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Abstract We review the recent developments in quantum control and its
contribution to quantum information processing.
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“Information is physical is one of the key messages, and, on a fun-
damental level, it is quantum physical.”
A. Furusawa and P. van Loock, Quantum Teleportation and Entangle-
ment, 2011

“Thinking of a dynamical system as a behavior, and of interconnec-
tion as variable sharing, gets the physics right”
J.C. Willems, IEEE Control Systems Magazine, December, 2007

“The development of general principles of quantum control theory is
an essential task for a future quantum technology”
J.P. Dowling and G.J. Milburn, Proc. Roy. Soc. 2003

1 Introduction

Behind the technological advances of the Twentieth Century have been sev-
eral key conceptual revolutions in engineering science. Control Theory deals
with optimization of performance of fixed systems through connection to a
controller: while originating in Maxwell’s analysis the dynamics of governors,
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the mathematical theory has been systematically developed to tackle a wide
range of dynamical systems and its success has been based on the fact that it
provides a mathematical framework for tackling universal issues in engineer-
ing abstracted from the underlying physical models. The introduction of the
field of cybernetics by Norbert Wiener, in particular, identified the central role
played by feedback based on information not just in control engineering, but
throughout the sciences. Information Theory was likewise developed by Shan-
non to quantify information, and thereby demonstrate fundamental limits on
signal processing and on information storage. It too quickly outgrew its origins
in electrical engineering, and Shannon’s theory was immediately applicable to
generic problems in communication, and indeed relevant to fundamental issues
in physical modelling.

When we look back at the history of physics in the Twentieth Century,
we see that the main revolution was quantum theory and that this theory
underwent two significant developmental stages, in the opening and closing
decades of the Century respectively. Whilst the development of the (closed)
theory by Heisenberg, Born, Schrédinger, Dirac and von Neumann is well
documented, the later stage of the development effectively occurred only in
recent times as a result of quantum theorists catching up with the progress of
other fields. The key concepts that have been extended to the quantum domain
in this regard include information theory and communications, estimation and
filtering, computation, error correction, open irreversible systems modelling,
probability and stochastic processes, and of course control. Much of this later
stage of development preceded the current possibilities realized experimentally.

The problems in each of these areas can be formulated as the problems
of finding an optimal information processing when the quantum nature of
physical devices carried out the information is taken into account. The most
sophisticated among them include the dynamical problems of quantum sys-
tem optimization in real time when the feedback control based on the causal
output processes is allowed. This is precisely the domain of quantum feed-
back control as a means to realize quantum information processing. Quantum
computing has been a holy grail of quantum technology, though one that is
likely to lead to important spin offs. At the present time of writing, there
are several competing suggestions as to what will be the most useful physi-
cal platform on which to develop quantum information processing, each with
significant advantages and drawbacks. This is a rather peculiar phase in the
history of quantum technology as we are a long way from identifying the “in-
dustry standard” quantum components that would likely appear in any future
quantum communication or computation device. Time will of course tell, but
it is difficult to make predictions on future practical directions. It has been re-
cently understood that quantum computation is also falls within the domain
of quantum control as a form of quantum information processing when the
purpose is to find optimal gates for achieving the best quantum state with
the result of a desirable computation from a given initial state containing the
initial computational data.
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The success of classical engineering lies in no small measure to the fact
that underlying principles can be extracted and applied widely in a substrate
neutral fashion. More prosaically, engineers usually apply general principles
and algorithms that are valid for a large class of physical system. An example
of where this has carried over into quantum technology is quantum circuit
modelling which allows theorists to devise quantum computational algorithms
wholly independently of the actually quantum hardware that might eventu-
ally be used. This leads us to systematic study of quantum control theory.
Elements of classical control have of course been used in quantum experi-
ments for a long time, however, increasingly sophisticated experiments require
a more detailed analysis, even requiring an appropriate quantum description.
By analogy with engineering classical systems, it seemed natural to try and de-
velop a dedicated control theory for quantum systems which would ideally be
of a universal character. This would of necessity take into account the features
of the quantum world, of measurement and estimation of quantum systems,
the feedback processing of quantum information, and the manipulation and
actuation of quantum systems by their environment. Such an endeavour was
begun in the 80’s by one of the authors [5],[6],[7] on quantum filtering and
feedback control in an algebraic setting unifying classical and quantum the-
ories. However quantum information is physical and physicists do not like to
think in terms of algebraic abstractions! Despite the allure of a conceptual
framework of general theories of quantum information and of quantum con-
trol, much of the key work by the current contenders has been inevitably
based on the specifics of particular physical setups. Nevertheless, the devel-
opment of general quantum control principles will necessarily inform future
quantum technologies. In this introduction to the subject, we shall emphasize
the universal principles in physical examples. To some extent this an ongoing
program is still speculative as the current state of physical quantum control is
strikingly dissimilar to its classical counterpart: one major anomaly is the fact
that modern classical control deals almost exclusively with feedback system,
whereas this features in only a relatively small fraction of theoretical work on
quantum control, and even rarer in experiment. However, we would argue that
this is only a temporary situation, and that the future development of the field
will see the powerful insights of classical control theory emerging again in the
quantum setting.

