubits, have several energy levels, only
lowest two considered as the relevant qubit states.

Flux qubits generally have potential energy (in the flux basis) in the
form of a double-well potential similar to the one illustrated in Fig. 1a
[5-8]. In the limit of infinite barrier height between the two wells, one can
treat each well separately and obtain two sets of quantized energy levels
localized within the wells. At finite barrier height, these localized states
are not true eigenstates of the Hamiltonian anymore and therefore are
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Fig. 1. (a) Schematic diagram of a double-well potential with the first four metastable
energy levels and the tunneling amplitudes (K;;) between them. (b) A four-state model
of the system represented by two coupled qubits. (¢) Parameters of the qudit Hamilto-
nian (3) during an annealing process, calculated for an rf-SQUID with experimentally
motivated parameters (see the appendix). All energy scales are divided by h (Planck
constant) and converted into GHz.

metastable, which means a system initialized in one of them will eventu-
ally transition out of it via a tunneling process. The true eigenstates of
the Hamiltonian are indeed coherent mixtures or superpositions of those
localized states. One may still represent the system in the basis of those
localized states by introducing off-diagonal elements of the Hamiltonian
which provide tunneling amplitudes between them.

It is assumed that when the two lowest energy states dominate the
dynamics of the system at low temperatures and small energy bias, one
can consider this two-state system as a qubit. However, if the energy
bias is comparable to the energy separations within each well, w,, or
the temperature is large enough to allow occupation of higher energy
levels, then the two-state model does not describe correctly the quantum
behavior of the device. In these situations, one must include the occupied
energy levels in the description of the quantum system being studied.
Systems with d > 2 energy levels are commonly referred to as qudits.

One of the important paradigms of quantum information processing
is adiabatic quantum computation (AQC) [9] which is known to be a
universal model of quantum computation [10,11]. In AQC, the Hamil-
tonian of the system, generally written as Hg(t) = A(t)Hp + E(t)Hp,
slowly evolves as A(t) decreases and E(t) increases monotonically with
time ¢. At the beginning of the evolution, E(0) ~ 0 and the Hamiltonian
is dominated by the dimensionless Hamiltonian H g, with a ground state
that is usually a superposition of all states in the computation basis. At



the end of the evolution, A(ty) ~ 0 and the Hamiltonian is dominated
by the (dimensionless) problem Hamiltonian Hp. If the evolution is slow
enough, the final state of the system will represent the ground state of Hp
with high fidelity, which is designed to solve the intended problem. The
time-dependent energy scales A(t) and E(t) are usually not independent
and both are controlled by one external parameter. A typical example of
these functions based on a superconducting realization of the hardware
[12] is provided in Fig. 1.

In this article, we focus on a special version of AQC known as adiabatic
quantum optimization (AQO). In AQO, Hp is diagonal in the logical
basis, therefore the final ground state is a classical state that minimizes
the energy, hence can be considered as an optimized solution to a cost
function. In the literature, AQO is sometimes called quantum annealing
[13,14], as it uses quantum fluctuations for annealing in a similar way
as thermal fluctuations are used in classical annealing. We are mainly
interested in the transverse Ising Hamiltonian:

N N N
Hp= 5> 0l Hp=hol + > Jyole®. (1)
i=1 i=1 i,j=1
where, Jg(f;)z are Pauli matrices corresponding to the ¢th qubit, and h; and
J;j are dimensionless energy biases and coupling coefficients respectively.
An interesting and important question is, how would an adiabatic quan-
tum optimizer perform using realistic multi-level devices (qudits) instead
of idealized qubits.

The paper is organized in the following way. In Sec. 2, we consider a
quantum device with a double-well potential, such as a superconducting
flux qubit, as a physical implementation of a qubit. We describe such a
system by an effective tunneling Hamiltonian with finite number of levels
and represent that with a few coupled qubits. We derive the parameters
of the coupled qubit Hamiltonian representing the qudit in terms of the
original tunneling Hamiltonian. In Sec. 3 we discuss how AQO is possible
with such multi-qudit system. We study the effect of the extra energy lev-
els on the minimum gap. Section 4 summarizes our findings and provides
conclusions to our results.

