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Any evolution described by a completely positive trace-preserving linear map can be imagined
as arising from the interaction of the evolving system with an initially uncorrelated ancilla. The
interaction is given by a joint unitary operator, acting on the system and the ancilla. Here we
study the properties such a unitary operator must have in order to force the choice of a physical—
that is, positive—state for the ancilla if the end result is to be a physical—that is, completely
positive—evolution of the system.

I. INTRODUCTION

Consider a primary system A, with Hilbert space HA of dimension dA, which is subjected to a superoperator E ,
and let B be an ancillary system, with Hilbert space HB of dimension dB . It is a commonplace that if the action of
E can be written as

E(ρA) = trB
(

UρA ⊗ σBU
†
)

, (1.1)

where U is a joint unitary operator acting on A and B and σB is a physical state of B (a unit-trace, positive operator,
i.e., a density operator), then E is a trace-preserving, completely positive (CP) map and is called a trace-preserving

quantum operation [1, 2]. Moreover, any quantum operation can be written in the form (1.1) for some joint unitary U
and some ancilla state σB. Quantum operations are thus the superoperator maps that can be realized physically [3].
The form (1.1) for a quantum operation is sometimes called a Stinespring extension [4], and we call it here an ancilla

model.
In this paper we are interested in a different question. Suppose we know that E , written as in Eq. (1.1) with U a

unitary operator, is a trace-preserving quantum operation. Can we conclude that σB is a density operator? Generally
not, as the case of a unitary transformation UA of A makes immediately clear. Then we have U = UA ⊗ IB and

E(ρA) = trB(σB)UAρAU
†
A, so σB can be any unit-trace operator. A natural question asks for the conditions on U

such that E being a trace-preserving quantum operation implies that σB is a density operator. Here we formulate and
prove a theorem that answers this question.
In Sec. II, we spell out the problem clearly and introduce mathematical concepts that are useful in addressing the

problem and proving our main result. Section III states and proves our theorem, and Sec. IV explores a number of
examples that illustrate features of the main result. Section V demonstrates a curious connection to the notion of
indirect state tomography, i.e., tomography on the system that can determine the state of the ancilla, and Sec. VI
concludes.

II. MATHEMATICAL BACKGROUND

Before stating our theorem, we introduce some mathematical notation and concepts. Consider a system Q with
Hilbert space HQ of dimension dQ. We will consistently refer to arbitrary elements of HQ as vectors and to vectors
normalized to unity as state vectors. We refer to density operators, i.e., unit-trace, positive operators, as states; pure
states are rank-one density operators, i.e., one-dimensional projectors corresponding to state vectors. We sometimes
use a bra-ket notation for operators on HQ, i.e., O = |O) and O† = (O|, and we denote the Hilbert-Schmidt operator
inner product by (N |O) = tr(N †O). We use a tilde to distinguish operators that are normalized to unity, i.e.,

(Õ|Õ) = tr(O†O) = 1.
A superoperator is a linear map on operators. Any superoperator FQ can be written as

FQ =
∑

α,β

Fαβ τ̃α ⊙ τ̃†β =
∑

α,β

Fαβ |τ̃α)(τ̃β | , (2.1)
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where the operators τ̃α make up an orthonormal operator basis. The ordinary action of FQ on an operator O
corresponds to replacing the ⊙ by O:

FQ(O) =
∑

α,β

Fαβ τ̃αOτ̃
†
β . (2.2)

The left-right action corresponds to using the bra-ket form of FQ to operate to the left or right on operators. A
superoperator FQ has a Kraus decomposition [5] if it can be written as

FQ =
∑

α

Kα ⊙K†
α =

∑

α

|Kα)(Kα| . (2.3)

The operators Kα are called Kraus operators. Having a Kraus decomposition is equivalent to FQ being positive in its
left-right action.
The standard way of defining complete positivity of a superoperator invokes a reference system R. A superoperator

FQ is completely positive if IR ⊗ FQ maps positive operators to positive operators for all reference systems R,
where IR = IR ⊙ IR is the identity superoperator on R. It is clear that if FQ is left-right positive, i.e., has a Kraus
decomposition, IR⊗FQ maps positive operators to positive operators, thus making FQ completely positive. Moreover,
if R is chosen to have the same dimension as Q and if we introduce an (unnormalized) maximally entangled vector,

|Ψ〉 =
dQ
∑

n=1

|gn〉 ⊗ |en〉 , (2.4)

where {|gn〉} and {|en〉} are orthonormal bases on R and Q, then we can define one-to-one, onto maps of operators
on Q to vectors on RQ and of superoperators on Q to operators on RQ via

|ORQ〉 ≡ IR ⊗OQ|Ψ〉 ⇐⇒ 〈gn, em|ORQ〉 = 〈em|OQ|en〉 =
(

|em〉〈en|
∣

∣OQ

)

, (2.5)

FRQ ≡ IR ⊗FQ

(

|Ψ〉〈Ψ|
)

⇐⇒ 〈gn, em|FRQ|gn′ , em′〉 =
〈

em
∣

∣FQ

(

|en〉〈en′ |
)∣

∣em′

〉

=
(

|em〉〈en|
∣

∣FQ

∣

∣|em′〉〈en′ |
)

.