2 Quantum Control

Following standard engineering terminology, we refer to the designated system
which we aim to control as the plant, and the system used to alter the dynamics
of the plant as the controller. The combined plant and controller form either
an open loop or closed loop control system depending on whether or not the
controller utilizes feedback about the plant’s state.

The open loop quantum control theory is principally concerned with Hamil-
tonian controls, generically implemented through a controlled Hamiltonian of
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Controller Plant

Fig. 1 Open loop control: the controller actuates the plant based on a predetermined
input independent of the actual state of the plant.

the form

H(t) = Ho + Xn:Hjuj (t) (1)

=1

with Ho, Hy, -+, H, fixed self-adjoint operators and uq,--- ,u, the prede-
termined control functions, or policies. There are various definitions of con-
trollability - that is, the extent to which one may steer one state to another
using appropriate choices of control policies. The is naturally a bilinear con-
trol problem and the characterization inevitably involves examining the Lie
algebra generated by the skew-adjoint operators —iH, with commutator as
Lie bracket [17].

In the closed loop situation, the feedback may be entirely dynamical (that
is, the plant and controller form a single dynamical system and the controller
with the two influencing each other through direct interaction). We refer to
this as coherent control. Alternatively the feedback may be entirely information
theoretic insofar as the controller gains information about the plant due to
measurement of the plant. This is measurement based control.

Controller

Plant
Fig. 2 Closed loop (coherent) control: the controller actuates the plant using informa-
tion it obtains through interaction with the plant.

Normally this distinction is not made classically, however it is fundamental
in quantum control due to the non-trivial effect of the measurement process.

The simplest implementation of coherent control is to consider the plant
and controller as an isolated system with Hamiltonian

H=Hp®Ic+1Ip®Hc+ Vpc (2)
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Controller

Gauge

Plant
Fig. 3 Closed loop (measurement-based) control: the controller actuates the plant
using information it obtains through measurement of the plant.

where Vpe gives the nontrivial coupling of the plant and controller. This set
up initially proposed by Seth Lloyd [45], and it is important to note that both
plant and controller are quantized.

It is however more advantageous to consider the coupling between the plant
and controller to be mediated by fields, [63]. Again we should aim for a fully
quantum model. In the standard bilinear model (1), this would mean replacing
the policies u; by quantum input processes which act as carriers for the signals
- or more exactly as carriers of the influence of dynamical operators between
the plant and controller. This essentially means that we have an open systems
model. To build up a tractable mathematical model it is best to take the
overall model to be Markovian.

2.1 Markov Models

Our restriction to Markovian models is not just for mathematical convenience,
as they in fact turn out to offer extremely good approximation to quantum
optical models. It is natural to focus on photonics as being arguably the most
natural choice for developing quantum information processing, see for instance
[51].

A single Markov component is parameterized by a triple (S, L, H) consist-
ing of:

— the System Hamiltonian H;
— Coupling operators L = [L;] between the system and the field;
— Scattering operators S = [S;z], unitary.

The input-output component is sketched in figure 2.1.

Plant (S,L,H)

Fig. 4 Input-Output device with system parameterized by (S, L, H).
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In the case of a single input and output, we associate the unitary adapted
quantum stochastic evolution

1
dU; = (S — I)UdA (t) + LUdB (t)' — LTSUdB (t) — (§LTL + iH)Uydt,

where Bf(t), B(t) and A(t) are the fundamental processes of creation, anni-
hilation and conservation introduced by Hudson and Parthasarathy [34]. The
non-vanishing products of Ito differentials are [34]

dBdB' = dt, dBdA = dB,
dAdB' = dB', dAdA = dA.