In the main body of this paper we treat the single logical element
of quantum information as a double-well potential illustrated in Fig. 1.
The main discussion of the paper is independent of the physical struc-
ture behind the double-well potential. We provide a detailed discussion
of an example, i.e., rf-SQUID, in the appendix. We use such an rf-SQUID



Hamiltonian with realistic parameters to find the parameters of the qu-
dit Hamiltonian used in our numerical simulations. All parameters are
extracted from experimental implementation, therefore the numerical re-
sults we provide here are expected to closely represent the physical reality.

2 Single qudit Hamiltonian

Let us consider a system with a double-well potential similar to the one
depicted in Fig. la. As we discussed before, we would like to write the
Hamiltonian of this system in the basis of states that are localized within
the wells. Such states are not true eigenfunctions of the Hamiltonian and
therefore are metastable towards tunneling to the opposite well. There-
fore, the resulting Hamiltonian in this basis will have off-diagonal terms
corresponding to transitions between states in opposite wells. However,
there are no off-diagonal terms corresponding to transitions within a sin-
gle well, as we require states within a well to be stationary. Intra-well
transitions are induced only by environmental relaxation.

Let |l) denote localized states within the wells. We use even (odd)
state numbers, i.e., | = 2n (2n+1), with n = 0,1,2, ..., to denote states
that are localized in the left (right) well (see Fig. la). For the lowest
M energy levels (M is taken to be even), the effective M x M tunneling
Hamiltonian is written as

M—-1 M/2—-1
Hs =Y E){Il+ > Kopomr1(120)(2m+1] + [2m+1)(2n]) (2)
=0 n,m=0

where Ej is the energy expectation value for state |I) and Koy, 2m+1 is the
tunneling amplitude between states |2n) and |2m+1), which exist in the
opposite wells. Notice that there is no matrix element between states on
the same well: (2n|Hg|2m) = (2n+1|Hg|2m+1) = 0, which means that
the states are metastable only towards tunneling to the other side, or the
states are quasi-eigenstates of the Hamiltonian within their own sides.
In the appendix, we explain how to arrive at such an effective tunneling
Hamiltonian for a bistable rf-SQUID and how to extract the parameters
of such Hamiltonian from the original rf-SQUID Hamiltonian.

Reading out the state of the device is usually done by identifying left
and right wells, hence logical “0” and “1” states. For example, in a flux
qubit the two directions of the flux generated by the persistent current
in the superconducting loop identify the two wells of the potential, hence
the logical “0” and “1” states. One therefore measures the magnetic flux



at the end of the evolution to detect the logical state of the system.
Since all energy levels in the left (right) well yield a negative (positive)
flux, we associate all of them with logical “0” (“1”). Therefore, all the
levels within one well are logically equivalent. In other words, the quantum
numbers distinguishing states within a well are logically irrelevant. Those
degrees of freedom, however, may participate in the dynamics and have
to be taken into account in the quantum dynamics when studying the
performance of such a system.

In principle, there could be a large number of energy levels in the
full spectrum of the double-well potential, not all of them relevant for
the dynamics. Let us assume that there are a total of M = 2™ rele-
vant states that participate in the dynamics. We can denote state |I) by
|Tm—1... xaxo), with z; € {0,1}, where | = Z?:ol 2z, hence the string
Ty—1..- ToXg is the binary representation of [. With the above even-odd
representation of states, all states on the left well correspond to xg = 0
(even binary numbers), and all states on the right well correspond to
zo = 1 (odd binary numbers). Now assume that each variable x; repre-
sents the state of one qubit. Thus, we have an effective system of m qubits
representing the qudit. Only one of the qubits, i.e., the one representing
xo, determines the logical state of the system. We therefore call that qubit
“logical”, and the other m—1 ones “ancilla” qubits.