(2.6)

The isomorphism between superoperators on Q and operators on RQ is called the Choi-Jamio lkowski isomorphism [2,
6]. The second form of Eq. (2.6) shows that the left-right positivity of FQ is equivalent to the positivity of FRQ.
Hence, we have the standard result that FQ is completely positive if and only if it is left-right positive.
Given any orthonormal basis of operators, {τ̃α}, acting on HQ, we can define the unit superoperator acting in the

left-right sense:

IQ ≡
∑

α

τ̃α ⊙ τ̃†α =
∑

α

|τ̃α)(τ̃α| . (2.7)

By considering an outer-product basis, { τ̃jk = |ej〉〈ek| } for some orthonormal basis, { |ej〉 }, it is easy to check that

IQ(O) =
∑

j,k

τ̃jkOτ̃
†
jk = tr(O) IQ . (2.8)

The setting of our theorem is that U is a joint unitary operator on A and B and σB is an operator on B. We
define a superoperator on A by its action (1.1) on density operators. We want E to map density operators to density
operators, so it must at least be Hermiticity- and trace-preserving. Requiring that E(ρA) be Hermitian does not imply

that σB is Hermitian, but it does imply that E(ρA) = trB
(

UρA⊗ 1
2
(σB+σ†

B)U
†
)

. Since the Hermitian ancilla operator
1
2
(σB + σ†

B) gives the same map as σB , we can assume that σB is Hermitian without loss of generality. Requiring
that E be trace preserving implies that σB has unit trace.
We will need the Schmidt decomposition of U [7],

U =

RU
∑

n=1

An ⊗Bn , (2.9)

where RU is the Schmidt rank of U . The Schmidt operators An are nonzero and orthogonal,

(An|Am) = trA(A
†
nAm) = (An|An)δnm , (2.10)
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and likewise for the Schmidt operators Bn. Sometimes we want to deal with normalized operators,

Ãn ≡ An
√

(An|An)
and B̃n ≡ Bn

√

(Bn|Bn)
. (2.11)

We can normalize either set, {An} or {Bn}, by absorbing the normalization constant into the other set. That U is
unitary means that

I = U †U =

RU
∑

n,m=1

A†
nAm ⊗B†

nBm , (2.12)

which, by taking the partial trace on A, implies that

IB =
1

dA

RU
∑

n=1

(An|An)B
†
nBn . (2.13)

Taking the trace on B then gives

dAdB =

RU
∑

n=1

(An|An)(Bn|Bn) . (2.14)

We will need the span of the Schmidt operators Bn,

B ≡ Span
{

Bn

∣

∣ n = 1, 2, · · · , RU

}

, (2.15)

and the operator orthocomplement of B,

OB ≡
{

OB

∣

∣ trB(B
†OB) = 0 ∀ B ∈ B

}

=
{

OB

∣

∣ trB(U
†OB) = 0

}

. (2.16)

Notice that RU + dim(OB) = d 2
B .

It will also be useful to introduce a set of positive operators associated with B,

C ≡
{

B†B
∣

∣ B ∈ B
}

. (2.17)

The set C is not a subspace. It is a cone—i.e., any nonnegative multiple of an element of C is also an element—which
is a subset of the cone of positive operators on B. It is clearly a closed set. We let C1 denote the set of unit-trace
elements in C; C1 is a closed and bounded subset of the closed and bounded set of density operators on B. Neither C
nor C1 is necessarily convex.
For the remainder of this section, we deal only with system B, so we generally omit the subscript B on vectors,

operators, and superoperators. The most important set in our considerations is the set of vectors |φ〉 ∈ HB such that
|φ〉〈φ| /∈ C. Any nonzero multiple of such a |φ〉 is also in this set, but we emphasize that the set is not a subspace. For
this reason, it is most convenient to represent the vectors in this set by their normalized counterparts (state vectors),
so we define the following set:

SB ≡
{

state vectors |φ〉 ∈ HB

∣

∣ |φ〉〈φ| /∈ C
}

. (2.18)

The set SB is a property of the Schmidt operators Bn and, hence, a property of U .
Since we have restricted SB to normalized vectors, we can replace the definition by

SB =
{

state vectors |φ〉 ∈ HB

∣

∣ |φ〉〈φ| /∈ C1
}

. (2.19)

We can think of SB as the set of pure states not in C1. Because C1 is a closed set, we can say a bit more. If the
one-dimensional projector |φ〉〈φ| is not in C1, then it lies some minimal distance away from all elements of C1, which
means that there exists a δ > 0 such that 〈φ|C|φ〉 ≤ 1− δ for all C ∈ C1. Slightly more generally, we can say that

state vector |φ〉 ∈ HB such that |φ〉〈φ| /∈ C1 =⇒ ∃ a δ > 0 such that 〈φ|C|φ〉 ≤ tr(C)(1 − δ) ∀ C ∈ C. (2.20)

It will turn out to be useful to have available equivalent definitions of SB. Suppose |ψ〉〈φ| = B ∈ B; then
〈ψ|ψ〉|φ〉〈φ| = B†B = C, which if |ψ〉 is not the zero vector, implies that |φ〉〈φ| ∈ C. Moreover, if |φ〉〈φ| = C = B†B
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for some C ∈ C (and B ∈ B), the polar-decomposition theorem asserts that B is rank one, and thus B = |ψ〉〈φ| for
some normalized |ψ〉 ∈ HB . Thus we have the following equivalence,

|ψ〉〈φ| ∈ B for some nonzero |ψ〉 ∈ HB ⇐⇒ |φ〉〈φ| ∈ C , (2.21)

and its contrapositive,

∀ nonzero |ψ〉 ∈ HB, |ψ〉〈φ| /∈ B ⇐⇒ |φ〉〈φ| /∈ C . (2.22)