The state dynamics then corresponds the the associated Heisenberg equa-
tions of motion for j,(X) = U} (X ® 1)U,

djr(X) = ji(STXS — X)dA (t) + j:(S[X, L)dB (t)'
+ 5:([LT, X]S)dB (t) + j,(LX)dt

where the Lindblad superoperator is

1

LX 2

(LT, X]L + %LT[X, L] —i[X, H].

The output field is then defined to be Boy (t) = UJ (1 ® B (t))U; and from
the quantum Ito calculus we have [34]

dBout (t) = jo(S)dB (t) + ji(L)dt. 3)
The pair of equations (3) and (3) are then the quantum mechanical analogues
of the system dynamical equation and then output equation respectively.

We may readily extend the above to the multi-channel input/output case:

B, S+ Sin L,

The special case where L = 0 and H = 0 corresponds to a beam splitter,
for example, with n = 2

Byvt _ | S Sz | | By
Bgut So1 S22 | | B2 |~
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output

7
~b
Ve

Fig. 5 classical feedback diagram: the junctions circled are not implementable in the quan-
tum setting as they correspond to copying of information. Instead, they must be replaced
by unitary junctions such as a beam splitter.

Plant 2 Plant 1

—

Fig. 6 Two systems in cascade.

2.2 Networks

The diagram in figure 5 below illustrates the classical feedback set up found
in standard engineering texts.

The simplest form of a network consists of two cascaded systems as shown
in figure 6. The S = I case was initially studied by Carmichael [16] and
Gardiner [23], and we treat the general case now.

In the limit of instantaneous feedforward we have

dBZ), = Spd B+ Lodt = Sy(S1dBY +Lydt)+Lodt = S35 BL + (S L+ L) dt

The cascaded system in the instantaneous feedforward limit is in fact equiv-
alent to the single component [27]

(S2, Lo, Ho) < (S1,L1, Hy) =
(5251, Lo+ SsLy, Hy + Hy +Tm {L;52L1}) .
which is referred to as the Series Product of the two models [27].
2.2.1 Bilinear Hamiltonians
The following construction, based on an idea of Wiseman and Milburn [63],

shows how the series product gives rise to bilinear Hamiltonians of the form
(1) generically [29]

(I,u(t),0) < (~1,0,0) < (I, L,0) < (~1,0,0) <
(I,—u(t),0) <0 (I, L,0) = (1,0, H (t))
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where
H(t) = Im{Liu(t)} = %LTU () — %Lu "

2.2.2 Beamsplitter Feedback

We illustrate briefly the role of beamsplitter feedback. This is a special case
of the more general problem of feedback reduction described in [28]. Here we

Sn 512] and an

consider a simple network consisting of a beamsplitter S =
Sa1 Sa2

in-loop component (Sy, Lo, 0):

Fig. 7 Component in a feedback loop constructed using a beam splitter.

Again assuming the instantaneous feedback limit, we have
dBy = SpdBS" + Lodt = So(S21dB1 + S22dBs) + Lodt
= dBS" = S1dB) + S12dBy = SodB; + Lodt

where
So = Si1 + S12(I — S0S22) 'S0S21, Lo = Si2(I — Sa2) ' SoLo.

This leads to an equivalent component (5’0, Lo, 1':[0) The form of Hy is given
in [28].

3 Direct Coupling Measurement Control

We start with an example introduced by Wiseman and Milburn [63]. This is a
double-pass of a quantum light field through a plant and can be modelled as
the following series product:

— 1st pass - (I, L, Hp)
— 2nd pass - corresponding to U (¢t + dt, t) = exp{—iFdJ (t)}.

Here the detector measures a component J(t) of the output field from the
first pass (either a quadrature or the photon number count) which is then
fed in a second time as a direct proportional Hamiltonian term: this was the
original interpretation of Wiseman and Milburn. Formally J(t) is singular so
we interpret as generating a stochastic unitary process U as outlined above.
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Plant

g

Detector

Fig. 8 Direct measurement feedback scheme of Wiseman and Milburn.