For simplicity we focus only on M = 4 levels (i.e., m = 2 qubits
representing a qudit). We denote the left states as [00) and [10) and the
right states as |01) and |11). These four states can be represented by two
coupled qubits, as shown in Fig. 1b, the bottom (top) one is taken to
be the logical (ancilla) qubit. In order to distinguish between logical and
ancilla qubits in the Hamiltonian, we label the Pauli matrices associated
with the logical qubit by o, and those associated with the ancilla qubit by
Ta, Where oo = z, z. We use the convention o,|0) = —|0), and o,|1) = |1),
and similarly for 7,. The effective two qubit Hamiltonian can therefore
be written as

Hepp = —%(eaz + Aoy) + %[prz + Kpz0p(L+72) + RygoaTa]. (3)
State |0) of the ancilla qubit corresponds to the two lowest energy states in
the two wells and the |1) of the ancilla qubit provides the two upper energy
levels, which are separated from the lower ones by an energy difference
equal to the plasma frequency w, (b = 1). It is easy to show that (3) is
equivalent, up to a constant energy, to Hamiltonian (2), with M = 4, if

EZE(]—EleQ—Eg, wp:EQ—EOZEg—El, (4)



A= 2K, Koo = Koz — Ko1 =~ Ka3, Koz = 2K03 = 2K12. (5)

As can be seen, the coupling between logical and ancilla qubits are of
XX+4+XZ type. Figure 1c illustrates typical values of these parameters
during an annealing process based on the experimentally realized 8-qubit
processor described in Ref. [12] (see the appendix).

3 Adiabatic quantum optimization with qudits

We now generalize the above formulation for a single qudit to a coupled
multi-qudit system. The coupling is usually via the dominant degree of
freedom, which for flux qubits is the magnetic flux. In the multi-qubit rep-
resentation of a qudit discussed in the last section, the state of the logical
qubits represent the direction of the flux degree of freedom. Therefore the
coupling should be via the logical qubits, leading to a ZZ coupling term
in the Hamiltonian. In practice, the magnetic flux generated by the flux
qubit is different if the qubits is in its excited state within a well. As a
result, the effect of the ancilla qubit states on the overall qubit coupling
is small, and thus is neglected in our formulation.

Given a graph of coupled qubits, in order to recast the problem in
the form of coupled qudits, it is enough to connect to each qubit in the
original problem an ancilla qubit via an XX+4XZ coupling. Ancilla qubits
are coupled only to their corresponding logical qubits; there is no coupling
between the logical and ancilla qubits of other qudits. Figure 2 illustrates
such a situation for an example graph of four coupled qubits.

In the case of N qubits, the corresponding Hamiltonian is

Hg = A(t)Hp + E(t)Hp (6)

0
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+
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where Hp and Hp are dimensionless Hamiltonians defined by (1). The
first line is identical to the ordinary multi-qubit transverse Ising Hamil-
tonian and the second line is the contribution of the ancilla qubits.
Figure 1c shows the result of calculation of parameters of Hamilto-
nian (3) as a function of time during the annealing process, using an
rf-SQUID model with experimentally motivated parameters as explained
in the appendix. As expected A(t) decreases and E(t) increases monoton-
ically with time as required. Notice the non-monotonic variation of w,,
which represents the energy separation of the upper energy levels from
the lowest two (see Fig. la). To be able to approximate a qudit by a
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Fig. 2. (a) An example of a multi-qubit graph consisting 4 qubits (circles) and 5 ZZ
couplers (solid lines). (b) The same graph made of 4 qudits, each being a four-state
system represented by a logical (bottom) and an ancilla (top) qubit, coupled to each
other via a XX+XZ coupler (dashed lines).

two-state qubit, it is necessary that the excited states within each well be
far above the lowest energy levels. This puts a limit on the parameter of
the problem Hamiltonian: h;, J;; < wy,/E(t). If this condition is not met,
the energy bias of the qubits can become so large that the lowest state in
one well becomes close to the excited state in the next well (see Fig. la
as an example), hence the two-state model for the device fails to hold.
The important question is: Can we still solve the intended optimization
problems using such devices? As we shall see the answer is yes.