Consider now the subspace of HB generated by the operators in the orthocomplement OB acting on a particular
vector |φ〉 ∈ HB:

OB|φ〉 ≡
{

O|φ〉
∣

∣ O ∈ OB

}

. (2.23)

It is easy to see that OB|φ〉 is a subspace; it is the span of vectors On|φ〉, where the set {On} consists of any operators
that span OB. Thus we clearly have dim(OB|φ〉) ≤ dim(OB). We denote the orthocomplement of OB|φ〉 by (OB |φ〉)⊥.
Because B and OB are orthogonal subspaces, we have

|ψ〉〈φ| ∈ B ⇐⇒ ∀ O ∈ OB, 0 = tr
(

O†|ψ〉〈φ|
)

= 〈φ|O†|ψ〉 ⇐⇒ |ψ〉 ∈ (OB|φ〉)⊥ (2.24)

and the contrapositive,

|ψ〉〈φ| /∈ B ⇐⇒ |ψ〉 /∈ (OB|φ〉)⊥ . (2.25)

This gives us the following equivalence:

∀ nonzero |ψ〉 ∈ HB , |ψ〉〈φ| /∈ B ⇐⇒ OB|φ〉 = HB . (2.26)

Thus because of Eqs. (2.22) and (2.26), the following two ways of defining SB are equivalent to Eqs. (2.18) and
(2.19):

SB =
{

state vectors |φ〉 ∈ HB

∣

∣ ∀ nonzero |ψ〉 ∈ HB , |ψ〉〈φ| /∈ B
}

=
{

state vectors |φ〉 ∈ HB

∣

∣ OB |φ〉 = HB

}

. (2.27)

It is useful to characterize SB in yet another way. For this purpose, consider the orthonormal Schmidt operators,
{B̃n, n = 1, . . . , RU }, of Eq. (2.11). Complete a basis of orthonormal operators by adding a set of orthonormal

operators, { Õn | n = RU + 1, . . . , d 2
B }, from the orthocomplement OB. We have

I =

RU
∑

n=1

B̃n ⊙ B̃†
n +

d 2

B
∑

n=RU+1

Õn ⊙ Õ†
n , (2.28)

and for state vectors |φ〉 ∈ HB,

I = I
(

|φ〉〈φ|
)

=

RU
∑

n=1

B̃n|φ〉〈φ|B̃†
n +

d 2

B
∑

n=RU+1

Õn|φ〉〈φ|Õ†
n . (2.29)

A state vector |φ〉 is in SB if and only if the second sum on the rightmost side of Eq. (2.29) is a full-rank operator,
i.e., has no zero eigenvalues. This happens if and only if the first sum on the rightmost side of Eq. (2.29) is strictly
less than I; i.e., it has largest eigenvalue strictly less than unity. Thus we can characterize SB in the following way:

SB =

{

state vectors |φ〉 ∈ HB

∣

∣

∣

∣

1 >

∥

∥

∥

∥

RU
∑

n=1

B̃n|φ〉〈φ|B̃†
n

∥

∥

∥

∥

∞

}

. (2.30)

Here ‖M‖∞ is the operator norm that denotes the largest eigenvalue of
√
M †M , i.e., the largest singular value of M

(for positive operators, as here, the largest eigenvalue of M).
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III. MAIN THEOREM

The content of our theorem is that any rank-one projector not in C1 can be used to construct an unphysical σB
that gives a completely positive map E . Formally, we can state the theorem in the following way.

Main theorem. Let U be a joint unitary operator on A and B and σB be a unit-trace Hermitian operator on
B. Define a Hermicity- and trace-preserving superoperator E on A by E(ρA) = trB

(

UρA ⊗ σBU
†
)

. C1 contains all
rank-one projectors, i.e., SB is the empty set, if and only if requiring that E be a quantum operation implies that σB
is a density operator. In symbols,

∀ state vector |φB〉 ∈ HB, |φB〉〈φB | ∈ C1 ⇐⇒ SB = ∅
⇐⇒

(

E a quantum operation =⇒ σB is a density operator
)

. (3.1)

We use P to denote the property of U that SB is the empty set. ¬P is thus that SB is not the empty set, i.e., that
there are pure states not in C1. Any |φB〉 ∈ SB can be used as an eigenstate of σB with negative eigenvalue in an
ancilla model that gives a completely positive E .
The following properties imply P and thus are sufficient to ensure that σB must be a density operator:

p1.
(

trB(U
†OB) = 0 =⇒ OB = 0

)

, which is equivalent to dim(OB) = 0 and RU = d 2
B.

p2. RU > d 2
B−dB, which is equivalent to dim(OB) < dB. This property implies P because dim(OB |φB〉) ≤ dim(OB).