The cases of homodyne and photon counting may be treated separately:
Homodyne detection, J(t) = B(t) + B(t)', (dJ)? = dt, 2nd pass is
(I,—iF,0). The closed loop model is

(I,—iF,0) < (I, L, Hy) = (1, L—iF Hy+ % (FL + LTF)> :

Photon counting, J(t) = A;, (dJ)? = dJ, 2nd pass is (S = ¢ *£',0,0).
The closed loop model is

(5,0,0) < (I,L,Hy) = (S,SL, Hyp) .

3.1 Quantum Filtering

Classically, filtering is the problem of obtaining a best causal estimate of a hid-
den signal given partial observations. The problem may involve noise in both
the dynamics of the system generating the signal, and in the process of ob-
servation itself. The original problem tackled by Wiener [60] and Kolmogorov
[44] in linear stationary setting was to try and filter out background station-
ary noise added onto a given stationary signal. The next step was made by
Stratonovich who showed that the dynamical state vector of a noisy condition-
ally Markovian system could be estimated recursively from noisy observations,
and this recurrence could be finitely solved at least for linear Markovian sys-
tems with additive Gaussian noise as it was done in the linear setting also by
Kalman. The general theory of nonlinear filtering was subsequently developed
in time continuous setting by Stratonovich, Kallianpur, Striebel, Zakai, and
others. This all was extended in the end of 80’s by Belavkin to the quantum
conditionally Markov setting in a series of papers [6],[7],[8],[10].

3.1.1 The Classical Filtering Problem

We consider a noisy dynamical system with random state X;, where we make
indirect partial observations. This we assume to be described by a pair of
stochastic differential equations:
Unobserved system state dX; = v (X;)dt +dWyx;
Observation process dY; = h (X;)dt + dWy.
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We also assume that the row W, = (W, Wy ) is a multi-dimensional Wiener
process and that dimW; =dimX;+dimY;, and that

AW, AW, = Sdt = Bj; g;f:] di

with X' invertible. It follows that (X;) is a diffusion process with generator
L =100+ %E%Xﬁfj

The goal is to obtain the least squares estimate for a given function f(Xy)
of the state based on the causal observations Yy, for 0 < s < ¢, and this is the
conditional expectation of f(X;) with respect to the o-algebra of subsets ]-'t}]/

generated by these observations:

m (f) =E [£ (X0) |FY ]

In particular, a tractable differential equation for 7; (f) is desirable. One con-
venient formal (though may no means necessary) approach is to adopt a path
integral formalism: the marginal distribution for (X;), dX; = v (X¢) dt +dWx
is

px (z,t) = / e Jo x(=1)px,
celo,4]
where the “Lagrangian” is Ly (z,%) = £ [ — v (z)]" ek B —v(@)]+3 Vo ().
The joint distribution of the state observation pair is then

pxy (2,y,t) = / e o Z(@29) Dx Dy,
Cel0,t]xCy[0,t]
& —v(x)
y—h(z)
. [ P Te-1., 1 T y—1
= Yx (z,2) + 5¥ Xoyy—h(z) Xyyy+ §h () Xyyh(x)

z(x,ga,y):%[ab—v(m),y—h(x)fz—l[ ]—i—%Vv(a:)

We may therefore write the Kallianpur-Striebel relation

Jesion £ (20) L (xly) e~ Jo #x(2 8 Dx

Tt (f) = e | )
fCé’ 0. Lt (x[y) e e Zx (00 Dy

g

g

—~
—_

~—

y=Y(w)

where @y (f) (w) = fcg 0. F (2¢) Ly (x|Y (w)) e~ Jo £x@#)Dx and we have the
Kallianpur-Striebel likelihood

L) =0 [ {h@" Srbas- 0" Sidh ).

This formula may rigorously be deduced through the standard techniques of
integration with respect to the Wiener measure for Brownian motion.
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Using the Kallianpur-Striebel relation one may readily derive Stratonovich-
Kushner nonlinear filter equation

dry (f) = me (Lf) dt+ |:7Tt (th) — 7 (f) e (hT) + ((Vf)T Exy):| E;xl,d?},

where }7,5 are the innovations: df/{g = dY;—m (h) dt, from Zakai linear stochastic
equation

di () = w0 (Lf) dt+ 1 (AT + (V)T Sxy ) Sypa;

for the posterior state wo; normalized to the probability density w; (1) of the
passed output process Y = (Y), <, for the initial condition wo = mo.