At the end of the evolution, the barrier between the two wells becomes
so large that all tunnelings between the lowest energy levels will stop.
This means that all the off-diagonal elements of the Hamiltonian will
vanish: A = mﬁf} = mﬁ,}z) = 0. It is easy to see that in the absence of
these off-diagonal elements, the logical and ancilla qubits decouple from
each other and the ground state of the total Hamiltonian (6) will be the
ground state of the original Ising Hamiltonian Hp for the logical qubits
with all the ancilla qubits being in state |0). Therefore, for the purpose
of optimization, the ancilla qubits have no effect on the final ground
state even if h;, J;; > wp/E(t). They, however, affect the dynamics of the
system as we shall see. This means that AQO can be performed using
qudits instead of qubits regardless of the final Hamiltonian. The effect of
the upper energy levels on the computation time is yet to be discussed.

In a closed system, the computation time t; is considered to be in-
versely related to the size of the minimum gap gmin between the ground
state and the first excited state. This gap is commonly obtained using
the Hamiltonian of coupled ideal qubits, i.e., the first line of (6). Naively,
one might think that adding the ancilla qubits would increase the total
number of qubits and therefore would significantly reduce the size of the



minimum gap gmin. One should keep in mind that the ancilla qubits are
just added to model the upper energy levels that already exist in the spec-
trum of the actual physical device that plays the role of qubit. Therefore,
the ancilla qubits should always be added if one wants to have a correct
description of the real physical system. Since the number of upper energy
levels are typically large, a large number of ancilla qubits is necessary to
accurately describe all the energy levels. This means that even a small size
system should be represented by a large number of qubits. Therefore, if
the above statement is correct all realistic systems should have extremely
small gaps. Intuitively, one expects that if the upper energy levels are far
away from the lowest two levels, then their influence should be negligible.
Thus, the presence of the ancilla qubits should not significantly affect the
gap as long as w), is much larger than other terms in the original Hamilto-
nian. As is clear from Fig. 1c, w), is not very large, but still almost a factor
of 3 larger than FE(t) for the second half of the evolution. Therefore, it is
expected that the excited levels, or equivalently the ancilla qubits, have
some (but small) influence on the minimum gap and the evolution.

We test this conjecture by comparing the values of g, calculated with
and without the ancilla qubits. To achieve this, we considered an ensemble
of 8-qubit spin glass instances generated with random parameters: h’s and
J’s were selected uniformly at random from 0,+1/7,...,4+6/7, +1, except
for J’s that don’t represent an edge in the complete bipartite graph Ky 4,
whose values were all zero. Among 800 instances generated, 669 of them
had non-degenerate ground state for which we calculated g, using exact
diagonalization technique. Figure 3 shows a comparison between gmin
calculated without the ancilla qubits (referred to as two-state model) and
with the ancilla qubits (referred to as four-state model). As is clear from
the figure, for some instances the size of the gap is increased and for
some is decreased. On average the change of g, was below 1%. For the
4 data points available in the small gap region, the size of the gap was
reduced by a maximum of 36%. More investigations, especially on larger
problem instances, is necessary to determine if this is a trend for all small
gap instances. Nevertheless, considering doubling the number of effective
qubits from two-state model to four-state model, the above change is not
significant.

4 Conclusions

The effect of the energy levels above the lowest two levels in the phys-
ical implementation of a qubit on adiabatic quantum optimization was
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Fig. 3. Comparison of the minimum gap between two-state and four-state models.

studied. We discussed a model of a multi-level system with a double-
well potential as a system of coupled qubits. One of the qubits (logical
qubit) represents the logical state of the physical system and the remain-
ing qubits (ancilla qubits) produce the upper energy levels. At the end
of the evolution, the solution to the problem described by Hamiltonian
Hp, is determined only by the state of the logical qubits. We showed
that the state of the logical qubits in the final ground state is unaffected
by the ancilla qubits, regardless of Hp (as long as potential bistability
is preserved). Therefore, the same problems that can be solved by ideal
qubits can also be solved using qudits. We studied the influence of the
ancilla qubits on the minimum gap and showed that for realistic qubit
parameters the effect for average problems is small. Problems with very
small gap sizes had systematically smaller gaps when ancilla qubits were
introduced into the formulation. However, the four data points in our
simulation is not sufficient to predict a trend, especially for large scale
problems. When generalized to open quantum systems using density ma-
trix methods, the results of this model are in close agreement with results
from experiments on a system of eight coupled rf-SQUID qubits. Dis-
cussion of the open quantum calculation and experiments is beyond the
scope of this paper and will be discussed in a future publication.
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Appendix: rf~-SQUID Hamiltonian

In this appendix, we look closely at a specific example of qubit imple-
mentation, namely a compound Josephson junction rf-SQUID [7]. This
choice was motivated by recent experimental progress in implementing
multi-qubit quantum annealing process with such qubits [12]. All param-
eters for our numerical simulations are based on the 8-qubit unit cell
studied in Ref. [12]. The qubit itself is discussed in detail in Ref. [7], but
here we only consider a simplified version.