The following properties imply ¬P and thus are sufficient to ensure that there is a nonpositive σB that leads to a
completely positive E :
q1. ∃ a non-vanishing Hermitian operator ΣB such that 0 = trB(BnΣBB

†
m) = trB(B

†
mBnΣB) ∀ n,m. This is

equivalent to trB(BΣBB
†) = 0 for all B ∈ B and thus to trB(CΣB) = 0 for all C ∈ C. If a non-Hermitian

operator satisfies this property, so does its conjugate, thus allowing us to construct a Hermitian operator that
satisfies the property. That ΣB is necessarily traceless follows from Eq. (2.13). Suppose we add µΣB, where µ is
any real number, to a density operator σB that is diagonal in the same basis as ΣB, i.e., σ

′
B = σB +µΣB. Then

σ′
B has unit trace, and the matrix G of Eq. (3.3)—and, hence, the quantum operation E—remains the same,

but by making |µ| large enough, we can give σ′
B negative eigenvalues. All the eigenvectors of ΣB are elements

of SB.

q2. dim
(

Span
{

B†
mBn

∣

∣ m,n = 1, . . . , RU

}

)

< d 2
B. This is equivalent to q1.

q3. RU < dB , which is equivalent to dim(OB) ≥ d 2
B − dB. This property implies q2, since dim

(

Span
{

B†
mBn

}

)

≤
R2

U .

Now we are ready to give the proof.

Proof. We first reformulate the condition for complete positivity of E in terms of the Schmidt operators on B.
Plugging Eq. (2.9) into Eq. (1.1), we find

E =

RU
∑

n,m=1

GnmAn ⊙A†
m =

RU
∑

n,m=1

Gnm|An)(Am| , (3.2)

where

Gnm ≡ (An|E|Am) = trB(BnσBB
†
m) . (3.3)

Complete positivity of E is the statement that E is positive in its left-right action. This is equivalent to the positivity
of the matrix G, which is that

∑

n,m cnGnmc
∗
m ≥ 0 for all coefficients cn, and this becomes the property

trB(BσBB
†) ≥ 0 ∀ B ∈ B. (3.4)

We have reduced our considerations to quantities defined on system B, so we often drop the subscript B for the rest
of the proof. The complete positivity property of E can now be written in the compact form

tr(Cσ) ≥ 0 ∀ C ∈ C . (3.5)
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If P holds, C contains all one-dimensional projectors, so the complete positivity condition (3.5) immediately implies
that σ ≥ 0. We prove the converse in the contrapositive; i.e., we show that if ¬P is true, we can construct a nonpositive
(unphysical) σ that is consistent with Eq. (3.5). Since P is not true, there is a state vector |φ〉 such that |φ〉〈φ| /∈ C
and, hence, by Eq. (2.20), a δ > 0 such that 〈φ|C|φ〉 ≤ tr(C)(1 − δ) for all C ∈ C. We lose nothing by also requiring
that δ < 1/2. For any such state vector, we can construct a nonpositive σ that satisfies Eq. (3.5) by letting |φ〉 be an
eigenvector with a negative eigenvalue −ǫ:

σ = −ǫ |φ〉〈φ| + 1 + ǫ

dB − 1

(

I − |φ〉〈φ|
)

, ǫ > 0. (3.6)

For all C ∈ C, we have

tr(Cσ) = −1 + ǫdB
dB − 1

〈φ|C|φ〉 + 1 + ǫ

dB − 1
tr(C) ≥

(

δ
1 + ǫdB
dB − 1

− ǫ

)

tr(C) . (3.7)

By choosing ǫ ≤ δ/(dB − 1 − δdB), we can ensure that the complete positivity condition (3.5) is satisfied for this
nonpositive σ, thereby completing the proof. �

IV. EXAMPLES

Example 1. U = UA ⊗ UB. In this case, any unit-trace operator σB gives the same (unitary) quantum operation.
There is a single Schmidt operator, UB, on B (RU = 1). The subspace B is the one-dimensional subspace of all
multiples of UB, C is the cone of nonnegative multiples of IB , C1 = { IB/dB }, OB is the (d 2

B − 1)-dimensional space
of operators of the form UBO, where O is any traceless operator, and SB contains all state vectors.

Example 2. The SWAP operator for two systems of the same Hilbert-space dimension:

U = SWAP =
∑

j,k

|ek, fj〉 ⊗ 〈ej , fk| =
∑

j,k

|ek〉〈ej | ⊗ |fj〉〈fk| . (4.1)

Here the vectors |ej〉 and |fk〉 make up any orthonormal bases for A and B. The SWAP operator acts on product
states as UρA ⊗ σBU

† = σA ⊗ ρB, so it is clear that σB must be a density operator. Equation (4.1) is a Schmidt
decomposition of SWAP. Schmidt operators on B can be taken to be the outer products |fj〉〈fk|. These operators
span the operator space on B, so B contains all operators, C is the cone of positive operators, C1 is the set of density
operators, OB consists only of the zero operator, and SB is empty.

Example 3. Two qubits with a joint unitary

U = eiX⊗Xθ/2 = I ⊗ I cos(θ/2) + iX ⊗X sin(θ/2) , 0 < θ < π . (4.2)

This joint unitary has Schmidt rank 2. For the unitary of Eq. (4.2), the two Schmidt operators for B can be taken to
be I and X , OB = Span{Y, Z}, C consists of all operators of the form r(I + sX), where r ≥ 0 and |s| ≤ 1, C1 is the
subset of C with r = 1/2 (i.e., the density operators whose eigenstates are the eigenstates of X), and SB contains all
state vectors except the eigenstates of X .
If we write σB as σB = 1

2
(I + s · σ) = 1

2
(I + sxXB + syYB + szZB), where σ is the vector of Pauli operators on B,

it is straightforward to show that the superoperator (1.1) on A is

E = cos2(θ/2)I ⊙ I + isx sin(θ/2) cos(θ/2)(X ⊙ I − I ⊙X) + sin2(θ/2)X ⊙X = p+V ⊙ V † + p−XV ⊙ V †X , (4.3)

where p± = 1
2
(1 ± T ), T =

√

cos2θ + s2x sin
2θ, V = eiXα/2, and tanα = sx tan θ. This map is a convex combination

of two orthogonal unitaries, V and XV , and is completely positive if and only if T ≤ 1, i.e., |sx| ≤ 1. The point here
is that sy and sz can be anything without changing E . Complete positivity only constrains sx, in agreement with our
conclusion that the only state vectors not in SB are the eigenstates of XB.