8.1.2 Quantum causal estimation

In a given experiment, we may consistently measure only a commuting set of
observables. Let us denote the von Neumann algebra generated by the mea-
sured observables up to time ¢ as .#* - this will be an increasing commutative
algebra. The noncommutative von Neumann algebra of all observables on a
Hilbert space will be denoted as 7, and we may ask when is it possible to es-
timate an observable X € & from the measured data at a particular time ¢. In
principle, if X does not commute with measurement observables then it cannot
be given a joint probability distribution with these observables, and it does not
make sense statistically to talk about an estimate for X based on the past mea-
surements. We therefore restrict the set of observables we may estimate and
control from & at a given ¢ down to the subalgebra A; of just the observables
that are compatible with the measurements obtained up to time ¢. Mathemat-
ically this means that we may estimate an observable X € A if and only if it
belongs to the commutant Ay = {X € & : [X,Y (r)] =0 for all r < ¢} of the
increasing set Y = {Y (r) : r <t} generating M?, which is equivalent to the
condition M? = A} including M* C A;. Typically the set of observables Y
is not complete for a finite ¢, so the commutative algebra M" is not maximal,
having the strictly bigger commutant A; D M? in which there are plenty of
noncommutative observables including all interesting future Heisenberg ob-
servables which can be causally estimated on the measurement data at each
t.

Thus, we have arrived to the first fundamental Causality Principle of quan-
tum feedback control which was formulated by Belavkin [6],[12] in the form of
Quantum Nondemolition Principle: The controllable by estimation observables
X (t) must commute with all the compatible actual observables Y up to the
time t: [X (¢),Y (r)] = 0 for all v < t. This puts all the feedback control
theory into the paradigm of Eventum Mechanics (EM) as a quantum theory
of an open system extended to include an interaction with the environment
(quantum noise) but restricted to only the causal controllable algebras of in-
terest A; containing at the center the classical output algebras M?. In other
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words, EM is a semi-quantum mechanics of open controlled quantum sys-
tems enhanced by the observable events of the classical output processes Y (¢)
which must be causal in the sense of compatibility with the future observables
X (') e Ay C As, ' > t. (See more on this by Belavkin in the present vol-
ume.) Note time assymetry of this quantum causality condition, without this
assymetry there is no nontrivial feedback controlled quantum models: a purely
quantum controlled system with the Heisenberg observables X (¢) commuting
with all, not only the past output observables Y (¢) cannot interact with any
classical system described by all Y (¢).

The error of an estimator X € .#" for a single observable X € A, is given

. 2
as E {(X - X ) ] and the optimal estimator is the conditional expectation

X =E[X|.#]. (4)

Fig. 9 Conditional expectation of observable X € .#' into the measurement algebra ..
Note that the measurement compatible algebra .#’ is not commutative. The conditional
expectation is projective onto the measurement algebra ..

Note that unlike the classical case the conditional expectation in quantum
probability may not exist for arbitrary subalgebra M*! C A, however, in the
paradigm of EM E [-|.#] is well-defined so long as its domain is restricted to
the reduced subalgebra A; = .#" of observables compatible with the measure-
ment algebra .. In fact, for given Hermitian X € .#’, the algebra generated
by X and the elements of .Z is commutative, so in a sense we are just doing
ordinary classical conditioning. However, the set of measurement compatible
observables .#’ typically is itself a non-commutative algebra, and the construc-
tion of optimal estimates is not classical already for two canonical variables

X=(Q,P)
8.1.8 Quantum Filtering

We now recall the problem of quantum filtering as the causal estimation of a
quantum open Markovian system. Here we measure an observable Y (¢) of the
output field. Our aim is to estimate causally any observable X of the system
at time ¢, that is j;(X) = U (X ® I)Uy, from the observations up to time ¢.
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Even for the much wider class of conditionally Markov problems discussed by
Belavkin in this volume we have the non-demolition causality property

[is(X), Y (#)] =0,

for all s > ¢. This implies that the causal estimation is well-posed since all
observables of the system at time ¢ are is then compatible with the measured
observables up to that time. That is, the measurement output algebra #* as
the commutative algebra generated by the observations Y (s), 0 < s < t is
contained in the commutant {j,(X): s>t} for any X at each time ¢.