The qubit, as illustrated in Fig. 4, has two main superconducting loops
and therefore two flux degrees of freedom @, and &5, subject to external
flux biases @1, and ®,;, respectively. The Hamiltonian of the qubit is
written as

¢ 6
Hsquip = 2—01 + E + U (D1, P2), (7)

where C7 and C5 are parallel and series combinations of the junction
capacitances, ¢; and ¢o are the sum and difference of the charges stored
in the two Josephson junctions respectively, and

U(D1, D) = (D) — D14)?/2L1 + (Py — Po,)? /2L,
—2Ej cos(n®y/Py) cos(2nP1 /Do) (8)

is a 2-dimensional potential with L; being the inductance of the ith loop
and @y=h/2e is the flux quantum. We have assumed symmetric Joseph-
son junctions with Josephson energies E ;= I.9( /27, where I. is the junc-
tions’ critical current. (A small asymmetry can be tuned away in situ in
the physical implementation [7].)

Fig. 4. Schematic diagram of a tunable rf-SQUID. The external fluxes @1, and P2
control the energy bias and tunneling amplitude respectively.



At @1, =~ Py/2, the potential can become bistable and therefore form
a two-dimensional double-well potential. If Lo is small enough so that
the deviation of @9 from @, can be neglected, then the two-dimensional
classical potential U(®1,P2) can be approximated by a one-dimensional
double-well potential, as shown in Fig. la. However, with our realistic
qubit parameters, @5 cannot be neglected and therefore is accounted for
in all our numerical calculations. When &1, = @(/2, the two wells are
symmetric with no energy bias (e = 0). One can tilt the potential by
changing &1, and establish an energy bias ¢, as depicted in Fig. 1la. It is
also possible to change the barrier height by changing ®,,. Quantum an-
nealing is performed by slowly increasing the barrier height from a very
small value to a very large value through ramping ®s,. Details of the
annealing process and techniques used to make all terms in the Hamilto-
nian change uniformly are discussed in Ref. [12]. At the end, the system
behaves as the Hamiltonian (6) with all its time-dependent parameters
determined experimentally. Our goal here is to extract these parameters
numerically for the rf-SQUID Hamiltonian (7) having known all parame-
ters (L;, Cj, I.) and the experimental values of the external fluxes ®1,(t)
and P9, (t) as a function of time.

The eigenvalues E,, and eigenstates |E,) of the rf-SQUID Hamilto-
nian (7) can be calculated by numerical diagonalization. They, however,
are not directly useful for simulations of AQO in a multi-qubit system
defined by Hamiltonian (6). One therefore needs to derive (6), or single
qudit version of it (2), from those eigenvalues and eigenstates. In prin-
ciple, it is possible to write down the Hamiltonian in a basis defined by
states |I) localized in the wells, instead of the energy basis |E,,), as long
as they form (at least approximately) an orthonormal basis. Our numer-
ical procedure is as follows. First, we numerically diagonalize the original
rf-SQUID Hamiltonian (7) to obtain energy eigenstates |E,). We then
select the first M eigenstates and diagonalize the flux operator @1 in such
subspace. This way we find M flux states |x;) with eigenvalues y; each
being a superposition of states |E,). Some of the flux states will have
negative and some positive induced flux d®; = x; — @1,. We treat states
with negative (positive) induced flux as states localized in the left (right)
well. We then separate these two set of localized states and once again
diagonalize the rf-SQUID Hamiltonian (7), but now separately in each
left and right subspaces. The final result is a Hamiltonian that looks like
(2). Different matrix elements of the resulting Hamiltonian determine dif-
ferent terms in (2) which in turn determine the parameters of the qudit
Hamiltonian (3).