Any two-qubit joint unitary has Schmidt rank 1, 2, or 4 [8]. A Schmidt-rank-1 unitary is a product unitary and
thus is covered by Example 1. A Schmidt-rank-2 unitary is equivalent under local unitaries to Eq. (4.2) and thus
covered by Example 3. A Schmidt-rank-4 unitary has full Schmidt rank; C1 is the set of all density operators, and
SB is the empty set. Since C1 is convex in all three cases, we can conclude that for two-qubit unitaries, C and C1 are
always convex sets.

Example 4. A qutrit and a qubit with joint unitary

U = |0〉〈0| ⊗ I + |1〉〈1| ⊗X + |2〉〈2| ⊗ Z . (4.4)
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This joint unitary has Schmidt rank 3. The Schmidt operators on B can be taken to be I, X , and Z, OB consists of
all multiples of Y , C is the cone of positive operators, C1 is the set of all density operators, and SB is empty. That U
satisfies p2 makes clear that SB is empty.

For the remaining examples, we refer to an orthonormal basis, { |j〉, j = 0, . . . dB − 1 }, on system B, we denote
the rank-one outer products by τjk = |j〉〈k|, and we use the following operators on B, defined for j < k:

Ijk ≡ τjj + τkk , (4.5)

Zjk ≡ τjj − τkk , (4.6)

Xjk ≡ τjk + τkj , (4.7)

Yjk ≡ −i(τjk − τkj) . (4.8)

These are the Pauli operators for the two-dimensional subspace spanned by |j〉 and |k〉. The following operators make
up a set of d 2

B linearly independent operators, which span the space of operators on B: the unit operator I, and the
operators Z0j , j = 1, . . . , dB − 1, span the space of diagonal operators; the operators Xjk, numbering dB(dB − 1)/2,
and the operators Yjk, numbering dB(dB−1)/2, span the space of off-diagonal operators. These operators are pairwise
orthogonal, except that tr(Z0jZ0k) = 1 + δjk.
We can introduce an associated set of d 2

B − 1 unitary operators:

Uj ≡ I − I0j + Z0j , j = 1, . . . , dB − 1, (4.9)

Vjk ≡ I − Ijk +Xjk , j < k, (4.10)

Wjk ≡ I − Ijk + Yjk , j < k. (4.11)

The unitary Uj is diagonal, with ones everywhere on the diagonal, except in the jth position, which has a −1. The
operators Vjk and Wjk act like the Pauli X and Y in the two-dimensional subspace spanned by |j〉 and |k〉, and act
like the identity operator on the orthocomplement of this subspace. Together with the identity operator I, these
operators are linearly independent and span the space of operators on B, but they are not orthogonal. To see that
they span the space, one notes that the diagonal operators satisfy

τjj =
1

2
(I − Uj) , j = 1, . . . , dB − 1, (4.12)

τ00 =
1

dB − 1

dB−1
∑

j=1

Uj −
dB − 3

dB − 1

dB−1
∑

j=1

τjj . (4.13)

These expressions allow us to write any diagonal operator in terms of I and the unitaries Uj . Writing the diagonal
operators I−Ijk in terms of I and the unitaries Uj , we find that the operatorsXjk and Yjk, which span the off-diagonal
subspace, can be expanded in terms of our set of unitaries.

Example 5. This example shows that P can be satisfied even though RU = 3dB − 2 is linear in dB . The idea
is to introduce a unitary U such that the set B contains the operator subspace spanned by the operators τ0j for
j = 0, . . . , dB − 1, i.e., contains all operators of the form

B = λ

dB−1
∑

j=0

b∗jτ0j , (4.14)

where λ ≥ 0 and the expansion coefficients bj are normalized to unity. This means that C contains all operators of
the form

B†B = λ2
∑

j,k

bjb
∗
kτjk = λ2|φ〉〈φ| , (4.15)

where

|φ〉 =
∑

j

bj |j〉 (4.16)

is a state vector in HB. Thus C1 contains all pure states, and SB = ∅.
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To do this, we assume that system A has dimension 3dB − 2, with an orthonormal basis of vectors |0〉, |rj〉, |sj〉,
and |tj〉, where j = 1, . . . , dB − 1, and we introduce the following controlled unitary on A and B:

U = |0〉〈0| ⊗ I +

dB−1
∑

j=1

(

|rj〉〈rj | ⊗ Uj + |sj〉〈sj | ⊗ V0j + |tj〉〈tj | ⊗W0j

)

. (4.17)

Because the projectors corresponding to the orthonormal basis on A are orthogonal and, hence, linearly independent,
B is the span of the target unitaries, and the operator subspace OB consists of all operators that are orthogonal to
all of the target unitaries. By the same argument as above, we then have

B = Span
{

τ00; τjj , τ0j , and τj0, for j = 1, . . . , dB − 1
}

. (4.18)