The least square estimate of the j;(X) is then the conditional expectation

™ (X) = E[i(X) | #]

which satisfies the nonlinear quantum filtering equation first derived by Belavkin
for diffusive and counting observations in [7],[8].

In the case of the standard diffusive measurement, the Belavkin quantum
filter is given by

dm(X) = m(LX)dt + {m( XL+ L*X) — m (L + L*)m (X))}
x[dY (t) — m (L + L*)dt],

and in the case of the standard counting measurement the Belavkin equation
can be written as
L*XL
dmy(X) = m(LX)dt + Tl XL) m(X) ¢ [dY () — 7w (L* L)dt).
Tt (L* L)
Using a Kallianpur-Striebel relation 7 (X) = w; (X) /oy (1) the first equa-
tions was also obtained in [4] from the Belavkin diffusive master equation

@ (X) =@ (LX) dt +w, (XL+ LX) dY(t)

which is a quantum analog of the linear Zakai equation. Similarly in the stan-
dard counting measurement case one can start with the counting linear master
equation [4]

It is of course entirely equivalent to give the corresponding conditioned
state g; such that
dmy(X) = tr{e: X},

for all observables X of the plant. The dynamical equation for g is readily
derived and is the usual stochastic master equation exhibited in the physics
literature.

For the rigorous derivation of the general conditionally Markov quantum
linear and nonlinear filtering equations see [8],[9-11]. After the solving of quan-
tum filtering problem one deals only with the classical stochastic equations
driven by Y (). Quantum feedback control problem can be tackled then along
the usual lines of the classical stochastic control theory by filtering-control
separation theorem as it is presented by Belavkin in this volume.
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3.2 Filtering in Nonclassical States

The previous examples dealt with an input which was in the vacuum state, and
much of the theory extends in a analogous manner to the case of a Gaussian
field [9]. However, there has been considerable interest recently in non-classical
field states, specifically, states corresponding to a single photon [59,47,48,57]
(or more generally Fock states) and superpositions of coherent states. The
former can now be generated on demand using state of the art experimental
techniques, while the latter correspond to so-called cat states.

The filtering problem for these non-classical states turns out to be tractable,
see the contribution of Gough, James and Nurdin in this volume, where one
employs an ancilla to extend the filter in an appropriate manner. The role
of the ancilla may often be easily understood as a preparation device which
takes the vacuum input and feeds out the non-classical field into the system
of interest.

4 Measurement-Based Control

We now wish to address the issue of control of a quantum system (plant) based
on a nondemolition continual measurement. As a control problem, we have to
specify all the necessary details before we can attempt a solution, these are:

— the description of the plant including any additional noise if open;

— the description of the measurement apparatus, what is measured, how much
the readout is to be passed onto the controller and what additional obser-
vational noise is present;

— what type of actuation the controller may apply to the system;

— the control objective!

The last point turns out to be crucial. Classical control theory utilizes
feedback to a specified end, and history has taught us that the blind use of
feedback tends to lead to instability and system failure. To have a properly
defined control problem we must specify a prescribed cost to measure perfor-
mance. Typically this cost will be random (this is necessarily the case here
as the measurement readout is random) so we may for instance seek to mini-
mize the average cost. The control problem is then to search over all possible
controllers to find the optimal controller - that is the physical system which
continuously processes the measurement readout, and actuates the system so
that the cost is minimized. Without a control objective there can be no control
problem!

In figure 10 below we sketch a cartoon of plant governed by a controller.
We say that the separation principle applies if the optimal controller can be
decomposed into a state estimator which produces an optimal state for the
system based on the measurement readout up to a given time and an actuator
which applies a given control policy to actuate the system based on the optimal
state computed by the state estimator. The design problem for the controller
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is then greatly simplified by the fact that we decompose the problem into two
separate parts. The average cost problem is known to satisfy the separation
principle (see [13], and the contribution of Belavkin to this volume).

Detector

Measurement Actuation
Readout

(LR R RNl

Actuator

T.....

— e —

Fig. 10 The separation principle: the optimal controller can be considered as a state esti-
mator and an actuator.