As noted above, in this situation, C1 contains all pure states and thus P is satisfied.
We can go a bit further and characterize the entire set C1. An arbitrary element of B has the form

B = λ

dB−1
∑

j=0

b∗jτ0j +

dB−1
∑

j=1

µj(c
∗
jτj0 + d∗jτjj) , (4.19)

where λ and µj are real and nonnegative, the expansion coefficients bj are normalized to unity, and |cj |2 + |dj |2 = 1.
The general element of C looks like

C = λ2|φ〉〈φ| +
dB−1
∑

j=1

µ2
j

(

cj |0〉+ dj |j〉
)(

c∗j 〈0|+ d∗j 〈j|
)

, (4.20)

where |φ〉 is the state vector of Eq. (4.16). Thus the general element of C1 is a convex combination of an arbitrary
pure state |φ〉〈φ| and the pure states in the sum in Eq. (4.20).
We can use this example to show that C1 (and C) are not generally convex sets. If C1 were a convex set, then since

it contains all pure states, it would have to contain all density operators, but it is easy to find density operators not
in C1 for dB ≥ 4. For this purpose, we restrict attention to operators that are orthogonal to |0〉. The general form of
an element of C1 of this sort is

C = λ2
dB
∑

j,k=1

bjb
∗
k|j〉〈k|+

dB
∑

j=1

µ2
j |j〉〈j| . (4.21)

Let Π be the projector onto the subspace orthogonal to |0〉, and let Σ be any traceless, Hermitian operator that is
orthogonal to |0〉, scaled so that its most negative eigenvalue is −1. Then σ = (Π+ ǫΣ)/(dB − 1) is a density operator
for 0 ≤ ǫ ≤ 1; when ǫ = 1, σ is on the boundary of the space of density operators. For this density operator to be in
C1, we must have λ2bjb

∗
k = ǫΣjk/(dB − 1). When dB ≥ 4, we can let Σ12 = Σ23 = −Σ13 be real and positive; then

there is no way to choose the phases of b1, b2, and b3 to satisfy the condition if ǫ 6= 0, thus showing that σ is not in
C1 for 0 < ǫ ≤ 1.
It is worth spelling this out in three dimensions (dB = 3), where the target unitaries on B have the following matrix

representations:

I =





1 0 0
0 1 0
0 0 1



 , U1 =





1 0 0
0 −1 0
0 0 1



 , U2 =





1 0 0
0 1 0
0 0 −1



 ,

V01 =





0 1 0
1 0 0
0 0 1



 , V02 =





0 0 1
0 1 0
1 0 0



 , W01 =





0 −i 0
i 0 0
0 0 1



 , W02 =





0 0 −i
0 1 0
i 0 0



 . (4.22)

We can see explicitly in this case that B has the form given in Eq. (4.18). The orthocomplement OB, being orthogonal
to all the target unitaries, is

OB = Span











0 0 0
0 0 1
0 1 0



 ,





0 0 0
0 0 −i
0 i 0











= Span











0 0 0
0 0 1
0 0 0



 ,





0 0 0
0 0 0
0 1 0











. (4.23)
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Any operator OB ∈ OB has all zeros in the its first row, so 〈0|OB |φ〉 = 0 for any vector |φ〉, implying that SB = ∅.
This way of showing that SB is the empty set, by showing that all elements of OB have all zeroes in the first row,
works for any value of dB.

Example 6. It is easy now to formulate an example where P holds and RU = 2dB. To do so, we consider the controlled
unitary

U = |0〉〈0| ⊗ I + |r1〉〈r1| ⊗ U ′
1 +

dB−1
∑

j=1

(

|sj〉〈sj | ⊗ V0j + |tj〉〈tj | ⊗W ′
0j

)

. (4.24)

where the unitaries on B are defined by

U ′
1 = I − I01 − Z01 , (4.25)

V0j = I − I0j +X0j , (4.26)

W ′
0j ≡ I − I0j − iY0j . (4.27)

It is easy to convince oneself that the target unitaries are linearly independent and thus that RU = 2dB. Moreover,
since τ00 = (I−U ′

1)/2 and τ0j = (V0j−W ′
0j)/2 = (X0j+iY0j)/2 for j = 1, . . . , dB−1, we are in the situation discussed

in Example 5, so SB = ∅.
Example 7. In this example, we demonstrate that ¬P is possible when RU = d2B −dB, thus showing that condition p2
is optimal. We assume that system A has dimension d2B − dB, and we use the controlled unitary

U = |0〉〈0| ⊗ I +

dB−1
∑

j=1

|rj〉〈rj | ⊗ Uj +

dB−1
∑

j=1

dB−1
∑

k=j+1

(

|sjk〉〈sjk| ⊗ Vjk + |tjk〉〈tjk| ⊗Wjk

)

+

dB−1
∑

j=2

|t0j〉〈t0j | ⊗W0j ,

(4.28)

where the indicated vectors on A make up an orthonormal basis. As in Example 5, B is the span of the target unitaries
and thus can be written as

B = Span
{

τ00; τjk, for j, k = 1, . . . , dB − 1; Y0j , for j = 2, . . . , dB − 1
}

, (4.29)

and the orthocomplement of B is

OB = Span
{

τ01, τ10; X0j , for j = 2, . . . , dB − 1 } . (4.30)

Letting |φ〉 = |0〉+ |1〉, we clearly have OB|φ〉 = HB and thus ¬P. Indeed, it is easy to see that the state vectors not
in SB are those that are orthogonal to |0〉 or to |1〉.
To introduce our last example, we consider the Weyl (or generalized Pauli) unitary operators

Bkl = XkZ l , k, l = 0, . . . , dB − 1, (4.31)

where X and Z are the shift and phase operators in the standard basis, i.e., X |j〉 = |(j + 1) mod dB〉 and Z|j〉 =
ei2πj/dB |j〉. The Weyl operators (4.31) are pairwise orthogonal. The eigenstates of X are the Fourier-transformed
basis states

|k〉 = 1√
dB

dB−1
∑

j=0

ei2πjk/dB |j〉 . (4.32)

We have X |k〉 = e−i2πk/dB |k〉 and Z|k〉 = |(k + 1) mod dB〉.
We assume the existence of a fiducial state vector |φ〉 such that the state vectors |φkl〉 = Bkl|φ〉 form a SIC-POVM,

i.e.,

|〈φkl|φk′l′〉|2 =
1

dB + 1
when kl 6= k′l′. (4.33)

The existence of such a fiducial vector for all dB was conjectured by Zauner [9]; the conjecture has been demonstrated
for dB = 1, . . . , 15, 19, 24, 35, and 48 and numerically up to at least dB = 67 (see [10] and references therein). Notice
that any vector in the SIC-POVM could be used as the fiducial vector.
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Consider now the class of controlled unitaries with Schmidt decomposition

U =

RU
∑

n=1

|n〉〈n| ⊗Bn, (4.34)

where the operators Bn, indexed by the single index n, comprise a subset of RU elements drawn from the Weyl
operators (4.31). The form (4.34) is a Schmidt decomposition of U , and the Weyl operators Bn are Schmidt operators
on system B.
According to (2.30), the fiducial state vector |φ〉 is in SB if and only if

∥

∥

∥

∥

RU
∑

n=1

Bn|φ〉〈φ|B†
n

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

RU
∑

n=1

|φn〉〈φn|
∥

∥

∥

∥

∞

= ‖Φ‖∞ < dB . (4.35)

Here we define

Φ ≡
RU
∑

n=1

|φn〉〈φn| (4.36)

to be the sum of the projectors onto the subset of SIC-POVM vectors. Our task is to bound the operator norm of Φ
in terms of RU .
To do so, we consider a purification of Φ into an RU -dimensional system S:

|φSB〉 ≡
RU
∑

n=1

|n〉 ⊗ |φn〉 . (4.37)

Since |φSB〉 is rank one, the spectrum of Φ is the same as the spectrum of the reduced matrix of |φSB〉〈φSB | on S,
which is the Gram matrix of the vectors |φn〉:

trB(|φSB〉〈φSB |) =
RU
∑

n,m=1

〈φm|φn〉|n〉〈m| . (4.38)

Applying the condition (4.33) that the vectors |φn〉 form a SIC POVM gives

trB(|φSB〉〈φSB |) =
RU
∑

n=1

|n〉〈n|+ 1√
dB + 1

∑

n,m=1,...,RU

n6=m

eiθnm |n〉〈m| (4.39)

=

(

1− 1√
dB + 1

)

IS +
1√

dB + 1

RU
∑

n,m=1

eiθnm |n〉〈m| , (4.40)

with θnm = arg(〈φn|φm〉) = −θmn. Since the first term in Eq. (4.40) is proportional to the identity on S, we only need

to bound the norm of the second term, which we do by considering an arbitrary normalized vector |c〉 = ∑RU

n=1
cn |n〉:

〈

c

∣

∣

∣

∣

( RU
∑

n,m=1

eiθnm |n〉〈m|
)∣

∣

∣

∣

c

〉

=

RU
∑

n,m=1

eiθnmc∗ncm ≤
RU
∑

n,m=1

|cn||cm| =
(RU
∑

n=1

|cn|
)2

≤ RU . (4.41)

Putting everything together, we obtain

‖Φ‖∞ =
∥

∥ trB(|φSB〉〈φSB |)
∥

∥

∞
≤ 1 +

RU − 1√
dB + 1

. (4.42)

The right-hand-side of Eq. (4.42) is strictly smaller than dB whenever

RU ≤ ⌈
√

dB + 1(dB − 1)⌉ . (4.43)

Here ⌈x⌉ denotes the smallest integer larger than or equal to x.
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We conclude from the condition (4.35) that SB 6= ∅ for RU ≤ ⌈
√
dB + 1(dB − 1)⌉, regardless of the specific choice

of the RU Weyl operators Bn in Eq. (4.34). In particular, SB contains the fiducial vector |φ〉. We now examine in
detail a particular case of the joint unitary (4.34).

Example 8. Consider the controlled unitary (4.34) with the specific choice of RU = 2dB − 1 Weyl operators

{

I, Z, . . . , ZdB−1, X, . . . , XdB−1
}

. (4.44)

For dB ≥ 4, condition (4.43) is satisfied; hence the fiducial state vector is contained in SB. Moreover, the special
Fourier structure of this case makes it easy to determine all the elements of the set SB for dB ≥ 3 (the case dB = 2 is
equivalent to our Example 4). To do this, we find the set of state vectors contained in C1; SB is the complementary

set. For dB ≥ 3, we now show that the state vectors in C1 are the eigenstates |j〉 of X and the eigenstates |j〉 of Z.
The general element of B,

B = λI +

dB−1
∑

j=1

(

ηjX
j + ζjZ

j
)

, (4.45)

has the matrix representation in the standard basis,

B =

















ζ0 ηdB−1 ηdB−2 · · · η1

η1 ζ1 ηdB−1 · · · η2

η2 η1 ζ2 · · · η3
...