=

Measurement-based feedback control has been applied to the generation
and stabilization of number states for photons [20,55] by the French group
headed by S. Harouche and J.-M. Raimond. In particular, the theoretical issues
surrounding stability and design considerations have been done by mainly by
M. Mirrahimi and P. Rouchon [49,1,2].

While there has been considerable discussion on the estimation problem,
especially given its relevance to quantum measurement and the foundations
of quantum theory, the remaining part of the control problem has attracted
much less attention and we would like to devote some additional space to it
here. When the objective is to minimize an average cost, say a weighted time
average of the expectation of an observable of a prescribed time interval, then
the state estimator is then any machine capable of computing the filtered state
o¢ that is the solution to the appropriate stochastic master equation. However,
this is not always the case. We could alternatively have a cost which penalizes
realizations where the performance cost is too high. One such problem is the
risk sensitive cost which has been solved in the quantum case by Matthew
James [35]. Here there is a separation principle, but the optimal state depends
on the risk sensitivity parameter as well as the measurement readout.

From the purely operational point of view, quantum theory tells us how
to compute probabilities for physical events. When handled properly, this fits
into the overall operational approach that engineers adopt. However, while
the optimal estimate of the state of the system at a particular time obviously
depends on the measurement setup and readout, this is only half the story: it
also depends on what your control objective is, and how you need to use the
estimated state do steer the system in an optimal manner.
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Measurement-based quantum control problems are in some sense more in-
volved that just the traditional quantum measurement problem. Already con-
ventional control is introducing unexpected foundational issues as now our
best estimate of the plant may also depend on what the controller is trying to
achieve. Essentially the controller has to be part of the model, just as much
as the measurement apparatus, and we need to keep in mind that the whole
control system is designed to optimize prescribed performance criteria.

It is worth stressing that the operational approach to quantum theory
fits seamlessly with standard conventional engineering operational procedures.
With this in mind, we propose the following version of Mermin’s famous maxim
for quantum feedback control, figure 11.

QUANTUM
CONTROL:

SHUT UP

CALCULATE
and DESIGN!

Fig. 11 The operational view of quantum feedback control.

5 Coherent Feedback Control

The main drawback of measurement-based control is that one is limited by
the time taken to process the classical information coming from the mea-
surement readout by a computer. Typically we must interface between the
quantum plant and the macroscopic controller. While simple applications of
quantum Kalman filtering have been done in real time with the variance com-
putation done off-line, the implementation of more computationally intensive
controllers is problematic. To achieve the high-performance criteria required in
quantum information processing, it will be necessary to look beyond classical
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measurement-based controllers and consider the fast, nanoscale devices in-
stead. This takes us into the realm of quantum coherent feedback control. The
quantum feedback network theory which we have outlined above is naturally
suited to describing nanophotonic control systems driven by continuous-wave
laser input fields.

General conditions for stability, passivity and L? gain for general quantum
systems have been given by James and Gough [36] in a framework that extends
the Willems’ approach to control engineering. Mathematically, one works with
operators now replacing state functions. Linear models arise for systems with
canonical coordinates for which the triple (S, L, H) leads to a linear system
of Heisenberg-Langevin equations and input/output relations: this happens
when H is quadratic, L is linear, and S is independent of the canonical coor-
dinates. In this case the performance specification becomes tractable and one
may generalize some of the known results for classical linear systems for LQG
problems and H control, see the surveys [19,65] for more details. While the
robust control problem turns out to be tractable in the quantum case, unfortu-
nately the optimal LQG controller need not necessarily be physically realizable
as a quantum input-system-output model, see [50] and [37].

Physical applications have been proposed by the MabuchiLab group [38,
56] and these include continuous-time quantum error correction schemes em-
ploying nanophotonic circuits to implement coherent-feedback, rather than
measurement-based control. More recently, they have developed a hardware
description language to implement the series product, concatenation, and feed-
back reduction operations introduced earlier [58]. This allows for the con-
struction of arbitrary quantum optical networks modelled within the Markov
assumption. The opportunity to design and synthesize quantum control com-
ponents will hopefully be made greatly more powerful by these techniques.

From an engineering perspective, quantum control theory is slowly starting
to resemble is classical counterpart. While the eventual quantum hardware and
information processing methods will only emerge over the next decade or so,
we can be encouraged that the principles of quantum engineering control are
now being to take a definite shape.
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