...
...

. . .
...

ηdB−1 ηdB−2 ηdB−3 · · · ζdB−1

















, (4.46)

where

ζj = λ+

dB−1
∑

k=1

ei2πjk/dB ζk . (4.47)

The matrix B is rank one if and only if all the order-two minors (determinants of 2× 2 submatrices) are zero.
We first note that minor condition implies that if any of the ηjs is nonzero, then all the matrix elements of B—

hence, all the ηjs—are nonzero. We deal with this case first. The condition on minors can then be restated as the
requirement that the ratio of matrix elements in the same row of different columns is independent of row, and these
reduce to the following conditions:

η1

ζj+1

=
η2
η1

=
η3
η2

= · · · = ηdB−1

ηdB−2

=
ζj

ηdB−1

, j = 0, . . . , dB − 1. (4.48)

For dB = 2, this is a single condition, η21 = ζ0ζ1 = λ2 − ζ21 ; as mentioned above, this takes us back to Example 4,
where SB = ∅. For dB ≥ 3, we have immediately that all the ζjs are equal and thus that ζj = 0 for j = 1, . . . , dB − 1

and ζj = λ for j = 0, . . . , dB − 1. Now we can find the solutions of conditions (4.48), labeled by k = 0, . . . , dB − 1:

ηj = λei2πjk/dB . (4.49)

This gives Bk = dBλ |k〉 〈k|. We now turn to the case where all of the ηjs are zero. In this situation, the minor
condition immediately tells us that only one diagonal element of B can be nonzero. We can also deal efficiently
with this case by moving to the Fourier basis, which switches the roles of X and Z and of the ηjs and ζjs; then one

similarly concludes that all the ηjs are zero and that ζj = λe−i2πjk/dB and ζj = dBλδjk, k = 0, . . . , dB − 1, giving
Bk = dBλ |k〉〈k|. This shows that the pure states in C1 are the eigenstates of X and Z. All other state vectors are in
SB.

V. INDIRECT TOMOGRAPHY

Suppose that SB is not the empty set so that, as we have learned, there are unphysical ancilla “states” σB � 0
such that the map (1.1) is a proper quantum operation. One can ask whether this happens because the unphysicality
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of the ancilla is “hidden” and irrelevant. In the example given in the Introduction, i.e., a joint unitary U = UA ⊗ IB ,
the ancilla does not interact with the system; the evolution the system undergoes is independent of the “state” of the
ancilla. We will now show that this is not always the case: a counterintuitive situation can arise, where (i) the joint
unitary U can lead to an operation on the system even in cases where the “state” of the ancilla is unphysical, i.e.,
SB 6= ∅, yet (ii) at the same time, U allows the tomographic reconstruction of the “state” of the ancilla.
By this we mean the following. Recall Eqs. (1.1), (3.2), and (3.3),

Eσ(ρA) ≡ trB
(

UρA ⊗ σBU
†
)

=

RU
∑

n,m=1

GnmAnρAA
†
m , (5.1)

whereGnm ≡ (An|Eσ|Am) = trB(BnσBB
†
m), and the operatorsAn and Bn are Schmidt operators for U , as in Eq. (2.9).

We can use standard process tomography to determine Eσ from measurements of an informationally complete POVM
on the output states obtained from an informationally complete set of input states. We say that U allows indirect

tomography on B if this knowledge of Eσ uniquely determines σB . This is equivalent to saying that the matrix Gnm

determines σB .
To allow such indirect tomography on the ancilla state, all we need is that different operators σB map to different

matrices Gnm. This map being linear, we require that trB(BnOBB
†
m) = 0, for n,m = 1, . . . RU , implies OB = 0 or,

equivalently, that the operators B†
mBn span the space of operators on HB. Thus we reach our theorem on indirect

tomography.

Theorem. Indirect tomography. The unitary U with Schmidt decomposition U =
∑RU

n=1
An ⊗Bn allows indirect

tomography if and only if

dim
(

Span
{

B†
mBn

∣

∣ m,n = 1, . . . , RU }
)

= d 2
B . (5.2)

We want to exhibit unitaries that allow indirect tomography even if SB 6= ∅. We do not have to go far: Examples 7
and 8 of Sec. IV have exactly this property. In Example 8, it is not hard to see that the set

{

B†
mBn

∣

∣ m,n =
1, . . . , 2dB − 1 } comprises all Weyl operators (up to irrelevant phases), which means that the unitary (4.34) allows
indirect tomography.
By definition, when an interaction unitary U allows indirect tomography there is only one “state” σB of the ancilla

compatible with the evolution Eσ. Thus the situation incarnated by Examples 7 and 8 clarifies that the complete
positivity of the evolution Eσ undergone by A, in spite of the lack of physicality of σB, cannot be interpreted as saying
that there is some other physical state σ′

B ≥ 0 of the ancilla such that Eσ = Eσ′ .

VI. CONCLUSION

We have introduced, answered, and explored the question of what properties a joint unitary operator, acting on
a system and an ancilla, must have in order that a quantum operation on the system, based on this joint unitary,
requires that the ancilla state be physical. The answer uncovers structures, not hitherto appreciated, on the space of
states of the ancilla, structures clearly connected to the question of when a superoperator is a completely positive.
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